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Existence of ✓6

Theorem (Lin–Wang–Xu)

h2
6
survives to the E8-page in the Adams spectral sequence.

By Browder’s theorem

Corollary

There exist framed manifolds with Kervaire invariant 1 in dimension 126.

Together with theorems of Browder 1969, Mahowald–Tangora 1967,
Barratt–Jones–Mahowald 1984, and Hill–Hopkins–Ravenel 2016

Corollary

Framed manifolds with Kervaire invariant one exist in and only in
dimensions 2, 6, 14, 30, 62, 126.

§ dim 30, explicit manifold known by J.Jones 1978

§ dim 62 and 126, no explicit manifold known



Ingredients of our proof

§ Lin’s program

§ noncommutative Gröbner bases for Steenrod algebra
§ secondary Steenrod algebra
§ propagation of di↵erentials and extensions

§ Techniques from HF2-synthetic/filtered spectra

§ Generalized Leibniz Rule
§ Generalized Mahowald Trick

§ Adhoc arguments near stem 126

§ Barratt–Jones–Mahowald’s inductive approach
§ upgraded by Burklund–Xu in the context of

HF2-synthetic/filtered spectra:
§ ✓6 exists ô �⌘✓25 “ 0

§ detailed analysis around stem 126 to prove �⌘✓2
5

“ 0



Rigidity theorems in SHpCq

§ SHpCq: motivic stable homotopy category over C
§ bigraded spheres Sn,w

§ ⌧ : zS0,´1 Ñ yS0,0

§ (Voevodsky): ⇡˚,˚HFmot

p – Fpr⌧ s, |⌧ | “ p0,´1q
§ Betti realization: SHpCq // SH

Sn,w �
// Sn

HFmot

p
�

// HFp

⌧ �
// 1

§ (Morel, Levine, Dugger–Isaksen, Hu–Kriz–Ormsby):
motivic Adams and Adams–Novikov spectral sequence



Rigidity theorems in SHpCq
§ The motivic Adams–Novikov spectral sequence is Rigid!

§ ⌧ -bockstein spectral sequence

mot ANSS
⌧´1

// ANSS

E2 – ANSS E2r⌧ s

d2r`1x “ ⌧ ry oo // d2r`1x “ y

§ yS0,0{⌧ : the cofiber of ⌧

§ mot ANSSpyS0,0{⌧q collapses at E2

⇡˚,˚ yS0,0{⌧ – Ext˚,˚
BP˚BP

pBP˚,BP˚q

§ (Dugger–Isaksen, Gheorghe–Wang–Xu):

SH^
p

yS0,0-Mod
⌧´1

generic fiber

oo

mod ⌧

special fiber

// DpBP˚BP-Comodq



Rigidity theorems in SynHFp

§ Syn
HFp

: stable homotopy category of synthetic HFp-spectra

§ bigraded spheres Sn,w

§ �: S0,´1 Ñ S0,0

§ ⇡˚,˚HFsyn

p – Fpr�s, |�| “ p0,´1q

SH^
p Syn

HFp

�´1

generic fiber

oo

mod �

special fiber

// DpA˚-Comodq

§ (Pstragowski, Gheorghe–Isaksen–Krause–Ricka):

SHpCq^
cell

» Syn
BP

» FilBP

§ (Burklund–Hahn–Senger):
The synthetic Adams spectral sequence is Rigid!



Rigidity theorems in SynHFp

§ The synthetic Adams spectral sequence is Rigid!

§ �-bockstein spectral sequence

syn ASS
�´1

// ASS

E2 – ASS E2r�s

dr`1x “ �ry oo // dr`1x “ y

§ S0,0{�: the cofiber of �

§ syn ASSpS0,0{�q collapses at E2

⇡˚,˚S0,0{� – Ext˚,˚
A

pFp,Fpq

§ ⇡˚,˚S0,0{�n
oo // Adams En`1-page



Examples

§ Syn ASS E2 – ASS E2r�s
§ Classical S0: d2ph4q “ h0h23, d3ph0h4q “ h0d0

§ S0,0: d2ph4q “ �h0h23, d3ph0h4q “ �2h0d0

§ survive: h0h23, h0d0, �h0d0

§ S0,0{�: d2ph4q “ �h0h23 “ 0, d3ph0h4q “ �2h0d0 “ 0

§ everything survives!

