Delooing Moravian Maps
Stable and Unstable Operations in the Morava
K–theories
arXiv: math.AT/0605471

21st British Topology Meeting

Andrew Stacey¹ Sarah Whitehouse²

University of Sheffield
²Partially and ¹fully supported by the EPSRC, grant no.: GR/S76823/01

12th September 2006
Questions

1. When is an unstable cohomology operation a component of a stable one?
Questions

1. When is an unstable cohomology operation a component of a stable one?

2. If we have a component of a stable operation, can we construct the other components?
Let $E^*(-)$ be a graded, generalised cohomology theory.
Preliminaries

Let $E^*(-)$ be a graded, generalised cohomology theory.

Contravariant functor $E^*(-) : \text{Top} \rightarrow \text{GAb}$

- X topological space $\mapsto E^*(X)$, graded abelian group.
- $f : X \rightarrow Y$ continuous $\mapsto f^* : E^*(Y) \rightarrow E^*(X)$ of graded abelian groups (degree zero), with $(fg)^* = g^*f^*$.
Let $E^*(-)$ be a graded, generalised cohomology theory.

Contravariant functor $E^*(-) : \text{Top} \rightarrow \text{GAb}$

- X topological space $\mapsto E^*(X)$, graded abelian group.
- $f : X \rightarrow Y$ continuous $\mapsto f^* : E^*(Y) \rightarrow E^*(X)$ of graded abelian groups (degree zero), with $(fg)^* = g^*f^*$.
- $E^*(-)$ intertwines suspensions: $E^k(\Sigma X) \cong (\Sigma E^*(X))^k = E^{k-1}(X)$, natural in X.
Forgetfulness

Three views of $E^*(-)$:
Forgetfulness

Three views of $E^*(-)$:

- One functor, $E^*(-)$, into graded abelian groups.
Three views of $E^*(-)$:

- One functor, $E^*(-)$, into graded abelian groups.

- A family of functors, $\{E^k(-)\}$, into abelian groups.
Forgetfulness

Three views of $E^*(-)$:

- One functor, $E^*(-)$, into graded abelian groups.
- A family of functors, $\{E^k(-)\}$, into abelian groups.
- A family of functors, $\{E^k(-)\}$, into sets.
An operation is a natural transformation between functors.
An operation is a natural transformation between functors.

\(F, G : \mathcal{C} \to \mathcal{D} \) contravariant.
\(\nu : F \to G \) is:
for every \(\mathcal{C} \)-object \(X \), \(\nu_X : F(X) \to G(X) \) such that:

\[
\begin{align*}
F(X) \xrightarrow{\nu_X} G(X) \\
F(f) \uparrow & \quad \Uparrow \\
F(Y) \xrightarrow{\nu_Y} G(Y)
\end{align*}
\]
There are three types of operation:
There are three types of operation:

- **Stable**: \(r : E^*(-) \to E^*(-) \) of graded abelian groups, respecting suspension.

\[S^h \]
There are **three** types of operation:

- **Stable:** $r : E^*(-) \rightarrow E^*(-)$ of graded abelian groups, respecting suspension.

- **Additive:** $r : E^k(-) \rightarrow E^l(-)$ of abelian groups.

- **Unstable:** $r : E^k(-) \rightarrow E^l(-)$ of sets.
Operations

There are three types of operation:

- **Stable**: \(r : E^*(-) \to E^*(-) \) of graded abelian groups, respecting suspension.

- **Additive**: \(r : E^k(-) \to E^l(-) \) of abelian groups.

- **Unstable**: \(r : E^k(-) \to E^l(-) \) of sets.
Operations

There are three types of operation:

- **Stable:** $r : E^*(-) \to E^*(-)$ of graded abelian groups, respecting suspension.

- **Additive:** $r : E^k(-) \to E^l(-)$ of abelian groups.

