The Amplituhedron and Positive Geometries

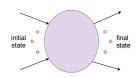
Fatemeh Mohammadi (Ghent)

joint with Leonid Monin (Bristol), Matteo Parisi (Oxford)

January 22, 2021

Scattering amplitudes in quantum field theory

• When particles interact, different outcomes are possible. The probability of a given outcome is called the scattering amplitude $\mathcal{A}(\text{in}, \text{out})$.

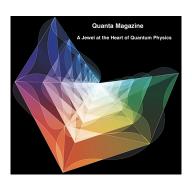


ullet Feynman diagrams are used for for explicit computations: $\int \mathcal{D}\phi e^{iS[\phi]}$

• Each Feynman diagram is the sum of exponentially many terms that contribute as a summand to A.

The Amplituhedron

- Novel "on-shell methods" developed to calculate scattering amplitudes such as the Britto-Cachazo-Feng-Witten (BCFW) recursive method
- Introduced by Nima Arkani-Hamed and Jaroslav Trnka in 2013
- A geometric basis of BCFW recursion is given in terms of a collection of cells in the positive Grassmannian
- These cells glue together and form the **Amplituhedron** $A_{n,k,m}$.



Properties of amplituhedron

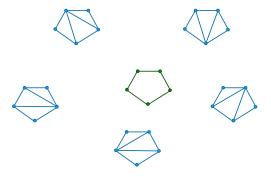
- ullet The **volume** is scattering amplitudes for $\mathcal{N}=4$ Super Yang-Mills.
- The canonical form $\Omega(A_{n,k,m})$: a unique top-degree rational form whose poles are all simple and are exactly along the boundary of $A_{n,k,m}$.
- The BCFW recurrence for computing scattering amplitudes is reformulated as giving a **triangulation** of the m = 4 amplituhedron.
- Question: How to find the canonical form and triangulations of $A_{n,k,m}$?

Outline

- Examples of amplituhedra and their triangulations
 - Triangulations of polytopes
 - Cyclic polytopes
 - Positive Grassmannians
- The Amplituhedron
 - Combinatorial properties
 - Generalized triangulations
- Positive geometries
 - Canonical forms
 - Further examples
- Summary and further directions

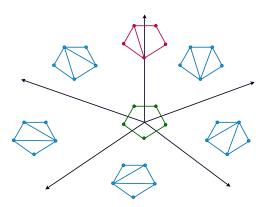
Subdivisions of polytopes

A subdivision of a polytope is a finite union of polytopes s.t. every two
polytopes are either disjoint or intersect by a common proper face.



Subdivisions of polytopes

A subdivision of a polytope is a finite union of polytopes s.t. every two
polytopes are either disjoint or intersect by a common proper face.



 The secondary fan of P: A fan whose faces correspond to the regular subdivisions of P. Gelfand-Kapranov-Zelevinski, 1990

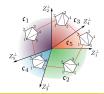
Example 1: The cyclic polytope

- The cyclic polytope: the convex hull of any n distinct points on the moment curve $\{x(t)=(t,t^2,\ldots,t^d):\ t\in\mathbb{R}\}\subset\mathbb{R}^d$.
- The combinatorial type of C(n, d) is independent of the choice of the points on the moment curve. Edelman-Reiner '96, Rambau '97

$$C(n,d) = \operatorname{conv}\{x(t_1), \dots, x(t_n)\}$$
 for $t_1 < \dots < t_n$

- A triangulation of a polytope P is a finite union of simplices s.t. every two simplices are either disjoint or intersect by a common proper face.
- Secondary fan of P: It is a polyhedral fan whose faces correspond to the regular subdivisions of P. Gelfand-Kapranov-Zelevinskii, '90

Triangulations of $P \Longleftrightarrow Maximal$ dimensional cones of the secondary fan \mathcal{F}_P



Example 2: The positive Grassmannian

- Grassmannian Gr(k, n): The set of k-dim subspaces in \mathbb{C}^n (or \mathbb{R}^n).
- Each element of Gr(k, n) is represented by a full-rank $k \times n$ matrix X. Gr(k, n) is $Mat(k, n) / \sim$ (up to GL_k -action.)

$$X = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix} \in Gr(2,3)$$
 with $P_{12} = 1, P_{13} = 3, P_{23} = 1$

- **Plücker coordinate** P_I for $I \in \binom{[n]}{k}$: The minor of X on the columns I.
- Positive Grassmannian $Gr_+(k, n)$: the set of elements X of real Grassmannian Gr(k, n) where $P_I(X) \ge 0$ for all $I \in {[n] \choose k}$.
- Based on seminal work on positivity by Lusztig 1994 for $(G/P)_{\geq 0}$, as well as Fomin and Zelevinsky 1999, Postnikov 2006, and Rietsch 2007.
- $Gr_+(k, n)$ plays the role of the **simplex** in amplituhedron theory.

