MA3203 - Problem Sheet 2

Problem 1. Let k ba a field. Find the representations corresponding to the modules Λe_{i} for the different possible values of i and for the different cases of Λ listed below.
(a) $\Lambda=k \Gamma$, where Γ is the quiver:

(b) $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is the quiver:

$$
1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3
$$

and $\rho=\{\beta \alpha\}$.
(c) $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is the quiver:

$$
1 \xrightarrow{\alpha} 2 \underset{\gamma}{\stackrel{\beta}{\Longrightarrow}} 3
$$

and $\rho=\{\beta \alpha\}$.
(d) $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is the quiver:

$$
1 \underset{\beta}{\stackrel{\alpha}{\Longrightarrow}} 2 \bigcirc \gamma
$$

and $\rho=\left\{\gamma \alpha, \gamma^{3}\right\}$.
Problem 2. Find a composition series for the following representations:
(a) Λe_{1} where Λ is as in (c) above.
(b) Λe_{1} where Λ is as in (d) above.

Problem 3.

(a) Given a ring Λ. Show that a Λ-module M is decomposable if and only if its endomorphism ring $\operatorname{End}_{\Lambda}(M)=\{f: M \rightarrow M \mid f \Lambda$-homomorphism $\}$ contains a nontrivial idempotent (i.e. there is an f in $\operatorname{End}_{\Lambda}(M)$ such that $f^{2}=f$ and $\left.f \neq 0,1\right)$.
(b) Use (a) to show that Λe_{1} where Λ is as in (b) in Problem 1 is indecomposable.
(c) Given $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is a quiver with vertices $\{1, \ldots, n\}$ and ρ is a set of relations. Assume that $J^{t} \subset\langle\rho\rangle \subset J^{2}$ for some t.

Show that the endomorphism ring $\operatorname{End}_{\Lambda}\left(\Lambda e_{i}\right)^{\text {op }}$ is isomorphic to $e_{i} \Lambda e_{i}$. Conclude (using (a)) that Λe_{i} is indecomposable for each i.
(d) Given a ring Λ and two simple Λ-modules S and S^{\prime}. Show that if $f: S \rightarrow S^{\prime}$ is a nonzero Λ-homomorphism, then f is an isomorphism.

Problem 4. Let Γ be the quiver with relations as in (b) in Problem 1, and let V be its representation over k given by: $V(1)=k, V(2)=k^{2}, V(3)=k^{2}, f_{\alpha}=\binom{1}{1}$ and $f_{\beta}=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$.

Determine if V is decomposable, and if it is, find its decomposition into a direct sum of indecomposable representations.

Furthermore, find a composition series for V.