- **Unstable:** $r : E^k(-) \to E^l(-)$ of sets.

\[S^h \to A_{k}^{k+h} \subseteq U_{k}^{k+h} \]
Examples

- Coefficient operations on $E^*(-)$: $n(x) = nx$;
Examples

- Coefficient operations on $E^*(-)$: $n(x) = nx$;
- Multiplication operations on $H^*(-)$: $x \mapsto x^k$
Examples

- Coefficient operations on $E^*(-)$: $n(x) = nx$;
- Multiplication operations on $H^*(-)$: $x \mapsto x^k$;
- Steenrod squares on $H^*(-; \mathbb{F}_2)$.
Examples

- Coefficient operations on $E^*(-)$: $n(x) = nx$;
- Multiplication operations on $H^*(-)$: $x \mapsto x^k$;
- Steenrod squares on $H^*(-; \mathbb{F}_2)$.
- Bott periodicity in K-theory: $\beta : K^{k+2}(X) \xrightarrow{\simeq} K^k(X)$.
Examples

- Coefficient operations on $E^*(-)$: $n(x) = nx$;
- Multiplication operations on $H^*(-)$: $x \mapsto x^k$;
- Steenrod squares on $H^*(-; \mathbb{F}_2)$.
- Bott periodicity in K–theory: $\beta : K^{k+2}(X) \xrightarrow{\cong} K^k(X)$;
- Adams operations in K–theory: for $k \in \mathbb{Z}$, $\Psi^k : K^0(X) \to K^0(X)$.
 $\Psi^k(L) = L \otimes^k$, $\Psi^k(V \oplus W) = \Psi^k(V) \oplus \Psi^k(W)$.
Questions

1. When is an unstable cohomology operation a component of a stable one?

2. If we have a component of a stable operation, can we construct the other components?
Looping

Consider an unstable operation:

\[r : E^k(-) \rightarrow E^l(-) \]
Consider an unstable operation:

\[r : E^k(_) \to E^l(_) \]

Define a new operation:

\[\Omega r : E^{k-1}(_) \to E^{l-1}(_) \]

by:

\[(\Omega r)_X : E^{k-1}(X) \cong E^k(\Sigma X) \xrightarrow{r_{\Sigma X}} E^l(\Sigma X) \cong E^{l-1}(X) \]
Proposition

1. Ωr is an unstable (additive) operation;
Proposition

1. Ωr is an unstable (additive) operation;
2. If r is the kth component of a stable operation, $(-1)^{l-k}\Omega r$ is the $(k - 1)$th component.
Looping

Proposition

1. Ωr is an unstable (additive) operation;
2. If r is the kth component of a stable operation, $(-1)^{l-k}\Omega r$ is the $(k-1)$th component.

Lower components are easy.
Looping

Proposition

1. Ωr is an unstable (additive) operation;
2. If r is the kth component of a stable operation, $(-1)^{l-k}\Omega r$ is the $(k-1)$th component.

Lower components are easy.
Higher components are the hard part.
Looping

Proposition

1. $Ωr$ is an unstable (additive) operation;
2. If r is the kth component of a stable operation, $(-1)^{l-k}Ωr$ is the $(k-1)$th component.

Lower components are easy.
Higher components are the hard part.
That is, to deloop the operation r.
Proposition

1. Ωr is an unstable (additive) operation;
2. If r is the kth component of a stable operation, $(-1)^{l-k}\Omega r$ is the $(k - 1)$th component.

Lower components are easy.
Higher components are the hard part.
That is, to deloop the operation r.
Mild help: often have a uniqueness theorem.
Example: K–theory

K–theory:
Example: K–theory

K–theory:

\[
\begin{array}{cccccc}
K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X) \\
\downarrow r & & & & \\
K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X)
\end{array}
\]
Example: K–theory

K–theory:

\[
\begin{array}{cccccc}
K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X) \\
\downarrow \Omega^2r & \downarrow \Omega r & \downarrow r & & & \\
K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X)
\end{array}
\]
Example: \(\text{K-theory} \)

K-theory: 2–periodic.

