MA3203 - Problem Sheet 2

Problem 1. Let k ba a field. Find the representations corresponding to the modules Λe_{i} for the different possible values of i and for the different cases of Λ listed below.
(a) $\Lambda=k \Gamma$, where Γ is the quiver:

(b) $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is the quiver:

$$
1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3
$$

and $\rho=\{\beta \alpha\}$.
(c) $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is the quiver:

$$
1 \xrightarrow{\alpha} 2 \underset{\gamma}{\stackrel{\beta}{\Longrightarrow}} 3
$$

and $\rho=\{\beta \alpha\}$.
(d) $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is the quiver:

$$
1 \underset{\beta}{\stackrel{\alpha}{\Longrightarrow}} 2 \bigcirc \gamma
$$

and $\rho=\left\{\gamma \alpha, \gamma^{3}\right\}$.
Problem 2. Find a composition series for the following representations:
(a) Λe_{1} where Λ is as in (c) above.
(b) Λe_{1} where Λ is as in (d) above.

Problem 3.

(a) Given a ring Λ. Show that a Λ-module M is decomposable if and only if its endomorphism ring $\operatorname{End}_{\Lambda}(M)=\{f: M \rightarrow M \mid f \Lambda$-homomorphism $\}$ contains a nontrivial idempotent (i.e. there is an f in $\operatorname{End}_{\Lambda}(M)$ such that $f^{2}=f$ and $\left.f \neq 0,1\right)$.
(b) Use (a) to show that Λe_{1} where Λ is as in (b) in Problem 1 is indecomposable.
(c) Given $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is a quiver with vertices $\{1, \ldots, n\}$ and ρ is a set of relations. Assume that $J^{t} \subset\langle\rho\rangle \subset J^{2}$ for some t.

Show that the endomorphism ring $\operatorname{End}_{\Lambda}\left(\Lambda e_{i}\right)^{\mathrm{op}}$ is isomorphic to $e_{i} \Lambda e_{i}$. Conclude (using (a)) that Λe_{i} is indecomposable for each i.
(d) Given a ring Λ and two simple Λ-modules S and S^{\prime}. Show that if $f: S \rightarrow S^{\prime}$ is a nonzero Λ-homomorphism, then f is an isomorphism.

Problem 4. Let Γ be the quiver with relations as in (b) in Problem 1, and let V be its representation over k given by: $V(1)=k, V(2)=k^{2}, V(3)=k^{2}, f_{\alpha}=\binom{1}{1}$ and $f_{\beta}=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$.

Determine if V is decomposable, and if it is, find its decomposition into a direct sum of indecomposable representations.

Furthermore, find a composition series for V.

Problem 5. Let k be a field and let Γ be the quiver

For an ordered pair (i, j) of elements in k, let $M_{i j}$ be the representation given by

(a) determine for which (i, j) the representation $M_{i j}$ is indecomposable and for which (i, j) it decomposes.
(b) Prove that if $M_{i j}$ and $M_{r s}$ are indecomposable then they are isomorphic. Is the same true if $M_{i j}$ and $M_{r s}$ decomposes?

Problem 6. Let Λ_{c} be the algebra over \mathbb{C} with basis $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ over \mathbb{C}, where c is a given complex number. The multiplication is given by the following multiplication table:

	e_{0}	e_{1}	e_{2}	e_{3}
e_{0}	e_{0}	e_{1}	e_{2}	e_{3}
e_{1}	e_{1}	e_{3}	e_{3}	0
e_{2}	e_{2}	$-e_{3}$	$c e_{3}$	0
e_{3}	e_{3}	0	0	0

For which c and c^{\prime} are the algebras Λ_{c} and $\Lambda_{c^{\prime}}$ isomorphic?
Challenge 1. Find a quiver with relations ρ_{c} over \mathbb{C} such that $\Lambda_{c} \cong \mathbb{C} \Gamma /\left\langle\rho_{c}\right\rangle$.
Challenge 2. Show that there exists an infinite number of non-isomorphic indecomposable modules over Λ_{c} for any value of c in \mathbb{C}.

Problem 7. Let k be a field and Γ the quiver

$$
{ }^{\alpha} G_{1} \underset{\gamma}{\stackrel{\delta}{\leftrightarrows}} 2 \bigcirc \beta
$$

with relations $\rho=\left\{\delta \gamma-\alpha^{2}, \alpha^{3}-\alpha^{2}, \gamma \delta-\beta^{2}, \beta^{3}-\beta^{2}, \alpha \delta-\delta \beta, \gamma \alpha-\beta \gamma\right\}$.
(a) Show that the dimension of $k \Gamma /\langle\rho\rangle$ over k is 12.
(b) Show that the subspace of $k \Gamma /\langle\rho\rangle$ spanned by $\alpha^{2}, \gamma \alpha^{2}, \alpha^{2} \delta, \beta^{2}$ is a ring which is isomorphic to $M_{2}(k)$-ring of 2×2-matrices over k.
Problem 8. We say that a ring Λ is local if the nonunits of Λ (elements in Λ without multiplicative invers) form an ideal in Λ.

Show that if Λ is local, then 0 and 1 are the only idempotents in Λ.

