Professor Dirac’s Cookbook

or
How to Construct a Dirac Operator in Infinite Dimensions

Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet
Trondheim

25th May 2011
In Today’s Program

Recipe of the Day
Cooking up a Dirac operator

Ingredients Under the Microscope
Orthogonal structures

Grow Your Own
co-Riemannian structure
<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth manifold, M</td>
<td>[\text{Add } g \text{ to } M \text{ and leave until a connection appears.}]</td>
</tr>
<tr>
<td>Riemannian structure, g</td>
<td>[\text{Place } Q \text{ over the mixture and allow to infuse upwards.}]</td>
</tr>
<tr>
<td>Spin structure, Q</td>
<td>[\text{Combine } S \text{ with } Q \text{ to produce bundles } S_M.]</td>
</tr>
<tr>
<td>Spin representations, S</td>
<td>[\text{Apply to } S+M \text{ to produce a covariant differential operator.}]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\text{Combine } g, c \text{ to produce the Dirac operator.}]</td>
</tr>
</tbody>
</table>
The Basic Recipe

Ingredients

1. Smooth manifold, M

Method

Remarks

- oriented, spin, even dimensional, ...
The Basic Recipe

Ingredients
1. Smooth manifold, M
2. Riemannian structure, g

Method

Remarks
\[g_p \quad T_pM \quad T_pM \]
The Basic Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g

Method

1. Add g to M and leave until a connection appears.

Remarks

The Basic Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q

Method

1. Add g to M and leave until a connection appears.

Remarks

2. Spin_n
2. SO_n
2. Q
2. P
The Basic Recipe

Ingredients
1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q

Method
1. Add g to M and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.

Remarks
The Basic Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method

1. Add g to M and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.

Remarks

Has Clifford Multiplication $c^n S^+ S$ (bilinear)
The Basic Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method

1. Add g to M and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_M.

Remarks

Clifford Multiplication becomes

$$c_\ast TM S^+_M S_M$$

(fibrewise bilinear)
The Basic Recipe

Ingredients
- Smooth manifold, M
- Riemannian structure, g
- Spin structure, Q
- Spin representations, S

Method
- Add g to M and leave until a connection appears.
- Place Q over the mixture and allow to infuse upwards.
- Combine S with Q to produce bundles S_M.
- Apply to S^+_M to produce a covariant differential operator.
The Basic Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method

1. Add g to M and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_M.
4. Apply to S_M^+ to produce a covariant differential operator.
5. Combine g, c, and S_M to produce the Dirac operator $/$.

Remarks

$$/(S_M^+)((TM,S_M^+))\quad (TM,S_M^+)\quad g^1(TM,S_M^+)\quad c(S_M)$$
First Variation

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- **1** Add g to X and leave until a connection appears.
- **2** Place Q over the mixture and allow to infuse upwards.
- **3** Combine S with Q to produce bundles $S \times X$.
- **4** Apply to $S \times X$ to produce a covariant differential operator.
- **5** Combine g, c, and \bar{c} to produce the Dirac operator \mathcal{D}.

Result: Total collapse of Dirac soufflé.
First Variation

Ingredients

1. Smooth manifold, \(X \)

Remarks

- infinite dimensional, polarised, oriented, spin …

Method
First Variation

Ingredients

1. Smooth manifold, X
2. Riemannian structure, g

Method

Remarks

$g_p, T_pX, T_pX, g_p, T_pX, T_pX$
First Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g

Method
1. Add g to X and leave until a connection appears.

Remarks

First Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q

Method
1. Add g to X and leave until a connection appears.

Remarks

\[
\begin{array}{cccc}
S^1 & \text{Spin}_J & \text{SO}_J \\
S^1 & Q & P \\
\end{array}
\]
First Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q

Method
1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.

Remarks
- No longer canonical
First Variation

Ingredients

1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method

1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.

Remarks

Has Clifford Multiplication

$$c \cdot V S^+ S \text{ (bilinear)}$$
First Variation

Ingredients

1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method

1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X.

Remarks

Clifford Multiplication becomes

$$ c \ TX \ S^+_X \ S_X $$

(fibrewise bilinear)
First Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method
1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X.
4. Apply to S_X^+ to produce a covariant differential operator.