\[
\begin{array}{cccccc}
K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X) \\
\Omega^2 r & \Omega r & r & & \\
K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X) \\
\beta^{-1} & \beta & & & \\
\end{array}
\]
Example: K–theory

$$
\begin{array}{cccccc}
K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X) \\
\downarrow \Omega^2 r & \downarrow \Omega r & \downarrow r & \downarrow \beta^{-1} r \beta & \\
K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X)
\end{array}
$$

$$
\begin{array}{c}
\xymatrix{K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X) \\
\downarrow \Omega^2 r & \downarrow \Omega r & \downarrow r & \downarrow \beta^{-1} r \beta & \\
K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X)}
\end{array}
$$

Question: $r = \Omega^2 r (\beta^{-1} r \beta) ?$
Example: K–theory

\[K^{-2}(X) \quad K^{-1}(X) \quad K^0(X) \quad K^1(X) \quad K^2(X) \]

\[\xrightarrow{\Omega^2 r} \quad \xrightarrow{\Omega r} \quad \xrightarrow{r} \quad \xrightarrow{\Omega(\beta^{-1} r\beta)} \quad \xrightarrow{\beta^{-1} r\beta} \]

\[\xleftarrow{\beta^{-1}} \]
Example: K–theory

\[
\begin{array}{cccccc}
K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X) \\
\Omega^2 r & \Omega r & r & \Omega(\beta^{-1} r \beta) & \beta^{-1} r \beta \\
K^{-2}(X) & K^{-1}(X) & K^0(X) & K^1(X) & K^2(X) \\
& & \beta^{-1} & & \\
& \beta & & & \\
\end{array}
\]

Question: \(r = \Omega^2(\beta^{-1} r \beta) \)?
Adams Operations

\[\Omega^2(\beta^{-1}\Psi^k\beta) = k\Psi^k \]
Adams Operations

\[\Omega^2(\beta^{-1}\Psi^k\beta) = k\Psi^k \]

\[
\begin{array}{ccc}
K^{-2}(X) & K^0(X) & K^2(X) \\
\downarrow & & \downarrow \\
K^{-2}(X) & K^0(X) & K^2(X)
\end{array}
\]
Adams Operations

\[\Omega^2(\beta^{-1}\Psi^k\beta) = k\Psi^k \]

\[\begin{array}{ccc}
K^{-2}(X) & K^0(X) & K^2(X) \\
\downarrow k\Psi^k & \downarrow \Psi^k & \\
K^{-2}(X) & K^0(X) & K^2(X)
\end{array} \]
Adams Operations

\[\Omega^2(\beta^{-1}\Psi^k\beta) = k\Psi^k \]

\[\begin{array}{ccc}
K^{-2}(X) & K^0(X) & K^2(X) \\
\downarrow k\Psi^k & \downarrow \Psi^k & \downarrow \frac{1}{k}\Psi^k \\
K^{-2}(X) & K^0(X) & K^2(X)
\end{array} \]
Adams Operations

$$\Omega^2(\beta^{-1}\Psi^k\beta) = k\Psi^k$$

$\begin{align*}
K^{-2}(X) & \quad K^0(X) & \quad K^2(X) \\
\downarrow k\Psi^k & \quad \downarrow \Psi^k & \quad \downarrow \frac{1}{k}\Psi^k \\
K^{-2}(X) & \quad K^0(X) & \quad K^2(X)
\end{align*}$

$\frac{1}{k}\Psi^k$ not an operation on $K^0(-)$ (unless $k = 1$ or $k = -1$)
Coefficients

How to divide by k: introduce coefficients. R a commutative, unital ring $K(−; R)$ K–theory with coefficients in R.

Examples:
1. $R = \mathbb{Q}$, but $K^∗(−; \mathbb{Q}) \cong H^∗(−; \mathbb{Q})$
2. $R = \mathbb{Z}(p)$ retains p–typical information Ψ_k is stable if $p \nmid k$ (see work of Clarke, Crossley, and Whitehouse)
Coefficients

How to divide by k: introduce coefficients. R a commutative, unital ring $K(−; R)$ K–theory with coefficients in R.

Examples

1. $R = \mathbb{Q}$
Coefficients

How to divide by k: introduce coefficients. R a commutative, unital ring $K(-; R)$ K–theory with coefficients in R.

