MA3203 - Problem sheet 5

Problem 1. Given a ring Λ , let $F, G: \mod \Lambda \to Ab$ be two functors, F covariant and G contravariant. Then we have the following definitions:

- (i) If $0 \to F(A) \to F(B) \to F(C)$ $(G(C) \to G(B) \to G(A) \to 0)$ is an exact sequence whenever $0 \to A \to B \to C$ is, we say that F is *left exact* functor (G is *right exact* functor).
- (ii) If $F(A) \to F(B) \to F(C) \to 0$ $(0 \to G(C) \to G(B) \to G(A) \to 0)$ is an exact sequence whenever $0 \to A \to B \to C$ is, we say that F is right exact functor (G is left exact functor).
- (iii) If $0 \to F(A) \to F(B) \to F(C) \to 0$ $(0 \to G(C) \to G(B) \to G(A) \to 0)$ is an exact sequence whenever $0 \to A \to B \to C \to 0$ is, we say that F is exact functor (G is exact functor).
- Let X be in $\operatorname{mod} \Lambda$.
- (a) Show that the functor $F = \text{Hom}_{\Lambda}(X, -)$ is a left exact (covariant) functor. Show also that $F = \text{Hom}_{\Lambda}(X, -)$ is an exact functor if and only if X is a projective Λ -module.
- (b) Show that the functor $F = \text{Hom}_{\Lambda}(-, X)$ is a left exact (contravariant) functor. Show also that $F = \text{Hom}_{\Lambda}(-, X)$ is an exact functor if and only if X is an injective Λ -module.

Problem 2. Let Λ be an artin *R*-algebra. Assume that

$$\Lambda \simeq P_1^{n_1} \oplus \cdots \oplus P_t^{n_t}$$

where P_i is indecomposable, $P_i \not\simeq P_j$ for $i \neq j$, and $n_i > 0$. Let $\Sigma = \text{End}_{\Lambda}(P)^{\text{op}}$, which is basic.

Show that $e_P \colon \operatorname{mod} \Lambda \to \operatorname{mod} \Sigma$ is an equivalence of *R*-categories. Hints:

- (1) Observe that e_P : add $P \to \mathcal{P}$ is an equivalence (Proposition 42 (c)).
- (2) e_P dense: Given C in mod Σ , there exists an exact sequence $F_1 \xrightarrow{f} F_0 \to C \to 0$. Use (1) to show that f up to isomorphisms are given as $e_P(f')$ for some $f': F'_1 \to F'_0$ for F'_i in add P. Furthermore, show that $C \simeq e_P(\operatorname{Coker} f')$.
- (3) e_P full and faitful: Given X in mod Λ , there exists and exact sequence $\eta: P_1 \to P_0 \to X \to 0$ with P_i in add P. Then $e_P(\eta): e_P(P_1) \to e_P(P_0) \to e_P(X) \to 0$ is also exact. Apply $\operatorname{Hom}_{\Lambda}(-, Y)$ to the exact sequence η and apply $\operatorname{Hom}_{\Sigma}(-, e_P(Y))$ to the exact sequence $e_P(\eta)$, and then compare them. Using (1) conclude that e_P is full and faithful.