Question

How to **decompose** $Gr_+(k, n)$ into some topological cells?

Positroid decomposition of $Gr_+(k, n)$

- Matroid stratification of Gr(k, n) introduced by Gelfand-Goresky-MacPherson-Serganova in 1987
- Its restriction to Gr₊(k, n) studied by Postnikov 2006
- Given a collection $M \subset \binom{[n]}{k}$ the **positroid cell** of M is:

$$S_M = \{X \in Gr_+(k, n) : P_I(X) > 0 \text{ if and only if } I \in M\}.$$

Theorem (Postnikov 2006, Postnikov-Speyer-Williams 2009)

Every non-empty S_M is a topological cell homeomorphic to an open ball. The positroid cells glue together to form a CW complex

$$\operatorname{Gr}_+(k,n) = \bigsqcup_M S_M.$$

The Amplituhedron $A_{n,k,m}$

- Introduced by Arkani-Hamed and Trnka in 2013
- $A_{n,k,m}$ is the image of the positive Grassmannian under a linear map.
- Let n, k, m be integers with $k + m \le n$ and m even.
- Let Z be an $n \times (k + m)$ with positive maximal minors.

$$\pi: \operatorname{Gr}_+(k,n) \to \operatorname{Gr}(k,k+m)$$
 with $C \mapsto Y = C.Z$

• The image of π is called the amplituhedron

$$A_{n,k,m} := \pi(\operatorname{Gr}_+(k,n)) \subset \operatorname{Gr}(k,k+m)$$

 The definition of the amplituhedron depends on the choice of Z. Its combinatorial/geometric properties are independent of the choice of Z (similar to cyclic polytopes).

The properties of $A_{n,k,m}$

The amplituhedron

$$\mathcal{A}_{n,k,m} := \pi(\mathsf{Gr}_+(k,n)) \subset \mathsf{Gr}(k,k+m)$$

is a semialgebraic subset of Gr(k, k + m)

- It is of full-dimension km.
- $A_{n,k,m}$ is the image of $Gr_+(k,n)$ which decomposes into positroid cells.

$$\operatorname{Gr}_+(k,n) = \bigsqcup_M S_M.$$

- **Idea:** To use the images of positroid cells to triangulate $A_{n,k,m}$.
- $\pi(Gr_+(k, n))$ is of full-dimension, but $\pi(S_M)$ might have lower dimension.

Question

Find collections $C = \{S_M\}$ of positroid cells whose **images** triangulate $A_{n,k,m}$.

Triangulations of $A_{n,k,m}$

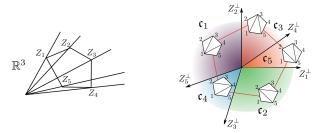
- Triangulation of $A_{n,k,m}$: A collection of positroid cells $C = \{S_M\}$ s.t.
 - (1) $\pi(S_M)$ are of full-dimensional km, they are pairwise disjoint, and cover a dense subset of the amplituhedron.
 - (2) The map π is injective on each S_M in C.
- How do the boundary of these cells overlap?
- Good triangulations:
 - (3) if the intersection $\overline{\pi_+(S_M)} \cap \overline{\pi_+(S_{M'})}$ of the images of two distinct cells has codimension one, then $\overline{\pi_+(S_M)} \cap \overline{\pi_+(S_{M'})}$ equals $\overline{\pi_+(S_{M''})}$, where $S_{M''}$ lies in the closure of both S_M and $S_{M'}$.

Arkani-Hamed-Trnka '13,..., Lukowski-Parisi-Williams '20

• **Goal:** To find good triangulations of $A_{n,k,m}$.

Examples

• k = 1: a cyclic polytope with n vertices in \mathbb{P}^m . Arkani-Hamed, Trnka '13. Its triangulations are governed by the secondary polytope.



 n = m + k: positive Grassmannian Gr₊(k, n) is a simplex; it is decomposed into positroid cells. Postnikov '06

Examples

- The main case of interest is m = 4; The BCFW recurrence for computing scattering amplitudes is reformulated as giving a **triangulation** of $A_{n,k,4}$.
- The cases m = 1, 2 are studied as toy models for m = 4.
 - m = 1: homeomorphic to the bounded complex of the cyclic hyperplane arrangement. Karp-Williams '19
 - m = 2: related to hypersimplex and tropical Grassmannain. Lukowski-Parisi-Williams '20
- Inspired by parity conjugation in quantum field theory.
- For $\ell = n m k$ there is a bijection between triangulations of $\mathcal{A}_{n,\ell,m}$ and triangulations of $\mathcal{A}_{n,k,m}$. Galashin-Lam '18

Theorem (M-Monin-Parisi '20)

There is a well-structured notion of secondary amplituhedra for $\ell = n - m - 1$.

