
Andrew Stacey

Norges Teknisk-Naturvitenskapelige Universitet
Trondheim

17th January 2011
Aims and Objectives

By the end of this lecture, you will
- know what it means to solve an ODE
- have seen the method of “reduction of order”
Recap: Complex Numbers

Complex Numbers

- Extend the real numbers
- Include i
- Representations: $z = x + iy = re^{i\theta}$
- Addition, multiplication, division as before
- Powers and roots
- Exponential function $z(t) = e^{it}$ satisfies $z'(t) = z(t)$

Reason for Existing

Extend the language of mathematics to describe more stuff.
Typical Exam Questions

Question
Find a solution of the differential equation
\[y'' - (3x^2 + 4x^{-1})y' + (3x + 4x^{-2})y = 0 \]
which is linearly independent of the solution \(y = x \).

Question
The motion of a mechanical system is described by the differential equation
\[y'' + 6y' + 18y = 0. \]
Determine whether the motion is underdamped, overdamped, or if there is critical damping. Find a particular solution \(y(t) \) which satisfies the initial conditions \(y(0) = 0, \ y'(0) = 0.6 \).
Typical Real Life Question

Question
Should I buy shares in Statoil today?

Question
Will the share price in Statoil go up or down?

Question
What is the value of the solution of

\[
dX_t = \mu X_t dt + \sigma X_t dB_t
\]

at \(t = 1 \) day more or less than its value today?
What Are ODEs For?

Question
What is Mathematics For?

Science
To Observe and Effect
(More seriously)

Science : To predict events
Mathematics : To model events

The Mathematical Model
To describe “reality” in order to make the prediction.
Processes

Question

1. I put in X, what do I get?
2. I got Y, where did I start?
3. I put in X, I got Y, how did I get it?

ODEs

Differential Equations: a vast source of reliable models describing real processes.
What is an ODE?

Model \leftrightarrow Process

Process: able to read off prediction

- Height of falling object: $h(t) = -gt^2$
- Displacement of pendulum: $x(t) = \sin(t)$
- Population of earth: $p(t) = e^{kt}$

Differential Equation: not able to “read off” prediction:

$$y'(t) = ky(t)$$

Conclusion

An ODE is **not** a model, it is a way of specifying a model.
What is an ODE?

Working Definition
An ODE is a way of specifying a function $f : \mathbb{R} \rightarrow \mathbb{R}$ by specifying a condition that its derivatives must satisfy.
(More generally: $f : I \rightarrow \mathbb{R}^n$)

Important Consequence: I
If you know the function, you no longer need the ODE.

Important Consequence: II
If you don’t know the function, you might still get useful information directly from the ODE.
Knowing When You’re Done

Solving an ODE
To solve an ODE means to find a function satisfying it.

Absolutely Vital Things to Remember

1. The method doesn’t matter, just the function
2. A function is a solution if and only if it satisfies the ODE
Second Order Homogeneous

Working Definition
An ODE is a way of specifying a function $f : \mathbb{R} \rightarrow \mathbb{R}$ by specifying a condition that its derivatives must satisfy.

Examples
1. $y' = y$
2. $y' y = 1$
3. $y'' y + y'^2 = 0$
4. $e^{y''} = \log(t)$
What Makes ODEs Difficult ... Interesting

Big Theorem
Under very mild conditions, solutions *always* exist!

Big Problem
But there is no *one* method of finding them, and no guarantee that a *closed form* exists.

Big Consequences

- Lots of methods developed for solving lots of different ODEs.
- Lots of methods developed for analysing solutions *even if* the solution can’t be written down.
- Leads to classifying ODEs by techniques and properties.
Simple ODEs

General Principles

1. More derivatives \implies more complicated
2. More interaction \implies more complicated

In order of simplicity

0. Zeroth order:
 \[y(t) = e^t \]

1. First order:
 \[
 \begin{align*}
 y'(t) &= e^t \\
 y'(t) &= e^t y(t) \\
 y'(t) &= e^t y(t) + e^{-t}
 \end{align*}
 \]

2. Second order:
 \[
 \begin{align*}
 y''(t) &= e^t \\
 y''(t) &= e^t y'(t) \\
 y''(t) &= e^t y'(t) + e^{-t} y(t) \\
 y''(t) &= e^t y'(t) + e^{-t} y(t) + e^{2t}
 \end{align*}
 \]
Second Order Homogeneous

Standard Form

\[y''(t) + p(t)y'(t) + q(t) = 0 \]

- Second order
- Linear
- Homogeneous

Why So Special?

