LØSNINGSFORSLAG

EXAM IN TMA4295 STATISTICAL INFERENCE
Friday 18 May 2007
Time: 09:00-13:00

Oppgave 1

Let $X_{1}, . ., X_{n}$ be iid from a gamma distribution with parameters (3, θ), i.e. from a distribution with the density

$$
\frac{1}{2 \theta^{3}} x^{2} e^{-x / \theta}, x \geq 0, \theta>0
$$

a) Find MME.

Solution. The first moment is $\mu_{1}=E X_{1}=3 \theta$, therefore $\hat{\theta}_{M M E}$ is solution of the equation

$$
3 \theta=m_{1}, \quad m_{1}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

i.e.

$$
\hat{\theta}_{M M E}=\frac{1}{3 n} \sum_{i=1}^{n} X_{i}=\frac{1}{3} \bar{X} .
$$

b) Find MLE.

Solution. The likelihood function is

$$
f(X \mid \theta)=\prod_{i=1}^{n} \frac{1}{2 \theta^{3}} X_{i}^{2} e^{-X_{i} / \theta}=\frac{1}{2^{n} \theta^{3 n}} e^{-(1 / \theta) \sum_{i=1}^{n} X_{i}}\left(\prod_{i=1}^{n} X_{i}^{2}\right),
$$

therefore

$$
\frac{\partial \ln f(\mathbf{X} \mid \theta)}{\partial \theta}=-\frac{3 n}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} X_{i}
$$

and

$$
\hat{\theta}_{M L E}=\frac{1}{3 n} \sum_{i=1}^{n} X_{i}=\frac{1}{3} \bar{X} .
$$

Oppgave 2

Let X_{1}, \ldots, X_{n} be iid from a normal distribution with expectation θ and variance 1 . Two tests are used for testing $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta=\theta_{1}$, where $\theta_{0}<\theta_{1}$. Rejection regions of these tests are $R_{1}=\{x: \bar{x}>a\}$ and $R_{2}=\left\{x: \max _{i} x_{i}>b\right\}$, where a and b are such that

$$
P_{\theta_{0}}(\bar{X}>a)=P_{\theta_{0}}\left(\max _{i} X_{i}>b\right)=\alpha, \quad 0<\alpha<1 .
$$

a) Prove that

$$
a=\theta_{0}+\frac{z_{\alpha}}{\sqrt{n}}
$$

(z_{α} is $(1-\alpha)$ quantile of the standard normal distribution, i.e. $\Phi\left(z_{\alpha}\right)=1-\alpha$).
Solution. Under $H_{0} \bar{X} \sim n\left(\theta_{0}, 1 / n\right)$, therefore

$$
P_{\theta_{0}}(\bar{X}>a)=P_{\theta_{0}}\left(\sqrt{n}\left(\bar{X}-\theta_{0}\right)>\sqrt{n}\left(a-\theta_{0}\right)\right)=1-\Phi\left(\sqrt{n}\left(a-\theta_{0}\right)\right) .
$$

Solving the equation $1-\Phi\left(\sqrt{n}\left(a-\theta_{0}\right)\right)=\alpha$, obtain

$$
a=\theta_{0}+\frac{z_{\alpha}}{\sqrt{n}} .
$$

b) Prove that the first test is unbiased, i.e.

$$
P_{\theta_{0}}\left(\mathbf{X} \in R_{1}\right) \leq P_{\theta_{1}}\left(\mathbf{X} \in R_{1}\right)
$$

(the second test is also unbiased but prove only for the first one).
Solution. Since $\theta_{0}<\theta_{1}$, and $\Phi(x)$ increases,

$$
\begin{aligned}
& P_{\theta_{0}}(\bar{X}>a)=P_{\theta_{0}}\left(\sqrt{n}\left(\bar{X}-\theta_{0}\right)>\sqrt{n}\left(a-\theta_{0}\right)\right)=1-\Phi\left(\sqrt{n}\left(a-\theta_{0}\right)\right)< \\
& <1-\Phi\left(\sqrt{n}\left(a-\theta_{1}\right)\right)=P_{\theta_{1}}\left(\sqrt{n}\left(\bar{X}-\theta_{1}\right)>\sqrt{n}\left(a-\theta_{1}\right)\right)=P_{\theta_{1}}(\bar{X}>a) .
\end{aligned}
$$

c) Prove that the second test is consistent, i.e.

$$
P_{\theta_{1}}\left(\mathbf{X} \in R_{2}\right) \rightarrow 1 \text { as } n \rightarrow \infty
$$

(the first test is also consistent but prove only for the second one).

