EXAM IN TMA4295 STATISTICAL INFERENCE
 Tuesday 1 June 2004
 Time: 09:00-14:00

Tillatte hjelpemidler:

K.Rottman: Mathematische Formelsamlung

Statistiske tabeller og formler, TAPIR
Godkjent lommekalkulator med tomt minne
Selvskrevet gult titteark på A4-ark utdelt av faglærer
Sensur: 22. juni 2004

Oppgave 1

A random variable X has distribution with probability mass function (pmf)

$$
f(x)=C f_{1}(x) f_{2}^{2}(x), \quad x=0,1, \ldots, m,
$$

where $f_{1}(x)$ and $f_{2}(x)$ are respectively a binomial pmf with parameters (m, θ) (m is known and fixed) and a geometric pmf with parameter θ, i.e.

$$
f_{1}(x)=\binom{m}{x} \theta^{x}(1-\theta)^{m-x}, \quad x=0,1, \ldots, m
$$

and

$$
f_{2}(x)=\theta(1-\theta)^{x}, \quad x=0,1,2, \ldots
$$

a) Show that $C=\theta^{-2}(1-\theta)^{-m}[1+\theta(1-\theta)]^{-m}$.
b) Show that this distribution belongs to the exponential family and find the natural parameter.
c) Find $E X$.
d) Let X_{1}, \ldots, X_{n} be a sample from the distribution $f(x)$. Find a one-dimensional sufficient statistic.

Solution. a) We have

$$
\begin{gathered}
1=\sum_{x=0}^{m} f(x)=C \theta^{2}(1-\theta)^{m} \sum_{x=0}^{m}\binom{m}{x} \theta^{x}(1-\theta)^{x}= \\
=C \theta^{2}(1-\theta)^{m} \sum_{x=0}^{m}\binom{m}{x}[\theta(1-\theta)]^{x} 1^{m-x}=C \theta^{2}(1-\theta)^{m}(\theta(1-\theta)+1)^{m}
\end{gathered}
$$

thererfore

$$
C=\theta^{-2}(1-\theta)^{-m}[1+\theta(1-\theta)]^{-m}
$$

b) We have

$$
f(x)=[1+\theta(1-\theta)]^{-m}\binom{m}{x} \theta^{x}(1-\theta)^{x}=e^{x \ln [\theta(1-\theta)]-m \ln [1+\theta(1-\theta)]+\ln \binom{m}{x}}
$$

i.e. $f(x)$ has form

$$
e^{a(x) b(\theta)+c(\theta)+d(x)}
$$

and, therefore, $f(x)$ belongs (by definition) to the exponential family with

$$
a(x)=x, b(\theta)=\ln [\theta(1-\theta)], c(\theta)=-m \ln [1+\theta(1-\theta)], d(x)=\ln \binom{m}{x} .
$$

Since $a(x)=x$, the natural parameter is (by definition)

$$
b(\theta)=\ln [\theta(1-\theta)] .
$$

c) The shortest way: using formula $E X=-c^{\prime}(\theta) / b^{\prime}(\theta)$, we immediately get

$$
E X=\frac{m \theta(1-\theta)}{1+\theta(1-\theta)} .
$$

The direct way:

$$
E X=\sum_{x=0}^{m} x f(x)=[1+\theta(1-\theta)]^{-m} \sum_{x=0}^{m} x\binom{m}{x} \theta^{x}(1-\theta)^{x}=
$$

$$
\begin{gathered}
=[1+\theta(1-\theta)]^{-m} \sum_{x=0}^{m} x \frac{m!}{x!(m-x)!} \theta^{x}(1-\theta)^{x}= \\
=[1+\theta(1-\theta)]^{-m} \sum_{x=1}^{m} x \frac{m!}{x!(m-x)!} \theta^{x}(1-\theta)^{x}= \\
=[1+\theta(1-\theta)]^{-m} \sum_{x=1}^{m} \frac{m!}{(x-1)!(m-x)!} \theta^{x}(1-\theta)^{x}= \\
=[1+\theta(1-\theta)]^{-m} \sum_{y=0}^{m-1} \frac{(m-1)!}{y!(m-y-1)!} m \theta^{y+1}(1-\theta)^{y+1}= \\
=m \theta(1-\theta)[1+\theta(1-\theta)]^{-m} \sum_{y=0}^{m-1}\binom{m-1}{y} \theta^{y}(1-\theta)^{y} \cdot 1^{(m-1)-y}= \\
=m \theta(1-\theta)[1+\theta(1-\theta)]^{-m}[1+\theta(1-\theta)]^{m-1}=\frac{m \theta(1-\theta)}{1+\theta(1-\theta)} .
\end{gathered}
$$