Examples

1. $R = \mathbb{Q}$, but $K^*(-; \mathbb{Q}) \cong H^\pm(-; \mathbb{Q})$
Coefficients

How to divide by \(k \): introduce coefficients. \(R \) a commutative, unital ring \(K(-; R) \) K–theory with coefficients in \(R \).

Examples

1. \(R = \mathbb{Q} \), but \(K^*(-; \mathbb{Q}) \cong H^\pm(-; \mathbb{Q}) \)
2. \(R = \mathbb{Z}_p \) retains \(p \)–typical information
 \(\Psi^k \) is stable if \(p \nmid k \)
 (see work of Clarke, Crossley, and Whitehouse)
Mod p

Warning: $K(X; \mathbb{F}_p) \neq K(X)/(p)$.
Mod p

Warning: $K(X; \mathbb{F}_p) \neq K(X)/(p)$.

$p = 3, \ k = 11$

\[
\begin{array}{ccc}
K^0(X; \mathbb{F}_p) & K^2(X; \mathbb{F}_p) & K^4(X; \mathbb{F}_p) \\
\downarrow^{\Psi^{11}} & & \\
K^0(X; \mathbb{F}_p) & K^2(X; \mathbb{F}_p) & K^4(X; \mathbb{F}_p)
\end{array}
\]
Mod p

Warning: $K(X; \mathbb{F}_p) \neq K(X)/(p)$.

$p = 3$, $k = 11$

\[
\begin{array}{ccc}
K^0(X; \mathbb{F}_p) & K^2(X; \mathbb{F}_p) & K^4(X; \mathbb{F}_p) \\
\downarrow^{\Psi^1} & \downarrow^{\frac{1}{11}\Psi^1} & \\
K^0(X; \mathbb{F}_p) & K^2(X; \mathbb{F}_p) & K^4(X; \mathbb{F}_p)
\end{array}
\]
Mod p

Warning: $K(X; \mathbb{F}_p) \neq K(X)/(p)$.

$p = 3, \ k = 11$

\[
\begin{array}{ccc}
K^0(X; \mathbb{F}_p) & \xrightarrow{\Psi^{11}} & K^2(X; \mathbb{F}_p) \\
\psi^{11} & & \frac{1}{11} \psi^{11} = 2 \psi^{11} \\
\downarrow & & \downarrow \\
K^0(X; \mathbb{F}_p) & \xrightarrow{\Psi^{11}} & K^2(X; \mathbb{F}_p) \\
\end{array}
\]
Mod p

Warning: $K(X; \mathbb{F}_p) \neq K(X)/(p)$.

$p = 3, \ k = 11$

\[
\begin{array}{ccc}
K^0(X; \mathbb{F}_p) & K^2(X; \mathbb{F}_p) & K^4(X; \mathbb{F}_p) \\
\downarrow \psi^{11} & \downarrow \frac{1}{11} \psi^{11} = 2 \psi^{11} & \downarrow \frac{2}{11} \psi^{11} \\
K^0(X; \mathbb{F}_p) & K^2(X; \mathbb{F}_p) & K^4(X; \mathbb{F}_p)
\end{array}
\]
Mod p

Warning: $K(X; \mathbb{F}_p) \neq K(X)/(p)$.

$p = 3, \ k = 11$

\[
\begin{array}{ccc}
K^0(X; \mathbb{F}_p) & K^2(X; \mathbb{F}_p) & K^4(X; \mathbb{F}_p) \\
\xrightarrow{\psi^{11}} & \frac{1}{11} \psi^{11} = 2 \psi^{11} & \frac{2}{11} \psi^{11} = \psi^{11} \\
K^0(X; \mathbb{F}_p) & K^2(X; \mathbb{F}_p) & K^4(X; \mathbb{F}_p)
\end{array}
\]
Answers

Ψ^{11} repeats with period 4
Answers

\[\Psi^{11} \text{ repeats with period } 4 = 2(3 - 1) \]
\[\Psi^{11} \text{ repeats with period } 4 = 2(3 - 1) \]

In \(K^*(-; \mathbb{F}_p) \), for \(p \nmid k \), \(\Psi^k \) repeats with period \(2(p - 1) \) (Fermat)
Answers