Solution. From condition $P_{\theta_{0}}\left(\max _{i} X_{i}>b\right)=\alpha$ we find

$$
b=\theta+u_{(1-\alpha)^{1 / n}}
$$

where $u_{\gamma}=z_{1-\gamma}$ is γ-quantile of $N(0,1)$ i.e. $\Phi\left(u_{\gamma}\right)=\gamma$. For short notations, denote $u=u_{(1-\alpha)^{1 / n}}$.
We have

$$
P_{\theta_{1}}\left(\max _{i} X_{i}>b\right)=1-\left[P_{\theta_{1}}\left(X_{1}-\theta_{1} \leq u-\left(\theta_{1}-\theta_{0}\right)\right)\right]^{n} .
$$

Under $H_{1} X_{i}-\theta_{1}$ have the standard normal distribution, therefore, to prove consistency, it is sufficient to prove that if $Z \sim N(0,1)$, then

$$
\begin{equation*}
[P(Z \leq u-\Delta)]^{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

for $\Delta>0$. We have

$$
\begin{gathered}
{[P(Z \leq u-\Delta)]^{n}=[P(Z \leq u)-P(u-\Delta<Z \leq u)]^{n}=} \\
=\left[1-\left(1-(1-\alpha)^{1 / n}+P(u-\Delta<Z \leq u)\right)\right]^{n}= \\
=\left[1-\left(1-(1-\alpha)^{1 / n}+P(u-\Delta<Z \leq u)\right)\right]^{\frac{n\left(1-(1-\alpha)^{1 / n}+P(u-\Delta<Z \leq u)\right)}{1-(1-\alpha)^{1 / n}+P(u-\Delta<Z \leq u)}} .
\end{gathered}
$$

Note that

$$
1-(1-\alpha)^{1 / n}+P(u-\Delta<Z \leq u) \rightarrow 0
$$

therefore

$$
\left[1-\left(1-(1-\alpha)^{1 / n}+P(u-\Delta<Z \leq u)\right)\right]^{\frac{1}{1-(1-\alpha)^{1 / n}+P(u-\Delta<Z \leq u)}} \rightarrow e^{-1}
$$

and to prove (1), it is sufficient to show that

$$
n\left(1-(1-\alpha)^{1 / n}+P(u-\Delta<Z \leq u)\right) \rightarrow \infty
$$

It is easy to see that

$$
n\left(1-(1-\alpha)^{1 / n}\right) \rightarrow-\ln (1-\alpha)
$$

therefore we need to prove that

$$
\begin{equation*}
n P(u-\Delta<Z \leq u) \rightarrow \infty \tag{2}
\end{equation*}
$$

Evidently

$$
P(u-\Delta<Z \leq u) \geq \frac{\Delta}{\sqrt{2 \pi}} e^{-u^{2} / 2}
$$

Let us use the inequality

$$
e^{-u^{2} / 2} \geq \sqrt{2 \pi} u(1-\Phi(u))
$$

(inequality (3.6.1) from the textbook), then

$$
n P(u-\Delta<Z \leq u) \geq \Delta u n(1-\Phi(u))=\Delta u n\left(1-(1-\alpha)^{1 / n}\right)
$$

Taking into account that $n\left(1-(1-\alpha)^{1 / n}\right) \rightarrow-\ln (1-\alpha)$ and $u \rightarrow \infty$, we see that the right hand side converges to ∞, that implies (2).
d) Which test is more powerful? Hint. One of these two tests is the size α Neyman-Pearson test.