d) Using representation of part (b) for $f(x)$, we get

$$
\begin{aligned}
& L(\theta ; X)=\prod_{i=1}^{n} e^{X_{i} \ln [\theta(1-\theta)]-m \ln [1+\theta(1-\theta)]+\ln \binom{m}{x_{i}}}= \\
& =e^{\ln [\theta(1-\theta)] \sum X_{i}-n m \ln [1+\theta(1-\theta)]} \prod\binom{m}{X_{i}},
\end{aligned}
$$

therefore, due to the factorization theorem, $T(X)=\sum X_{i}$ is a univariate sufficient statistic.

Oppgave 2

Let X_{1}, \ldots, X_{n} be a sample taken from the distribution with (probability density function) pdf

$$
f(x ; \theta)=\frac{1}{2} \theta^{3} x^{2} e^{-\theta x}, x>0, \theta>0
$$

a) Which of the following three functions of θ

$$
\tau_{1}(\theta)=\theta, \quad \tau_{2}(\theta)=1 / \theta, \quad \tau_{3}=\ln \theta
$$

admits an efficient estimator (we call an unbiased estimator efficient if its variance coincides with the lower bound of the Cramer-Rao inequality)? Why? Find this estimator.
b) Find maximum likelihood estimators of $\tau_{1}(\theta), \tau_{2}(\theta)$ and $\tau_{3}(\theta)$.
c) Let $\tau(\theta)$ be the function from part (a) which admits an efficient estimator, and $T(X)$ be this (efficient) estimator. Does there exist a consistent estimator of $\tau(\theta)$ whose variance is strongly smaller than variance of $T(X)$ for each n ?

Solution. a) A function $\psi(\theta)$ admits an efficient estimator iff the score function $\partial \ln L(\theta ; X) / \partial \theta$ is represented in the form

$$
\frac{\partial \ln L(\theta ; X)}{\partial \theta}=c(\theta)(T(X)-\psi(\theta))
$$

Then $T(X)$ is the efficient estimator of $\psi(\theta)$. Find the score function in our case. The likelihood function is

$$
L(\theta ; X)=\frac{1}{2^{n}} \theta^{3 n}\left(\prod_{i=1}^{n} X_{i}\right)^{2} e^{-\theta \sum X_{i}}
$$

and the score function is

$$
\frac{\partial \ln L(\theta ; X)}{\partial \theta}=\frac{3 n}{\theta}-\sum_{i=1}^{n} X_{i}=-3 n\left(\frac{1}{3 n} \sum_{i=1}^{n}-\frac{1}{\theta}\right)
$$

therefore $\tau_{2}(\theta)=1 / \theta$ (and only this function of the three) admits an efficient estimator. The estimator is

$$
T(X)=\frac{1}{3} \bar{X}=\frac{1}{3 n} \sum_{i=1}^{n} X_{i} .
$$

b) Solving equation

$$
\frac{\partial \ln L(\theta ; X)}{\partial \theta}=0
$$

with respect to θ (the left hand side of the equation was found in part (a)), we get: MLE of $\tau_{1}(\theta)=\theta$ is

$$
T_{1}(X)=\frac{3}{\bar{X}}
$$

Using the invariance property of MLE, we immediately obtain
MLE of $\tau_{2}(\theta)=1 / \theta$ is $T_{2}(X)=\bar{X} / 3$,
MLE of $\tau_{3}(\theta)=\ln \theta$ is $T_{3}(X)=\ln (3 / \bar{X})$.
c) The estimator $T(X)$ is consistent (this can be easily proved). Therefore, any estimator of the form $c_{n} T(X)$, where $c_{n} \rightarrow 1$, as $n \rightarrow \infty$, is consistent. Now it suffices to take c_{n} satisfying
two conditions: 1) $c_{n} \rightarrow 1$, as $n \rightarrow \infty$ and 2) $\left|c_{n}\right|<1$ (for example $c_{n}=n /(n+1)$). Then $S(X)=c_{n} T(X)$ is consistent, and

$$
\operatorname{Var} S(X)=c_{n}^{2} \operatorname{Var} T(X)<\operatorname{Var} T(X)
$$