\(\Psi^{11} \) repeats with period \(4 = 2(3 - 1) \)
In \(K^*(-; \mathbb{F}_p) \), for \(p \nmid k \), \(\Psi^k \) repeats with period \(2(p - 1) \) (Fermat)

Proposition

In \(K^*(-; \mathbb{F}_p) \):

1. \(\Psi^k \) is stable if and only if \(p \nmid k \);
Ψ^{11} repeats with period 4 = $2(3 - 1)$

In $K^*(-; \mathbb{F}_p)$, for $p \nmid k$, Ψ^k repeats with period $2(p - 1)$ (Fermat)

Proposition

In $K^*(-; \mathbb{F}_p)$:

1. Ψ^k is stable if and only if $p \nmid k$;
2. If Ψ^k is stable the (even) components are blocks of:

 $(\Psi^k, k^{p-2}\Psi^k, k^{p-3}\Psi^k, k^{p-4}\Psi^k, \ldots, k\Psi^k)$.

All Operations

Theorem (S – Whitehouse)

The components of a stable operation on $K^*(-; \mathbb{F}_p)$ repeat with periodicity $2(p - 1)$.
Theorem (S – Whitehouse)

The components of a stable operation on $K^*(-; \mathbb{F}_p)$ repeat with periodicity $2(p - 1)$.

Corollary

If $\Omega^{2(p-1)}(\beta^{-(p-1)}r\beta^{p-1}) = r$ then r is a component of a stable operation.
Reconstruction

Start with a component of a stable operation.

\[
K^k(X; \mathbb{F}_p) \xrightarrow{r_k} K^{k+h}(X; \mathbb{F}_p)
\]
Reconstruction

Start with a component of a stable operation.

\[K^k(X; \mathbb{F}_p) \xrightarrow{r_k} K^{k+h}(X; \mathbb{F}_p) \]
\[K^l(X; \mathbb{F}_p) \xrightarrow{r_l} K^{l+h}(X; \mathbb{F}_p) \]
Start with a component of a stable operation.
Reconstruction

Start with a component of a stable operation.
Start with a component of a stable operation.
Corollary

If $\Omega ^{2(p-1)}(\beta ^{-(p-1)}r\beta ^{p-1}) = r$ then r is a component of a stable operation.
Corollary
If $\Omega^{2(p-1)}(\beta^{-(p-1)} r \beta^{p-1}) = r$ then r is a component of a stable operation.

Theorem (S – Whitehouse)
Let r be an unstable operation on $K^*(-; \mathbb{F}_p)$. Then r is a component of a stable operation if (and only if) there is an unstable operation s with $r = \Omega s$.
Corollary

If $\Omega^2(p-1)(\beta^{-1}(p-1)r\beta^{p-1}) = r$ then r is a component of a stable operation.

Theorem (S – Whitehouse)

Let r be an unstable operation on $K^*(-; \mathbb{F}_p)$. Then r is a component of a stable operation if (and only if) there is an unstable operation s with $r = \Omega s$.

That is, if r deloops once then it deloops as many times as we like.
Morava K–theories

For each prime p, a sequence of cohomology theories $\{K(n)^*(-)\}$ – the chromatic filtration.
Morava K–theories

For each prime p, a sequence of cohomology theories $\{K(n)^*(-)\}$ – the chromatic filtration.

- $K(0)^*(-) = H^*(-; \mathbb{Q})$
Morava K–theories

For each prime p, a sequence of cohomology theories \(\{K(n)^*(-)\} \) – the \textbf{chromatic filtration}.

- $K(0)^*(-) = H^*(-; \mathbb{Q})$
- $K(1)^*(-)$ summand of $K^*(-; \mathbb{F}_p)$
Morava K–theories

For each prime p, a sequence of cohomology theories $\{K(n)^*(-)\}$ – the chromatic filtration.

