MA3203 - Problem sheet 2

Problem 1. Let k be a field. Find the representations corresponding to the modules Λe_i for the different possible values of i and for the different cases of Λ listed below.

(a) $\Lambda = k\Gamma$, where Γ is the quiver:

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

(b) $\Lambda = k\Gamma/\langle \rho \rangle$, where Γ is the quiver:

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

and $\rho = \{\beta \alpha\}.$

(c) $\Lambda = k\Gamma/\langle \rho \rangle$, where Γ is the quiver:

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

and $\rho = \{\beta \alpha\}.$

(d) $\Lambda = k\Gamma/\langle \rho \rangle$, where Γ is the quiver:

$$1 \xrightarrow{\alpha}{\longrightarrow} 2 \bigcirc \gamma$$

and $\rho = \{\gamma \alpha, \gamma^3\}.$

Problem 2. Find a composition series for the following representations:

- (a) Λe_1 where Λ is as in (c) above.
- (b) Λe_1 where Λ is as in (d) above.

Problem 3.

- (a) Given a ring Λ . Show that a Λ -module M is decomposable if and only if its endomorphism ring $\operatorname{End}_{\Lambda}(M) = \{f \colon M \to M \mid f \Lambda$ -homomorphism} contains a nontrivial idempotent (i.e. there is an f in $\operatorname{End}_{\Lambda}(M)$ such that $f^2 = f$ and $f \neq 0, 1$).
- (b) Use (a) to show that Λe_1 where Λ is as in (b) in Problem 1 is indecomposable.
- (c) Given $\Lambda = k\Gamma/\langle \rho \rangle$, where Γ is a quiver with vertices $\{1, \ldots, n\}$ and ρ is a set of relations. Assume that $J^t \subset \langle \rho \rangle \subset J^2$ for some t. Show that the endomorphism ring $\operatorname{End}_{\Lambda}(\Lambda e_i)^{\operatorname{op}}$ is isomorphic to $e_i \Lambda e_i$.
- Conclude (using (a)) that Λe_i is indecomposable for each *i*. (d) Given a ring Λ and two simple Λ -modules *S* and *S'*. Show that if $f: S \to S'$
- (d) Given a ring Λ and two simple Λ -modules S and S. Show that if $f: S \to S$ is a nonzero Λ -homomorphism, then f is an isomorphism.

Problem 4. Let Γ be the quiver with relations as in (b) in Problem 1, and let V be its representation over k given by: V(1) = k, $V(2) = k^2$, $V(3) = k^2$, $f_{\alpha} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $f_{\beta} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$.

Determine if V is decomposable, and if it is, find its decomposition into a direct sum of indecomposable representations.

Furthermore, find a composition series for V.