Remarks
First Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method
1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X.
4. Apply to S_X^+ to produce a covariant differential operator.
5. Combine g, and c to produce the Dirac operator $/\left(S_X^+ \right)$.

Remarks

\[
\begin{align*}
/ \left(S_X^+ \right) \quad &\left((TX, S_X^+) \right) \\
&\left(TX \ S_X^+ \right) \\
g^1 \quad &\left(TX \ S_X^+ \right) \\
c \quad &\left(S_X \right)
\end{align*}
\]
First Variation

Ingredients

1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method

1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X.
4. Apply to S^+_X to produce a covariant differential operator.
5. Combine g, c, and c to produce the Dirac operator $/$.

Remarks

\[
/ (S^+_X) ~ ((TX, S^+_X)) \\
~ (TX, S^+_X) \\
g^1 (TX, S^+_X) \\
c (S_X)
\]
First Variation

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Smooth manifold, X</td>
<td>1 Add g to X and leave until a connection appears.</td>
</tr>
<tr>
<td>2 Riemannian structure, g</td>
<td>2 Place Q over the mixture and allow to infuse upwards.</td>
</tr>
<tr>
<td>3 Spin structure, Q</td>
<td>3 Combine S with Q to produce bundles S_X.</td>
</tr>
<tr>
<td>4 Spin representations, S</td>
<td>4 Apply to S_X^+ to produce a covariant differential operator.</td>
</tr>
</tbody>
</table>

Remarks

\[
/ (S_X^+) \quad ((TX, S_X^+)) \\
(\ TX \ S_X^+) \\
g^1 (\ TX \ S_X^+) \\
c (S_X)
\]

Result

Total collapse of Dirac soufflé.
First Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method
1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X^+.
4. Apply to S_X^+ to produce a covariant differential operator.
5. Combine, g, and c to produce the Dirac operator $\slashed{\partial}$.

Remarks
\[
/ \ (S_X^+) \quad ((TX, S_X^+)) \\
\ (TX \ S_X^+) \\
g^1 \ (TX \ S_X^+) \\
c \ (S_X)
\]
First Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method
1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X.
4. Apply to S_X^+ to produce a covariant differential operator.
5. Combine g, c, and S_X to produce the Dirac operator $/$.

Remarks

/ $(S_X^+) \quad ((TX, S_X^+)) \\
(TX \ S_X^+) \\
g \quad (TX \ S_X^+) \\
c \quad (S_X)$
First Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method
1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X.
4. Apply to S_X^+ to produce a covariant differential operator.
5. Combine g, S_X^+, and c to produce the Dirac operator \mathcal{D}.

Remarks
$\mathcal{D} = (S_X^+) \left(TX, S_X^+ \right)$

Result
Total collapse of Dirac soufflé.
The Collapse

\[(S_X^+) \rightarrow ((TX, S_X^+))\]

\[(TX, S_X^+)\]

\[(TX, S_X^+), c\]

\[(S_X)\]
The Collapse

\[(S^+_x) \longrightarrow ((TX, S^+_x))\]

\[\rightarrow \quad \text{fv}(uf(u)v)\]

\[\rightarrow \quad \text{vg}(v,)\]

\[\text{needs completion}\]

\[c\]

\[(S_x)\]
The Collapse

\[(S^+_X) \rightarrow ((TX, S^+_X))\]

\[(TX S^+_X)\]

\[(TX S^+_X)\]

\[(S^+_X)\]

fv(uf(u)v)

needs completion

vg(v,)

trace-like

c

needs completion
The Collapse

\[(S_X^+) \rightarrow ((TX, S_X^+))\]

iso \leftrightarrow X nuclear

\[(TX, S_X^+)\] needs completion

\[(TX, S_X^+)\] trace-like

\[c\]

\[(S_X)\]
The Collapse

$$(S^+_X) \rightarrow ((TX, S^+_X))$$

iso \leftrightarrow X nuclear

$$(TX S^+_X)$$

fv(uf(u)v)

needs completion

$$(TX S^+_X)$$

vg(v,)

