## MA3203 - Problem sheet 1

## Problem 1.

(a) Given a quiver $\Gamma: 1 \longrightarrow 2 \longrightarrow 3$ and a field $k$, let $\Lambda=k \Gamma$. Let $S$ be the $k$-algebra $\left(\begin{array}{ccc}k & 0 & 0 \\ k & k & 0 \\ k & k & k\end{array}\right)$. Show that $\Lambda$ and $S$ are isomorphic as $k$-algebras.
(b) Given the representation $(V, f): k^{2} \xrightarrow{\left(\begin{array}{ll}1 & 1\end{array}\right.} k \xrightarrow{\binom{0}{1}} k^{2}$ and the representation $\left(V^{\prime}, f^{\prime}\right): k \xrightarrow{\binom{1}{0}} k^{2} \xrightarrow{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)} k^{2}$ of $\Gamma$ over $k$, describe homomorphisms from $(V, f)$ to $\left(V^{\prime}, f^{\prime}\right)$.
(c) Describe homomorphisms from $\left(V^{\prime}, f^{\prime}\right)$ to $(V, f)$ where $(V, f)$ and $\left(V^{\prime}, f^{\prime}\right)$ are as in (b).
(d) We say that a representation $(V, f)$ of some quiver $\Gamma$ over some field $k$ is a subrepresentation of a representation $\left(V^{\prime}, f^{\prime}\right)$ of $\Gamma$ over $k$ if there is a monomorphism from $(V, f)$ to $\left(V^{\prime}, f^{\prime}\right)$.

Let $\left(V^{\prime}, f^{\prime}\right)$ be the representation $k \xrightarrow{1} k \xrightarrow{1} k$ of the quiver $\Gamma$ from (a) over the field $k$. Find all subrepresentations of $\left(V^{\prime}, f^{\prime}\right)$.
(e) Vi say that a representation $(V, f)$ of some quiver $\Gamma$ over some field $k$ is a factor of a representation $\left(V^{\prime}, f^{\prime}\right)$ of $\Gamma$ over $k$ if there is an epimorphism from $\left(V^{\prime}, f^{\prime}\right)$ to $(V, f)$.

Let $\left(V^{\prime}, f^{\prime}\right)$ be as in (d). Find all factor-representations of $\left(V^{\prime}, f^{\prime}\right)$.

## Problem 2.

(a) Given the quiver $\Gamma: 1 \bigcirc \alpha$ with a relation $\sigma=\alpha^{2}$ and a field $k$, let $\Lambda=k \Gamma /\left\langle\alpha^{2}\right\rangle$. Show that $\Lambda$ and $k[x] /\left(x^{2}\right)$ are isomorphic as $k$-algebras.
(b) Find all homomorphisms from the representation $(V, f): k^{3} \supseteq\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right)$ to itself.
(c) Find all indecomposable representations of $(\Gamma, \sigma)$ over $k$. Hint: Only two!

Problem 3. Let $R=\left(\begin{array}{cc}k & 0 \\ k[x] /\left(x^{2}\right) & k\end{array}\right) \subset\left(\begin{array}{cc}k[x] /\left(x^{2}\right) & 0 \\ k[x] /\left(x^{2}\right) & k[x] /\left(x^{2}\right)\end{array}\right)$, where $k$ is a field and addition and multiplication are the usual addition and multiplication of matrices.
(a) Show that $R$ is a ring, and that it is an algebra over $k$ when $\alpha \cdot r=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha\end{array}\right) r$ for $\alpha \in k$ and $r \in R$. Is $R$ a left artinian ring?
(b) Let $I=\left(\begin{array}{rr}0 & 0 \\ k[x] /\left(x^{2}\right) & 0\end{array}\right)$. Show that $I$ is an ideal in $R$. Is $R$ a semisimple ring? Show that $R / I \cong k \bigoplus k$ as rings.
(c) Show that $R$ is isomorphic to the path algebra of the quiver $\Gamma: 1 \underset{\beta}{\stackrel{\alpha}{\Longrightarrow}} 2$.
(d) Let $M_{\lambda}$ be the representation of the quiver $\Gamma$ over $k$ given by $V(1)=$ $k, V(2)=k, f_{\alpha}=1$ and $f_{\beta}=\lambda$ (i.e. $f_{\alpha}(a)=a, f_{\beta}(a)=\lambda a, \forall a \in k$ ) where $\lambda \in k$.

Show that $M_{\lambda} \not \neq M_{\lambda^{\prime}}$ if $\lambda \neq \lambda^{\prime}$.
(e) Show that $M_{\lambda}$ is indecomposable for each $\lambda$ in $k$.