§ S0,0{�2: d2ph4q “ �h0h23, d3ph0h4q “ �2h0d0 “ 0
d2p�h4q “ �2h0h23 “ 0

§ survive: h0h23, h0d0, �h0d0
�h4

§ ⇡˚,˚S0,0{�n
oo // Adams En`1-page



Di↵erentials and Extensions

§ S0,´n ¨�n
// S0,0

// S0,0{�n �n

total Adams di↵

// S1,´n

§ n “ 1, Exts,tA – ⇡t´s,tS0,0{�
§ h4 P Ext1,16A – ⇡15,15`1S0,0{�
§ h4 doesn’t lift to S0,0

§ d2ph4q “ �h0h23 oo // �1ph4q “ h0h23

§ d3ph0h4q “ �2h0d0 oo // �1ph0h4q “ �h0d0

§ ñ rh0h23s ¨ rh0s “ r�h0d0s in ⇡14,14`4S0,0

§ Warning: in ⇡14,14`4S0,0, the element h0h23 detects two homotopy
classes, di↵ered by �rd0s!
ñ for the other choice of rh0h23s, rh0h23s ¨ rh0s “ 0.

§ Define extensions on an Adams En-page,
Translate di↵erentials to extensions

§ Generalized Leibniz Rule, Generalized Mahowald Trick



Notations

§ For x P Ext, permanent cycle, we denote by

§ txu: the set of all classes in ⇡˚ that are detected by x .
§ rxs: a specific or a general class in txu,

depending on the context.

§ ✓5 “ rh2
5
s: any synthetic homotopy class in ⇡62,62`2S0,0 detected by

h2
5
in the Adams E2-page.

§ Denote also by ✓5 its image in ⇡62,62`2S0,0{�r via the map
S0,0 Ñ S0,0{�r for all r • 1.

§ ⌘ “ rh1s P ⇡1,1`1S0,0.

§ Fact: 2 ¨ ✓5 “ 0 in ⇡62,62`2S0,0 for every ✓5.

§ Ext0,63A “ 0 ñ ⇡62,62`2S0,0 doesn’t contain any �-torsion.
§ Xu, Isaksen–Wang–Xu: 2 ¨ ✓5 “ 0 in ⇡62S0 for every ✓5.



Inductive Approach for ✓6

Theorem (Barratt–Jones–Mahowald, Burklund–Xu)

1. The element h2
6
survives to the Er`3-page of the classical Adams

spectral sequence if and only if for some ✓5,

�⌘✓2
5

“ 0 in ⇡125,125`4S
0,0{�r`1.

2. In particular, h2
6
is a permanent cycle in the classical Adams spectral

sequence if and only if for some ✓5,

�⌘✓2
5

“ 0 in ⇡125,125`4S
0,0.

§ In fact, the expression �⌘✓2
5
is consistent for every choice of ✓5.



Ideas of the Proof

§ Take any ✓5 P ⇡62,62`2S0,0, and its extension f : S62,64{2 Ñ S0,0,
where S62,64{2 is the cofiber of 2 : S62,64 Ñ S62,64.

§ Consider its quadratic construction Sqpf q : pS62,64{2q^2

hC2
Ñ S0,0.

127, 128

2

63, 64

2

126, 128

�2⌘

62, 64
✓5

&&

124, 128
✓2

5

((

0, 0 0, 0

S62,64{2 f
// S0,0 pS62,64{2q^2

hC2

Sqpf q
// S0,0



Ideas of the Proof

127, 128

2

h7

��

63, 64

2
h6



126, 128

�2⌘
h2
6

��

62, 64
✓5

&&

124, 128
✓2

5

((

0, 0 0, 0

S62,64{2 f
// S0,0 pS62,64{2q^2

hC2

Sqpf q
// S0,0

+3 S0,0{� �1
// S1,´1

h2
6

�
// �⌘✓2

5

§ If ⌘✓2
5
is detected by �n´5Tn for some Tn P Extn,125`n

A ,
then there is a synthetic Adams di↵erential dn´2ph2

6
q “ �n´3Tn.



Strategy for proving h26 as a permanent cycle

§ If ⌘✓2
5
is detected by �n´5Tn for some Tn P Extn,125`n

A ,
then there is a synthetic Adams di↵erential dn´2ph2

6
q “ �n´3Tn.

§ Goal: Show that �⌘✓2
5

“ 0 by Adams filtration (AF) estimation.

§ Start with ✓2
5

P ⇡124,124`4S0,0.

§ Exti,125`i
A “ 0 for i § 2

§ ñ ⇡124,124`4S0,0 doesn’t contain �-torision.

§ By inspection, AFp✓2
5
q • 10.

§ If AFp✓2
5
q “ 10, then ✓2

5
is detected by �6h2

0
x124,8.

§ Next estimate ⌘✓2
5
.

§ AFp�3⌘rh2
0
x124,8sq • 14.

§ If AFp�3⌘rh2
0
x124,8sq “ 14, then it is detected by �6h1h4x109,12.

§ If AFp�3⌘rh2
0
x124,8sq ° 14, then it is zero.



An ⌘-extension

Proposition A

Exactly one of (1) and (2) is true:

(1) h2
6
survives to the E8-page.