Solution. Let R be the rejection region of the size α Neyman-Pearson test. Then

$$
R=\left\{x: \frac{f\left(\mathbf{x} \mid \theta_{0}\right)}{f\left(\mathbf{x} \mid \theta_{1}\right)}<c\right\}
$$

where c is such that $P_{\theta_{0}}(\mathbf{X} \in R)=\alpha$. But

$$
\lambda(x)=\frac{f\left(\mathbf{x} \mid \theta_{0}\right)}{f\left(\mathbf{x} \mid \theta_{1}\right)}=\exp \left(\frac{n}{2}\left[\left(\theta_{1}^{2}-\theta_{0}^{2}\right)-\left(\theta_{1}-\theta_{0}\right) \bar{x}\right]\right)
$$

is a decreasing function of \bar{x}, therefore $\lambda(x)<c$ iff $\bar{x}>a$ i.e. $R=R_{1}$. The NeymanPearson test is the most powerful, hence R_{1} is more powerful than R_{2}.

Oppgave 3

Let $X_{1}, . ., X_{n}$ be iid from a Laplace distribution with the density

$$
f(x \mid \theta)=\frac{1}{2} e^{-|x-\theta|},-\infty<x<\infty,-\infty<\theta<\infty
$$

Consider the interval $\left[\min _{i} X_{i}, \max _{i} X_{i}\right]$.
a) Show that the coverage probability of this interval does not depend on θ.

Solution.

$$
\begin{gathered}
P_{\theta}\left(\min _{i} X_{i} \leq \theta \leq \max _{i} X_{i}\right)=P_{\theta}\left(\min _{i} X_{i}-\theta \leq 0 \leq \max _{i} X_{i}-\theta\right)= \\
P_{\theta}\left(\min _{i}\left(X_{i}-\theta\right) \leq 0 \leq \max _{i}\left(X_{i}-\theta\right)\right)=P_{\theta=0}\left(\min _{i} X_{i} \leq 0 \leq \max _{i} X_{i}\right)
\end{gathered}
$$

b) Find the coverage probability.

Solution. Let $\theta=0$. Denote $A=\left\{\min _{i} X_{i} \leq 0\right\}, B=\left\{\max _{i} X_{i} \geq 0\right\}$. The coverage probability is

$$
\begin{gathered}
P_{\theta=0}(A \cap B)=1-P_{\theta=0}\left((A \cap B)^{c}\right)=1-P_{\theta=0}\left(A^{c} \cup B^{c}\right)= \\
=1-P_{\theta=0}\left(A^{c}\right)-P_{\theta=0}\left(B^{c}\right)=1-P_{\theta=0}\left(\min _{i} X_{i}>0\right)-P_{\theta=0}\left(\max _{i} X_{i}<0\right)= \\
=1-\prod_{i=1}^{n} P_{\theta=0}\left(X_{i}>0\right)-\prod_{i=1}^{n} P_{\theta=0}\left(X_{i}<0\right)=1-\frac{1}{2^{n}}-\frac{1}{2^{n}}=1-\frac{1}{2^{n-1}} .
\end{gathered}
$$

c) For which n is this interval a confidence interval with the confidence coefficient no less than $1-\alpha(0<\alpha<1)$?

Solution.

$$
1-\frac{1}{2^{n-1}} \geq 1-\alpha \Longleftrightarrow n \geq 1+\frac{\ln (1 / \alpha)}{\ln 2}
$$

d) Prove that for any $c>0$

$$
P_{\theta}\left(\text { The length of }\left[\min _{i} X_{i}, \max _{i} X_{i}\right]<c\right)>\left(1-e^{-c / 2}\right)^{n} .
$$

Solution. Due to part (a), the probability under consideration does not depend on θ, so let $\theta=0$. Evidently

$$
\begin{gathered}
P_{\theta=0}\left(\text { The length of }\left[\min _{i} X_{i}, \max _{i} X_{i}\right]<c\right)> \\
>P_{\theta=0}\left(-\frac{c}{2}<X_{1}<\frac{c}{2}, \ldots,-\frac{c}{2}<X_{n}<\frac{c}{2}\right)= \\
=\left[P_{\theta=0}\left(-\frac{c}{2}<X_{1}<\frac{c}{2}\right)\right]^{n}=\left(\int_{-c / 2}^{c / 2} \frac{1}{2} e^{-|x|} d x\right)^{n}=\left(1-e^{-c / 2}\right)^{n} .
\end{gathered}
$$

