MA3203 - Problem sheet 3

Problem 1. Given $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is the quiver $1 \xrightarrow{\alpha} 2 \underset{\gamma}{\beta} 3$ with relations $\rho=\{\beta \alpha\}$ and k is a field. Find the radicals and tops of representations of Λe_{i} for different possible values of i.

Problem 2. Given $\Lambda=k \Gamma /\langle\rho\rangle$, where Γ is the quiver $1 \underset{\beta}{\stackrel{\alpha}{\leftrightarrows}} 2$ with relations $\rho=\{\alpha \beta\}$ and k is a field. Let J be the ideal in $k \Gamma$ generated by the arrows.
(a) Show that there is some t such that $J^{t} \subset\langle\rho\rangle \subset J^{2}$. What is the dimension of Λ over k ?
(b) Find the representations of Λe_{i} for different possible values of i and find their radicals and tops.
(c) Find the radical of Λ.

Problem 3. Let \mathfrak{r} be the radical of a ring Λ, and let

$$
A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

be an exact sequence of Λ-modules and homomorphisms (i.e. $\operatorname{Im} f=\operatorname{Ker} g$ and g is onto; f does not need to be mono).

Show that the sequence

$$
A / \mathfrak{r} A \xrightarrow{\bar{f}} B / \mathfrak{r} B \xrightarrow{\bar{g}} C / \mathfrak{r} C \rightarrow 0
$$

also is exact, where the maps \bar{f} and \bar{g} are induced by $\bar{f}(a+\mathfrak{r} A)=f(a)+\mathfrak{r} B$ and $\bar{g}(b)=g(b)+\mathfrak{r} C$.

Problem 4. Let k be a field and let Γ be the quiver

For an ordered pair (i, j) of elements in k, let $M_{i j}$ be the representation given by

(a) determine for which (i, j) the representation $M_{i j}$ is indecomposable and for which (i, j) it decomposes.
(b) Prove that if $M_{i j}$ and $M_{r s}$ are indecomposable then they are isomorphic. Is the same true if $M_{i j}$ and $M_{r s}$ decomposes?

Problem 5. Let Λ_{c} be the algebra over \mathbb{C} with basis $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ over \mathbb{C}, where c is a given complex number. The multiplication is given by the following multiplication table:

	e_{0}	e_{1}	e_{2}	e_{3}
e_{0}	e_{0}	e_{1}	e_{2}	e_{3}
e_{1}	e_{1}	e_{3}	e_{3}	0
e_{2}	e_{2}	$-e_{3}$	$c e_{3}$	0
e_{3}	e_{3}	0	0	0

For which c and c^{\prime} are the algebras Λ_{c} and $\Lambda_{c^{\prime}}$ isomorphic?
Challenge 1. Find a quiver with relations ρ_{c} over \mathbb{C} such that $\Lambda_{c} \cong \mathbb{C} \Gamma /\left\langle\rho_{c}\right\rangle$.
Challenge 2. Show that there exists an infinite number of non-isomorphic indecomposable modules over Λ_{c} for any value of c in \mathbb{C}.
Problem 6. Let k be a field and Γ the quiver

$$
{ }^{\alpha} \bigcap_{1} \underset{\gamma}{\stackrel{\delta}{\leftrightarrows}} 2 \bigcirc \beta
$$

with relations $\rho=\left\{\delta \gamma-\alpha^{2}, \alpha^{3}-\alpha^{2}, \gamma \delta-\beta^{2}, \beta^{3}-\beta^{2}, \alpha \delta-\delta \beta, \gamma \alpha-\beta \gamma\right\}$.
(a) Show that the dimension of $k \Gamma /\langle\rho\rangle$ over k is 12.
(b) Show that the subspace of $k \Gamma /\langle\rho\rangle$ spanned by $\alpha^{2}, \gamma \alpha^{2}, \alpha^{2} \delta, \beta^{2}$ is a ring which is isomorphic to $M_{2}(k)$-ring of 2×2-matrices over k.
Problem 7. We say that a ring Λ is local if the nonunits of Λ (elements in Λ without multiplicative invers) form an ideal in Λ.

Show that if Λ is local, then 0 and 1 are the only idempotents in Λ.

