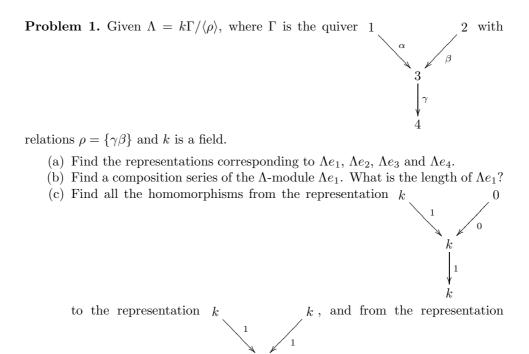
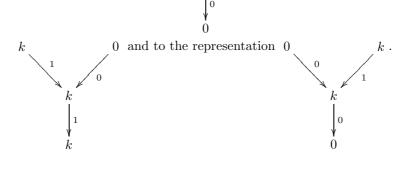
MA3203 - Midterm test

The midterm test consists of 3 problems.





k

Problem 2. Given $\Lambda = k\Gamma/\langle \rho \rangle$, where Γ is the quiver $1 \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} 2 \stackrel{\beta}{\underset{\alpha}{\longrightarrow}} \beta$ with relations $\rho = \{\beta\alpha, \gamma\beta, \beta^2 - \alpha\gamma\}$ and k is a field.

- (a) Find the dimension of Λ as a vector space over k.
- (b) Let J be the ideal in $k\Gamma$ generated by the arrows. Show that $J^t \subset \langle \rho \rangle \subset J^2$ for some $t \ge 2$.
- (c) For the left Λ -modules Λe_1 and Λe_2 find the corresponding representations of (Γ, ρ) . Find the radical of the representations.
- (d) Find the radical \mathfrak{r} of Λ . What is the smallest positive integer n such that $\mathfrak{r}^n = (0)$. Let $M = \operatorname{rad}(\Lambda e_2)$. Find the top of M.

Problem 3. Let Λ be a finite dimensional algebra over a field k. Let M be a left Λ -module. Show that the following are equivalent.

- (a) M is a finitely generated Λ -module.
- (b) M has finite length.
- (c) M as a vector space over k is finite dimensional.