(2) d12ph2
6
q “ h1h4x109,12 ‰ 0.

p2q is true ô p3q, p4q, p5q are all true:

(3) d6px126,8,4 ` x126,8q “ 0.

(4) ✓2
5

“ �6rh2
0
x124,8s ‰ 0 P ⇡124,124`4S0,0.

(5) �3⌘rh2
0
x124,8s “ �6rh1h4x109,12s P ⇡125,125`8S0,0.

§ Choice of ✓5 in (4) doesn’t matter,

§ Choice of rh2
0
x124,8s in (5) doesn’t matter.

Proposition B

If (3) is true, then (5) is not true.



Proof of Proposition B

For the sake of contradiction, we assume (3) and (5) are both true.

Lemma 1

There exists ↵1 “ rx123,9 ` h0x123,8s P ⇡123,123`9S0,0{�9,

↵2 P ⇡124,124`13S
0,0{�9, ↵3 P ⇡125,125`15S

0,0{�9,

such that

1. �3⌘ ¨ ↵1 “ �3rh2
0
x124,8s ` �6↵2 P ⇡124,124`7S0,0{�9,

⌘ ¨ ↵2 “ � ¨ ↵3 P ⇡125,125`14S0,0{�9,

2. �3 ¨ ↵1 ¨ rh0s “ 0 P ⇡123,123`7S0,0{�9.

Lemma 2

The synthetic Toda bracket

x�3↵1, rh0s, ⌘y Ä ⇡125,125`7S
0,0{�9

does not contain zero, and is detected by �4h2
0
x125,9,2.



Proof of Proposition B

Lemma 3 (Corollary of Lemma 2)

r�4h2
0
x125,9,2s ¨ rh0s “ �6rh1h4x109,12s ‰ 0 P ⇡125,125`8S0,0{�9.

Lemma 4

r�4h1x121,7s ¨ rh2s “ �r�5h2
0
x125,9,2s P ⇡125,125`5S0,0{�9.

Sketch Proof of Proposition B:

§ r�4h1x121,7s ¨ rh2s ¨ rh0s “ �r�5h2
0
x125,9,2s ¨ rh0s

“ �8rh1h4x109,12s ‰ 0 P ⇡125,125`6S0,0{�9.

§ r�4h1x121,7s ¨ rh0s ‰ 0 P ⇡122,122`5S0,0{�9, only possibilities:

�6rh6Md0s in AF “ 11, �7rh5x91,11s in AF “ 12.

Both lift to ⇡˚,˚S0,0.

§ In both cases, �4rh1h4x109,12s is a �rh2s-multiple in ⇡˚,˚S0,0.

§ ñ in ASSpS0{⌫q, h1h4x109,12r0s must be killed by dr for r § 5.

Contradiction!



Proof of Proposition B

Lemma 3 (Corollary of Lemma 2)

r�4h2
0
x125,9,2s ¨ rh0s “ �6rh1h4x109,12s ‰ 0 P ⇡125,125`8S0,0{�9.

Lemma 4

r�4h1x121,7s ¨ rh2s “ �r�5h2
0
x125,9,2s P ⇡125,125`5S0,0{�9.

Sketch Proof of Proposition B:

§ r�4h1x121,7s ¨ rh2s ¨ rh0s “ �r�5h2
0
x125,9,2s ¨ rh0s

“ �8rh1h4x109,12s ‰ 0 P ⇡125,125`6S0,0{�9.

§ r�4h1x121,7s ¨ rh0s ‰ 0 P ⇡122,122`5S0,0{�9, only possibilities:

�6rh6Md0s in AF “ 11, �7rh5x91,11s in AF “ 12.

Both lift to ⇡˚,˚S0,0.

§ In both cases, �4rh1h4x109,12s is a �rh2s-multiple in ⇡˚,˚S0,0.

§ ñ in ASSpS0{⌫q, h1h4x109,12r0s must be killed by dr for r § 5.
Contradiction!



Sketch Proof of Lemma 1

Lemma 1

There exists ↵1 “ rx123,9 ` h0x123,8s,↵2,↵3 P ⇡˚,˚S0,0{�9, such that

1. �3⌘ ¨ ↵1 “ �3rh2
0
x124,8s ` �6↵2 P ⇡124,124`7S0,0{�9,

⌘ ¨ ↵2 “ � ¨ ↵3 P ⇡125,125`14S0,0{�9,

2. �3 ¨ ↵1 ¨ rh0s “ 0 P ⇡123,123`7S0,0{�9.

Facts: (1) x123,9 ` h0x123,8 survives to E12, not killed by any di↵erential.
(2) d2px125,8q “ h1px123,9 ` h0x123,8q ` h2

0
x124,8.

§ Let ↵1 “ rx123,9 ` h0x123,8s P ⇡123,123`9S0,0{�11 and
its images in ⇡123,123`9S0,0{�r for 1 § r § 10.