c

iso \leftrightarrow X Hilbert

$$(S_X)$$

trace-like
The Collapse

\[(S_X^+) \rightarrow ((TX, S_X^+))\]

iso \leftrightarrow X nuclear

\[\text{exists } \leftrightarrow \dim X \downarrow\]

iso \leftrightarrow X Hilbert

\[f(v, uf(u)\nu)\]

needs completion

\[\text{trace-like}\]

\[\text{exists}\]

\[\text{dim}\]

\[\text{iso}\]

\[\text{X}\]

\[\text{nuclear}\]
The Improved Basic Recipe

Ingredients

Method

Remarks

1 Smooth manifold, M
2 Riemannian structure, g
3 Spin structure, Q
4 Spin representations, S

Remarks

1 Add g to M and leave until a connection appears.
2 Place Q over the mixture and allow to infuse upwards.
3 Combine S with Q to produce bundles S^M.
4 Apply to S^M to produce a covariant differential operator.
5 Combine and c to produce the Dirac operator γ.
The Improved Basic Recipe

Ingredients
1. Smooth manifold, M

Method

Remarks
- oriented, spin, even dimensional, ...
The Improved Basic Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g

Method

Remarks

$$ g_p \quad T_p M \quad T_p M \\
 g_p \quad T_p M \quad T_p M $$
The Improved Basic Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g

Method

1. Add g to M and leave until a connection appears.

Remarks
The Improved Basic Recipe

Ingredients
1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q

Method
1. Add g to M and leave until a connection appears.

Remarks

| 2 | Spin$_n$ | SO$_n$ |
| 2 | Q | P |
The Improved Basic Recipe

Ingredients
1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q

Method
1. Add g to M and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.

Remarks
The Improved Basic Recipe

Ingredients

1 Smooth manifold, M
2 Riemannian structure, g
3 Spin structure, Q
4 Spin representations, S

Method

1 Add g to M and leave until a connection appears.
2 Place Q over the mixture and allow to infuse upwards.

Remarks

Build from n
Has Clifford Multiplication
$c^n S^+ S$ (bilinear)
The Improved Basic Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method

1. Add g to M and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_M.

Remarks

Clifford Multiplication becomes
\[c \ TM \ S^+_M \ S_M \]
(fibrewise bilinear)
The Improved Basic Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method

1. Add g to M and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_M^+.
4. Apply to S_M^+ to produce a covariant differential operator.

Remarks
The Improved Basic Recipe

Ingredients
1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method
1. Add g to M and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_M.
4. Apply to S_M^+ to produce a covariant differential operator.
5. Combine and c to produce the Dirac operator γ.

Remarks
\[
\gamma = (S_M^+) \left(((TM, S_M^+)) \right)
(\quad)
_{\quad}(TM S_M^+)
_{\quad}c \quad (S_M)
\]}
The Improved Basic Recipe

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Smooth manifold, M</td>
<td>1 Add g to M and leave until a connection appears.</td>
</tr>
<tr>
<td>2 Riemannian structure, g</td>
<td>2 Place Q over the mixture and allow to infuse upwards.</td>
</tr>
<tr>
<td>3 Spin structure, Q</td>
<td>3 Combine S with Q to produce bundles S_M.</td>
</tr>
<tr>
<td>4 Spin representations, S</td>
<td>4 Apply to S_M^+ to produce a covariant differential operator.</td>
</tr>
</tbody>
</table>

Remarks

Isomorphism

$g: TM \rightarrow TM$

gives equivalence

Apply to S_M^+ to produce the Dirac operator $/$.
<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

Does it collapse?
Second Variation

Ingredients

1. Smooth manifold, X

Remarks

- infinite dimensional, polarised, oriented, spin ...

Method

1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X.
4. Apply to $S + X$ to produce a covariant differential operator.
5. Combine and c to produce the Dirac operator $/$.

Question

Does it collapse?
Second Variation

Ingredients

1. Smooth manifold, X
2. Riemannian structure, g

Remarks

\[
g_p \quad T_pX \quad T_pX \quad g_p \quad T_pX \quad T_pX
\]

Method

Second Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g

Method
1. Add g to X and leave until a connection appears.