- $K(0)^*(-) = H^*(-; \mathbb{Q})$
- $K(1)^*(-)$ summand of $K^*(-; \mathbb{F}_p)$
- $K(n)^*(-)$:
 - is periodic, period $2(p^n - 1)$
 - has coefficients $\mathbb{F}_p[v_n, v_n^{-1}], |v_n| = -2(p^n - 1)$
 - has Künneth formula and duality
Theorem (S – Whitehouse)

1. The components of a stable operation in $K(n)^*(-)$ repeat with periodicity $2(p^n - 1)$;
Theorem (S – Whitehouse)

1. The components of a stable operation in $K(n)^*(-)$ repeat with periodicity $2(p^n - 1)$;
2. If r is an unstable operation such that there is another unstable operation s with $r = \Omega s$ then r is a component of a (unique) stable operation.
Notes

1 The periodicity has changed to reflect the periodicity of the cohomology theory.
1. The periodicity has changed to reflect the periodicity of the cohomology theory.

2. The periodicity is always that of the cohomology theory.
(Compare with $K^*(-; \mathbb{F}_p)$)
Notes

1. The periodicity has changed to reflect the periodicity of the cohomology theory.

2. The periodicity is always that of the cohomology theory.
 (Compare with $K^*(-; \mathbb{F}_p)$)

3. The “delooping” condition has not changed: if we can deloop once we can deloop as many times as we like.
Remarks

1. Projection $P : \mathcal{U}_k^l \rightarrow \mathcal{U}_k^l$ via:

$$Pr = \Omega^{2(p^n - 1)}(v_n^{-1}rv_n)$$

such that r is a component of a stable operation if and only if $r = Pr$.

Closely linked to the Bousfield–Kuhn functor.

Reconstruction is easy using periodicity.

Proof is a straightforward analysis of the p–series of the formal group law.
Remarks

1. Projection $P : \mathcal{U}_k^l \to \mathcal{U}_k^l$ via:

$$Pr = \Omega^{2(p^n-1)}(v_n^{-1}rv_n)$$

such that r is a component of a stable operation if and only if $r = Pr$.

2. Closely linked to the Bousfield–Kuhn functor.
Remarks

1. Projection $P : \mathcal{U}_k^l \to \mathcal{U}_k^l$ via:

 $$Pr = \Omega^{2(p^n-1)}(v_n^{-1}rv_n)$$

 such that r is a component of a stable operation if and only if $r = Pr$.

2. Closely linked to the Bousfield–Kuhn functor.

3. Reconstruction is easy using periodicity.
Remarks

1. Projection $P : \mathcal{U}_k^l \rightarrow \mathcal{U}_k^l$ via:

$$Pr = \Omega^{2(p^n - 1)}(v_{n-1}^{-1}rv_n)$$

such that r is a component of a stable operation if and only if $r = Pr$.

2. Closely linked to the Bousfield–Kuhn functor.

3. Reconstruction is easy using periodicity.

4. Proof is a straightforward analysis of the p–series of the formal group law.
Questions

① When is an unstable cohomology operation a component of a stable one?

② If we have a component of a stable operation, can we construct the other components?
Questions

For the Morava K–theories:

1. When is an unstable cohomology operation a component of a stable one?

2. If we have a component of a stable operation, can we construct the other components?
Questions

For the Morava K–theories:

1. When is an unstable cohomology operation a component of a stable one?

 If it can be delooped once.

2. If we have a component of a stable operation, can we construct the other components?
Questions

For the Morava K–theories:

1. When is an unstable cohomology operation a component of a stable one?

 If it can be delooped once.

2. If we have a component of a stable operation, can we construct the other components?

 Yes; easily, using the periodicity.
Further Reading

Unstable operations in generalized cohomology.

J. Michael Boardman.
Stable operations in generalized cohomology.

A. K. Bousfield.
Uniqueness of infinite deloopings for K-theoretic spaces.

Francis Clarke, M. D. Crossley, and Sarah Whitehouse.
Bases for cooperations in K-theory.

Francis Clarke, Martin Crossley, and Sarah Whitehouse.
Algebras of operations in K-theory.
Further Reading

The Morava K-theory Hopf ring for BP.

Nicholas J. Kuhn.
Morava K-theories and infinite loop spaces.

The Hopf ring for complex cobordism.

Andrew Stacey and Sarah Whitehouse.

W. Stephen Wilson.
The Hopf ring for Morava K-theory.