\(y_1 \) and \(y_2 \) solutions \(\implies ay_2 + by_2 \) solution

know two solutions \(\implies \) know all solutions
Solving ODEs

To Solve

\[y''(t) + p(t)y'(t) + q(t) = 0 \]

No general solution so need more information.

Two Types

- Information about \(p(t) \) and \(q(t) \)
- Information about \(y(t) \)
- Looking for two solutions, so what if we knew one?
Solving Polynomials

What are the roots of

\[x^5 - 15x^4 + 85x^3 - 225x^2 + 274x - 120 \]
given that four of them are 1, 2, 3, 4?

What are the roots of

\[x^2 - 2x = x(x - 2) \]

What are the roots of

\[x^2 - 7x + 12 = (x - 3)^2 - (x + 3) = (x - 3)((x - 3) - 1) \]
given that one of them is 3?
Reduction of Order

Basic Principle
Given one solution, write the other in terms of the first and rearrange to get a simpler condition.

Most Important Point

1. Substitute \(y = uy_1 \)
2. Solve for \(u' \)
Question

Find a solution of the differential equation
\[y'' - (3x^2 + 4x^{-1})y' + (3x + 4x^{-2})y = 0 \]
which is linearly independent of the solution \(y = x \).

1. Write \(y = uy_1 \)

\[y = ux \]

2. Solve for \(u' \)
\[y'' - (3x^2 + 4x^{-1})y' + (3x + 4x^{-2})y = 0 \]

\[(ux)'' - (3x^2 + 4x^{-1})(ux)' + (3x + 4x^{-2})(ux) = 0 \]

\[u'' x + 2u' - (3x^2 + 4x^{-1})(u' x + u) + (3x + 4x^{-2})(ux) = 0 \]

\[u'' x + (2 - 3x^3 - 4)u' + (-3x^2 - 4x^{-1} + 3x^2 + 4x^{-1})u = 0 \]

\[u'' x - (2 + 3x^3)u' = 0 \]

\[U' x - (2 - 3x^3)U = 0 \]

\[\frac{U'}{U} = 3x^2 + 2x^{-1} \]

\[\log U = x^3 + 2 \log x \]

\[U = x^2 e^{-x^3} \]

\[u' = x^2 e^{-x^3} \]

\[u = \frac{1}{3} e^{-x^3} \]

\[y = \frac{1}{3} x e^{-x^3} \]
Why It Works

- General nonsense \implies \text{almost any two solutions enough}
- Not enough only if have \(k \in \mathbb{R} \) such that \(y_1 = ky_2 \)
 \((y_1 = ky_2 \iff \text{“linearly dependent”}; \text{if not, “linearly independent”}) \)
- General nonsense \implies \(y_1(t) \) almost always not zero
- \implies \text{for a fixed} \(t \), have \(k \in \mathbb{R} \) with \(y_2(t) = ky_1(t) \)
- But \(k \) can vary with \(t \); function, not constant; call it \(u(t) \)
- ODE specifies \(y_1 \) and \(y_2 \), so also \(u \), so by rearranging the ODE we can get something that \(u \) must satisfy
- But the ODE doesn’t know we already know \(y_1 \)!
 So \(u = \text{const} \) satisfies this new ODE, so ODE must be
 \[f(t)u''(t) + \tilde{p}(t)u'(t) = 0. \]
 First order in \(u' \)
- So solve for \(u' \), then for \(u \), and finally for \(y_2 \)
Summary

- ODEs form basis of large range of mathematical models
- Solving ODEs is an art
- Second order linear homogeneous ODEs are complicated enough to be useful but simple enough to be analysed
- If one solution is known, use reduction of order to find another