Remarks
Second Variation

Ingredients

1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q

Method

1. Add g to X and leave until a connection appears.

Remarks

S^1 Spin$_J$ SO$_J$

S^1 Q P

Question

Does it collapse?
Second Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q

Method
1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.

Remarks
No longer canonical
Second Variation

<table>
<thead>
<tr>
<th>Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Smooth manifold, X</td>
</tr>
<tr>
<td>2 Riemannian structure, g</td>
</tr>
<tr>
<td>3 Spin structure, Q</td>
</tr>
<tr>
<td>4 Spin representations, S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Add g to X and leave until a connection appears.</td>
</tr>
<tr>
<td>2 Place Q over the mixture and allow to infuse upwards.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build from V</td>
</tr>
<tr>
<td>Has Clifford Multiplication $c\ V\ S^+\ S$ (bilinear)</td>
</tr>
</tbody>
</table>
Second Variation

Ingredients

1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method

1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X.

Remarks

Clifford Multiplication becomes

$$c \ TX \ S_X^+ \ S_X$$

(fibrewise bilinear)
Second Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Remarks

Method
1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X.
4. Apply to S_X^+ to produce a covariant differential operator.
Second Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method
1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X.
4. Apply to S_X^+ to produce a covariant differential operator.
5. Combine and c to produce the Dirac operator $/$.

Remarks

\[
/ (S_X^+) \quad ((TX, S_X^+)) \\
(TX \ S_X^+) \\
c (S_X)
\]
Second Variation

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method
1. Add g to X and leave until a connection appears.
2. Place Q over the mixture and allow to infuse upwards.
3. Combine S with Q to produce bundles S_X.
4. Apply to S_X^+ to produce a covariant differential operator.
5. Combine and c to produce the Dirac operator γ.

Question
Does it collapse?
Second Variation

Ingredients
1 Smooth manifold, X
2 Riemannian structure, g
3 Spin structure, Q
4 Spin representations, S

Method
1 Add g to X and leave until a connection appears.
2 Place Q over the mixture and allow to infuse upwards.
3 Combine S with Q to produce bundles S_X.
4 Apply to S_X^+ to produce a covariant differential operator.
5 Combine and c to produce the Dirac operator $/.$

Remarks

$/$ (S_X^+) $((TX,S_X^+))$
(TX,S_X^+)
c (S_X)

Question
Does it collapse?
Second Variation

Ingredients

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Smooth manifold, X</td>
</tr>
<tr>
<td>2</td>
<td>Riemannian structure, g</td>
</tr>
<tr>
<td>3</td>
<td>Spin structure, Q</td>
</tr>
<tr>
<td>4</td>
<td>Spin representations, S</td>
</tr>
</tbody>
</table>

Method

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Add g to X and leave until a connection appears.</td>
</tr>
<tr>
<td>2</td>
<td>Place Q over the mixture and allow to infuse upwards.</td>
</tr>
<tr>
<td>3</td>
<td>Combine S with Q to produce bundles S_X.</td>
</tr>
<tr>
<td>4</td>
<td>Apply to S_X^+ to produce a covariant differential operator.</td>
</tr>
<tr>
<td>5</td>
<td>Combine and c to produce the Dirac operator $/$.</td>
</tr>
</tbody>
</table>

Remarks

\[
\frac{1}{(S_X^+)} ((TX, S_X^+)) \\
(TX S_X^+) \\
c (S_X)
\]

Question

Does it collapse?
Collapse?

\((S_X^+) \rightarrow ((TX, S_X^+))\)

iso \(\iff\) X nuclear

\((TX S_X^+)\)

fv(uf(u)v)

needs completion

c

trace-like

\((S_X)\)
Collapse? Not if we’re nuclear

\[(S_X^+) \rightarrow ((TX, S_X^+))\]

\[\text{iso} \leftrightarrow X \text{ nuclear}\]

\[\text{fv}(uf(u)v)\]

\[\text{needs completion}\]

\[c\]

\[(TX S_X^+)\]

\[(S_X)\]

\[\text{trace-like}\]
Part II

Ingredients Under the Microscope
A Close Examination of the Ingredients

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Under the Microscope</th>
</tr>
</thead>
</table>

