MA3203 - Problem sheet 3

Problem 1. Given $\Lambda = k\Gamma/\langle \rho \rangle$, where Γ is the quiver $1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ with relations $\rho = \{\beta\alpha\}$ and k is a field. Find the radicals and tops of representations of Λe_i for different possible values of i.

Problem 2. Given $\Lambda = k\Gamma/\langle \rho \rangle$, where Γ is the quiver $1 \stackrel{\alpha}{\underbrace{}} 2$ with relations

- $\rho = \{\alpha\beta\}$ and k is a field. Let J be the ideal in $k\Gamma$ generated by the arrows.
 - (a) Show that there is some t such that $J^t \subset \langle \rho \rangle \subset J^2$. What is the dimension of Λ over k?
 - (b) Find the representations of Λe_i for different possible values of i and find their radicals and tops.
 - (c) Find the radical of Λ .

Problem 3. Let \mathfrak{r} be the radical of a ring Λ , and let

$$A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

be an exact sequence of Λ -modules and homomorphisms (i.e. Im f = Ker g and g is onto; f does not need to be mono).

Show that the sequence

$$A/\mathfrak{r} A \xrightarrow{\bar{f}} B/\mathfrak{r} B \xrightarrow{\bar{g}} C/\mathfrak{r} C \to 0$$

also is exact, where the maps \overline{f} and \overline{g} are induced by $\overline{f}(a + \mathfrak{r}A) = f(a) + \mathfrak{r}B$ and $\overline{g}(b) = g(b) + \mathfrak{r}C$.

Problem 4. Let k be a field and let Γ be the quiver

For an ordered pair (i, j) of elements in k, let M_{ij} be the representation given by

- (a) determine for which (i, j) the representation M_{ij} is indecomposable and for which (i, j) it decomposes.
- (b) Prove that if M_{ij} and M_{rs} are indecomposable then they are isomorphic. Is the same true if M_{ij} and M_{rs} decomposes?

Problem 5. Let Λ_c be the algebra over \mathbb{C} with basis $\{e_0, e_1, e_2, e_3\}$ over \mathbb{C} , where c is a given complex number. The multiplication is given by the following multiplication table:

	e_0	e_1	e_2	e_3
e_0	e_0	e_1	e_2	e_3
e_1	e_1	e_3	e_3	0
e_2	e_2	$-e_3$	ce_3	0
e_3	e_3	0	0	0

For which c and c' are the algebras Λ_c and $\Lambda_{c'}$ isomorphic?

Challenge 1. Find a quiver with relations ρ_c over \mathbb{C} such that $\Lambda_c \cong \mathbb{C}\Gamma/\langle \rho_c \rangle$.

Challenge 2. Show that there exists an infinite number of non-isomorphic indecomposable modules over Λ_c for any value of c in \mathbb{C} .

Problem 6. Let k be a field and Γ the quiver

$$\alpha \bigcap 1 \xrightarrow{\delta} 2 \bigcap \beta$$

with relations $\rho = \{\delta\gamma - \alpha^2, \alpha^3 - \alpha^2, \gamma\delta - \beta^2, \beta^3 - \beta^2, \alpha\delta - \delta\beta, \gamma\alpha - \beta\gamma\}.$

- (a) Show that the dimension of $k\Gamma/\langle \rho \rangle$ over k is 12.
- (b) Show that the subspace of $k\Gamma/\langle \rho \rangle$ spanned by $\alpha^2, \gamma \alpha^2, \alpha^2 \delta, \beta^2$ is a ring which is isomorphic to $M_2(k)$ -ring of 2×2 -matrices over k.

Problem 7. We say that a ring Λ is local if the nonunits of Λ (elements in Λ without multiplicative invers) form an ideal in Λ .

Show that if Λ is local, then 0 and 1 are the only idempotents in Λ .