Positive geometry

- Introduced by Arkani-Hamed-Trnka '14, Lam '14, Arkani-Bai-Lam '17
- A positive geometry is recursively defined as a pair $(X, X_{\geq 0})$ s.t. every irreducible component of $\overline{\partial X_{\geq 0}}$ is a positive geometry.
- A *d*-dim positive geometry is a pair $(X, X_{\geq 0})$, where
 - X is a d-dim normal, irreducible, complex projective variety
 - $X_{\geq 0} \subset X(\mathbb{R})$ is a semialgebraic subset
 - $X_{>0} = int(X_{\geq 0})$ is a *d*-dim oriented real manifold

with a unique rational differential top-form $\Omega(X_{>0})$ on X s.t.

- its poles are all simple and are exactly along the boundary of $X_{\geq 0}$
- its singularities are recursive, i.e. at every boundary component B

$$\operatorname{\mathsf{Res}}_B\Omega(X_{\geq 0}) = \Omega(B_{\geq 0}).$$

- $\Omega(X_{>0})$ is called the **canonical form**.
- Application: $\Omega(X_{\geq 0})$ is a physical observable.
- Polytopes, positive Grassmannian, amplituhedron, associahedron

Properties of positive geometry

- A finite set of positive geometries $(S, S_{\geq 0})$ subdivides $(X, X_{\geq 0})$ if
 - $\bigcup S_{\geq 0} = X_{\geq 0}$ and $S_{\geq 0} \subset X_{\geq 0}$
 - The interiors $S_>0$ are pairwise disjoint
 - The orientations of $S_{>0}$ and $X_{>0}$ are compatible
- Property 1. Given a subdivision $C = \{(S, S_{\geq 0})\}$ of $(X, X_{\geq 0})$ we have:

$$\Omega(X_{\geq 0}) = \sum \Omega(S_{\geq 0})$$

- Property 2. Given a diffeomorphism $\pi:(X,X_{\geq 0})\to (Y,Y_{\geq 0})$, the canonical form $\Omega(Y_{\geq 0})$ is the pushforward of $\Omega(X_{\geq 0})$ by π .
- Given a subdivision $C = \{S_M\}$ of $A_{n,k,m}$ we have

$$\Omega(S_M) = \Omega(\pi(S_M))$$
 and $\Omega(\mathcal{A}_{n,k,m}) = \sum \Omega(S_M)$

Different subdivisions of $A_{n,k,m}$ lead to different ways to compute $\Omega(A_{n,k,m})$.

Outlook: Geometry of subdivisions of $A_{n,k,m}$

Question

Is there a notion of secondary amplituhedron encoding its subdivisions?

Motivated by fiber polytopes' construction of Billera-Sturmfels '92

We extended the projection

$$\pi_+:\operatorname{Gr}_+(k,n)\to \mathcal{A}_{n,k,m}$$

to a rational map

$$\pi: \operatorname{Gr}(k, n) \dashrightarrow \operatorname{Gr}(k, k+m).$$

and explicitly parametrize the fibers $(\pi^{-1}(Y), \pi_+^{-1}(Y))$ for $Y \in \mathcal{A}_{n,k,m}$.

- The fiber volume form: a top-form $\omega_{n,k,m}(Y)$ on the fiber.
- $\Omega(A_{n,k,m})$ is the sum of certain residues of the forms $\omega_{n,k,m}(Y)$.
- When $\omega_{n,k,m}(Y)$ has only poles along some hyperplanes, we can use the classical Jeffrey-Kirwan residue to compute $\Omega(A_{n,k,m})$.

Polytopes and their conjugates

- Let k = 1, $\ell = n m 1$ and $A = A_{n,1,m}$ or $A_{n,\ell,m}$.
- The fiber volume forms $\omega_{n,k,m}(Y)$ have only poles along some hyperplane arrangement (the denominator is a product of linear forms).
- Let $\mathcal{F}_{\mathcal{A}}(Y)$ be the chamber fan on the normal rays of these hyperplanes.
- The structure of the fan $\mathcal{F}_{\mathcal{A}}(Y)$ is independent of Y and its cones correspond to positroidal subdivisions of the amplituhedron.

Theorem (M-Monin-Parisi '20)

There is a well-structured notion of secondary amplituhedra for $\ell=n-m-1$.

Question

Is there a notion of secondary amplituhedron in general?

Reference

 Triangulations and Canonical Forms of Amplituhedra: a fiber-based approach beyond polytopes

Mohammadi-Monin-Parisi (arXiv preprint arXiv:2010.07254)

Thank you for your attention!