Remarks

1. Smooth manifold, \(X\)
2. Riemannian structure, \(g\)
3. Spin structure, \(Q\)
4. Spin representations, \(S\)

Remarks

Build from \((V, g)\)

Has Clifford Multiplication

\(c \cdot V \cdot S + V \cdot S \cdot X + X \cdot S\)

Construction of \(S\) starts from \(Cl(W)\)

\(B_T(w) / w \cdot w \cdot g(w, w)\)

1. So need \(g\) on \(V\) not \(V\)

Ratatouille

Gusteau: "Anyone can cook"

Anton Ego: "No, I don't think anyone can"
A Close Examination of the Ingredients

Ingredients

1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Under the Microscope

Remarks
A Close Examination of the Ingredients

Ingredients

1. Smooth manifold, \(X \)
2. Riemannian structure, \(g \)
3. Spin structure, \(Q \)
4. Spin representations, \(S \)

Under the Microscope

Remarks

Build from \(V \)

Has Clifford Multiplication

\[
\begin{align*}
& c \ V \ S^+ \ S \\
& c \ TX \ S^+_X \ S_X
\end{align*}
\]
A Close Examination of the Ingredients

Ingredients

1. Smooth manifold, \mathcal{X}
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Under the Microscope

Construction of S starts from

$$\text{Cl}(\mathcal{W}) := T(w) /_{w} w \ g(w, w)$$

Remarks

Build from V

Has Clifford Multiplication

$$c \ V S^+ \ S$$
$$c \ TX S^+_\mathcal{X} \ S_\mathcal{X}$$
A Close Examination of the Ingredients

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Under the Microscope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Smooth manifold, X</td>
<td>Construction of S starts from</td>
</tr>
<tr>
<td>2 Riemannian structure, g</td>
<td>$\text{Cl}(\mathcal{W}) := T(w) / w \circ g(w, w) 1$</td>
</tr>
<tr>
<td>3 Spin structure, Q</td>
<td>So need g on V not V</td>
</tr>
<tr>
<td>4 Spin representations, S</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

Build from V

Has Clifford Multiplication

$$ c \ V \ S^+ S $$

$$ c \ TX \ S^{+}_{X} S_{X} $$
A Close Examination of the Ingredients

Ingredients
1. Smooth manifold, X
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Under the Microscope
Construction of S starts from

$$\text{Cl}(\mathcal{W}) := T(w) \bigg/ w \ g(w, w)1$$

So need g on V not V

Remarks
Build from (V, g)
Has Clifford Multiplication

$$c \ V \ S^+ \ S$$

$$c \ TX \ S_X^+ \ S_X$$
A Close Examination of the Ingredients

Ingredients

1. Smooth manifold, X
2. co-Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Under the Microscope

Construction of S starts from

$$\text{Cl}(\mathcal{W}) := T(w) w \ g(w, w)$$

So need g on V not V

Remarks

Build from (V, g)

Has Clifford Multiplication

\[
\begin{align*}
 c & \ V \ S^+ \ S \\
 c & \ TX \ S^+_X \ S_X
\end{align*}
\]
A Close Examination of the Ingredients

Ingredients

1. Smooth manifold, X
2. co-Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Under the Microscope

Construction of S starts from

$$\text{Cl}(W) := T(w) /_w w g(w, w) 1$$

So need g on V not V

Remarks

Build from (V, g)

Has Clifford Multiplication

$$c \ V \ S^+ \ S$$

$$c \ TX \ S^+_X \ S_X$$

Ratatouille

Gusteau:

“Anyone can cook”

or

Anton Ego:

“No, I don’t think anyone can”
Then the guard looks in politely and will ask you very brightly “Do you like your morning tea weak or strong?” But Skimble’s just behind him and was ready to remind him, For Skimble won’t let anything go wrong.

T. S. Eliot
Then the guard looks in politely and will ask you very brightly “Do you like your morning tea weak or strong?” But Skimble’s just behind him and was ready to remind him, For Skimble won’t let anything go wrong.