§ �⌘↵1 ` �rh2
0
x124,8s P ⇡124,124`9S0,0{�9 lies in AF • 11.

§ �3⌘↵1 ` �3rh2
0
x124,8s P ⇡124,124`7S0,0{�9 has AF • 13 by inspection,

and is detected by �6e0�h6g if AF “ 13.

§ in Ext, h1 ¨ e0�h6g “ 0.

§ �3 ¨ ↵1 ¨ rh0s P ⇡123,123`7S0,0{�11 has AF • 17 by inspection.



Sketch Proof of Lemmas 2 and 3

Lemma 2

The synthetic Toda bracket x�3↵1, rh0s, ⌘y Ä ⇡125,125`7S0,0{�9

does not contain zero, and is detected by �4h2
0
x125,9,2.

§ From Lemma 1 and (5): �3⌘rh2
0
x124,8s “ �6rh1h4x109,12s,

⌘ ¨ �3⌘↵1 “ ⌘ ¨ �3rh2
0
x124,8s ` ⌘ ¨ �6↵2

“ �6rh1h4x109,12s ` �7↵3 P ⇡125,125`8S
0,0{�9.

⌘ ¨ �3⌘↵1 “ �3↵1 ¨ xrh0s, ⌘, rh0sy “ x�3↵1, rh0s, ⌘y ¨ rh0s.
§ ñ x�3↵1, rh0s, ⌘y lies in AF § 12, which is generated by

rh2
0
x125,5s in AF “ 7,

�2rh6p�e1 ` C0 ` h6
0
h2
5
qs in AF “ 9,

r�4h2
0
x125,9,2s in AF “ 11.

§ ñ Lemma 3:
r�4h2

0
x125,9,2s ¨ rh0s “ �6rh1h4x109,12s ‰ 0 P ⇡125,125`8S0,0{�9.



Sketch Proof of Lemma 4

Lemma 4

r�4h1x121,7s ¨ rh2s “ �r�5h2
0
x125,9,2s P ⇡125,125`5S0,0{�9.

§ Fact: h1x121,7 survives to E6, not killed by any di↵erential.
ñ r�4h1x121,7s ‰ 0 P ⇡122,122`4S0,0{�9.

S3 ⌫
// S0 i

// S0{⌫ q
// S4 ⌫

// S1

¨ ¨ ¨ ¨h2
// Ext˚,˚

A pS0q i˚
// Ext˚,˚

A pS0{⌫q q˚
// Ext˚,˚

A pS4q ¨h2
// ¨ ¨ ¨

h2
0
x125,9,2

�
// h2

0
x125,9,2r0s

h1x121,7r4s
`x126,8r0s

`x126,8,2r0s
�

//

d3
OO

h1x121,7

§ Generalized Mahowald Trick:
rh1x121,7s ¨ rh2s “ �2rh2

0
x125,9,2s P ⇡125,125`9S0,0{�3.

§ Lift via S0,0{�5 Ñ S0,0{�3, push via �4 : ⌃0,´4S0,0{�5 Ñ S0,0{�9



Hopf, Kervaire, and ¨ ¨ ¨

§ In the Adams spectral sequence,
Ext1,˚

A
pF2,F2q is generated by the classes hj .

§ (Adams): hj survives ô j § 3.

§ The tangent bundle over Sn is trivial ô n “ 1, 3, 7.

§ (Hill–Hopkins–Ravenel, Lin–Wang–Xu): h2j survives ô j § 6.

§ There exists a framed n-dim manifold with Kervaire invariant one
ô n “ 2, 6, 14, 30, 62, 126.

§ Question: Explicit di↵erentials on h2j for j • 7?

§ (Burklund–Xu): h3j survives ô j § 4.

§ Ongoing progress: interpretation in terms of framed manifolds.

§ h4j “ 0. Question: What’s next?



New Doomsday Conjecture

§ in Ext, Sq0 : Exts,t
A

›Ñ Exts,2t
A

,

Sq0hj “ hj`1, Sq0h2j “ h2j`1
, Sq0h3j “ h3j`1

§ Sq0-family: x , Sq0x , Sq0pSq0xq, ¨ ¨ ¨
§ New Doomsday Conjecture: For any nonzero Sq0-family, only

finitely many classes survive.

§ Ext1,˚
A

ô Hopf invariant problem,
§ Ext2,˚

A
ô Kervaire invariant problem,

§ Ext3,˚
A

: other than h3j , many cases remain

h2j hj`k`1 ` hj`1h
2

j`k “ xh2j , h0, h2j`ky.

§ Uniform Doomsday Conjecture: For any nonzero Sq0-family taju,
there exists a Sq0-family tbju, r • 2, c P Ext, such that

dr pajq “ c ¨ bj ‰ 0, for j °° 0.



Thank you!