Oppgave 3

Let X_{1}, \ldots, X_{n} be a sample drawn from a Poisson distribution with parameter θ.
a) Suppose that n is large enough so that the Central Limit Theorem can be used. For testing $H_{0}: \theta \leq \theta_{0}$ versus $H_{1}: \theta>\theta_{0}$ find the acceptance region of the significance level α a UMP (uniformly most powerful) test.
b) Find (approximately) and plot the power function $\pi(\theta)$ of the UMP test. Find, in particular, $\lim _{\theta \downarrow 0} \pi(\theta), \pi\left(\theta_{0}\right)$ and $\lim _{\theta \uparrow \infty} \pi(\theta)$
c) Find the $(1-\alpha)$ one-sided confidence interval that results from inverting the test of part (a).

Solution. a) The likelihood function is

$$
L(\theta ; X)=e^{-n \theta} \theta^{\sum X_{i}}\left(\prod X_{i}!\right)^{-1}
$$

therefore, if $\theta^{\prime}<\theta^{\prime \prime}$, then the ratio

$$
\frac{L\left(\theta^{\prime} ; X\right)}{L\left(\theta^{\prime \prime} ; X\right)}=e^{n\left(\theta^{\prime \prime}-\theta^{\prime}\right)}\left(\frac{\theta^{\prime}}{\theta^{\prime \prime}}\right)^{\sum X_{i}}
$$

is a monotone (decreasing) function of $T(X)=\sum X_{i}$. Therefore the UMP test has form

$$
\sum_{i=1}^{n} X_{i}>c \Longrightarrow H_{1}
$$

where c is determined from condition

$$
P_{\theta_{0}}\left(\sum X_{i}>c\right)=\alpha
$$

To find c let us use CLT. We have $E X_{i}=\theta, \operatorname{Var}\left(X_{i}\right)=\theta$ therefore

$$
\alpha=P_{\theta_{0}}\left(\sum X_{i}>c\right)=P_{\theta_{0}}\left(\frac{\sum X_{i}-n \theta_{0}}{\sqrt{n \theta_{0}}}>\frac{c-n \theta_{0}}{\sqrt{n \theta_{0}}}\right) \approx 1-\Phi\left(\frac{c-n \theta_{0}}{\sqrt{n \theta_{0}}}\right)
$$

and

$$
c=n \theta_{0}+\sqrt{n \theta_{0}} z_{\alpha} .
$$

Thus the acceptance region has form

$$
\sum_{i=1}^{n} X_{i} \leq n \theta_{0}+\sqrt{n \theta_{0}} z_{\alpha}
$$

or

$$
\bar{X} \leq \theta_{0}+\sqrt{\frac{\theta_{0}}{n}} z_{\alpha} .
$$

b)

$$
\begin{gathered}
\pi(\theta)=P_{\theta}\left(\sum_{i=1}^{n} X_{i}>c\right)=P_{\theta}\left(\frac{\sum X_{i}-n \theta}{\sqrt{n \theta}}>\frac{n\left(\theta_{0}-\theta\right)+\sqrt{n \theta_{0}} z_{\alpha}}{\sqrt{n \theta}}\right) \approx \\
\approx 1-\Phi\left(\frac{n\left(\theta_{0}-\theta\right)+\sqrt{n \theta_{0}} z_{\alpha}}{\sqrt{n \theta}}\right) .
\end{gathered}
$$

Simple analysis shows that

$$
\begin{gathered}
\lim _{\theta \downarrow 0} \pi(\theta)=0, \\
\pi\left(\theta_{0}\right)=\alpha
\end{gathered}
$$

and

$$
\lim _{\theta \uparrow \infty} \pi(\theta)=1
$$

c) Inverting the test of part (a), i.e. solving the inequality

$$
\bar{X} \leq \theta+\sqrt{\frac{\theta}{n}} z_{\alpha}
$$

with respect to θ, we obtain the following $(1-\alpha)$ one-sided confidence interval:

$$
\left[\frac{1}{4}\left(\sqrt{\frac{z_{\alpha}^{2}}{n}+4 \bar{X}}-\frac{z_{\alpha}}{\sqrt{n}}\right)^{2}, \infty\right)
$$