T. S. Eliot

Tea Through the Ages

1911: Weak or Strong
Then the guard looks in politely and will ask you very brightly “Do you like your morning tea weak or strong?”
But Skimble’s just behind him and was ready to remind him,
For Skimble won’t let anything go wrong.

T. S. Eliot

Tea Through the Ages

1911: Weak or Strong

2011: Black, green, chamomile, strawberry, jasmine, Earl Grey, chai, ...
... (but not Lipton)
Classifying Orthogonal Structures

<table>
<thead>
<tr>
<th>Weak</th>
<th>$g_p E_p E_p$</th>
<th>inner product space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>$g_p E_p E_p$</td>
<td>Hilbert space</td>
</tr>
</tbody>
</table>
Classifying Orthogonal Structures

<table>
<thead>
<tr>
<th>Weak</th>
<th>g_p</th>
<th>E_p</th>
<th>\bar{E}_p</th>
<th>E_p</th>
<th>fibrewise Hilbert completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>g_p</td>
<td>E_p</td>
<td>E_p</td>
<td></td>
<td>Hilbert space</td>
</tr>
</tbody>
</table>
Classifying Orthogonal Structures

| Weak | \(g_p E_p \overline{E}_p E_p \) | fibrewise Hilbert completion
| Strong| \(g_p E_p \overline{E}_p E_p \) | Hilbert space

- global structure
- Hilbert completion
- map to completion
- cts
- ideal isometry
- class of completion
- equivalent isometry
- fibrewise bundle
- group

\(E_p \overline{E}_p \)
Question

1. Do loop spaces have orthogonal structures on their cotangent bundles?
2. If so, how good?
Question

1. Do loop spaces have orthogonal structures on their cotangent bundles?
2. If so, how good?

Answer

1. Yes
2. Good, but not quite as good as on the tangent bundle.
Grow Your Own Orthogonal Structure

In algebraic topological soil
Grow Your Own Orthogonal Structure

\[
\begin{align*}
L_{\text{pol}} U_n \\
\downarrow \\
LU_n \\
\downarrow \\
L^n \\
\downarrow \\
L^{2n} (L^n)
\end{align*}
\]

In algebraic topological soil
Grow Your Own Orthogonal Structure

In algebraic topological soil
Grow Your Own Orthogonal Structure

In algebraic topological soil

\[
\begin{align*}
L_{\text{pol}} U_n & \quad \downarrow \quad LU_n \\
& \quad \downarrow \\
L_{\text{pol}}^n & \quad L^2_n & \quad L^n & (L^n) & (L^2_n) & (L_{\text{pol}}^n)
\end{align*}
\]
Grow Your Own Orthogonal Structure

Any two choices differ by a polynomial.

In differential soil
Grow Your Own Orthogonal Structure

Parallel Transport

$T_{(0)} M$

In differential soil
Grow Your Own Orthogonal Structure

Parallel Transport

In differential soil
Grow Your Own Orthogonal Structure

Parallel Transport

In differential soil
Grow Your Own Orthogonal Structure

\[T_{(0)} M \]

Parallel Transport

In differential soil
Grow Your Own Orthogonal Structure

\[T_{(0)} M \]

Parallel Transport

\[\text{Holonomy} \]

In differential soil
Any two choices differ by a polynomial.

In differential soil
Grow Your Own Orthogonal Structure

\[\text{Parallel Transport} \]

\[\text{Holonomy} \]

\[Hv = v \]

\[t \mathbb{II}(v) \]

\[T_{(0)} M \]

\[T_{(1)} M \]

In differential soil
Grow Your Own Orthogonal Structure

Any two choices differ by a polynomial

In differential soil
The Best Recipe

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remarks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Best Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g

Method

1. Add g to M and leave until a connection appears.

Remarks

- oriented, spin, string, even dimensional, ...
- Riemannian structure on M
The Best Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g

Method

1. Add g to M and leave until a connection appears.
2. Apply to TM to produce parallel transport \mathbb{II}.

Remarks

$$g_p \quad T_p M \quad T_p M$$
$$g_p \quad T_p M \quad T_p M$$
The Best Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g

Method

1. Add g to M and leave until a connection appears.
2. Apply to TM to produce parallel transport \mathbb{I}.
3. Use \mathbb{I} to extract $L_{pol} TM$ from LTM.

Remarks
The Best Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g

Method

1. Add g to M and leave until a connection appears.
2. Apply \parallel to TM to produce parallel transport \parallel.
3. Use \parallel to extract $L_{pol}TM$ from LTM.
4. Add to LTM to get $(L_{r}^{2}TM)$.

Remarks
The Best Recipe

Ingredients
1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q

Remarks
S^1, LSO_n, LSO_n
S^1, Q, P

Method
1. Add g to M and leave until a connection appears.
2. Apply to TM to produce parallel transport \mathbb{II}.
3. Use \mathbb{II} to extract $L_{pol}TM$ from LTM.
4. Add to LTM to get $(L^2_{r}TM)$.
The Best Recipe

Ingredients
1. Smooth manifold, \(M \)
2. Riemannian structure, \(g \)
3. Spin structure, \(Q \)

Method
1. Add \(g \) to \(M \) and leave until a connection appears.
2. Apply \(\nabla \) to \(TM \) to produce parallel transport \(\mathbb{P} \).
3. Use \(\mathbb{P} \) to extract \(L_{\text{pol}} TM \) from \(LTM \).
4. Add to \(LTM \) to get \((L_{\gamma}^2 TM) \).
5. Place \(Q \) over the mixture and allow \(L \) to infuse upwards.

Remarks
The Best Recipe

Ingredients
1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method
1. Add g to M and leave until a connection appears.
2. Apply ∇ to TM to produce parallel transport ∇.
3. Use ∇ to extract $L_{\text{pol}} TM$ from LTM.
4. Add to LTM to get $(L^2 TM)$.
5. Place Q over the mixture and allow L to infuse upwards.

Remarks
Has Clifford Multiplication $c L^n S^+ S$ (bilinear)
The Best Recipe

Ingredients
1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method
1. Add g to M and leave until a connection appears.
2. Apply to TM to produce parallel transport ∇.
3. Use ∇ to extract $L_{pol}TM$ from LTM.
4. Add to LTM to get $(L^2_{\gamma}TM)$.
5. Place Q over the mixture and allow L to infuse upwards.
6. Combine S with Q to produce bundles S_{LM}.

Remarks
Clifford Multiplication becomes
\[c \cdot TLM \cdot S_{LM}^+ \cdot S_{LM} \]
(fibrewise bilinear)
The Best Recipe

Ingredients

1. Smooth manifold, \(M \)
2. Riemannian structure, \(g \)
3. Spin structure, \(Q \)
4. Spin representations, \(S \)

Remarks

Method

1. Add \(g \) to \(M \) and leave until a connection appears.
2. Apply to \(TM \) to produce parallel transport \(\Pi \).
3. Use \(\Pi \) to extract \(L_{\text{pol}}TM \) from \(LTM \).
4. Add to \(LTM \) to get \((L^2 TM) \).
5. Place \(Q \) over the mixture and allow \(L \) to infuse upwards.
6. Combine \(S \) with \(Q \) to produce bundles \(S_{LM} \).
7. Apply \(L \) to \(S^+_{LM} \) to produce a covariant differential operator.
The Best Recipe

Ingredients

1. Smooth manifold, M
2. Riemannian structure, g
3. Spin structure, Q
4. Spin representations, S

Method

1. Add g to M and leave until a connection appears.
2. Apply to TM to produce parallel transport $-II$.
3. Use II to extract $L_{\text{pol}}TM$ from LTM.
4. Add to LTM to get (L^2_rTM).
5. Place Q over the mixture and allow L to infuse upwards.
6. Combine S with Q to produce bundles S_{LM}^-.
7. Apply L to S_{LM}^+ to produce a covariant differential operator c.
8. Combine and c to produce the Dirac operator $/$.

Remarks

\[/ (S_{LM}^+) \left((TLM,S_{LM}^+) \right) \]
\[(TLMS_{LM}^+) \]
\[c \left(S_{LM}^- \right) \]
A perfect Dirac soufflé.