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Scattering amplitudes in quantum field theory

@ When particles interact, different outcomes are possible. The probability
of a given outcome is called the scattering amplitude A(in, out).
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@ Feynman diagrams are used for for explicit computations: [ Dge’S]

@ Each Feynman diagram is the sum of exponentially many terms that
contribute as a summand to A.
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The Amplituhedron

@ Novel “on-shell methods" developed to calculate scattering amplitudes
such as the Britto-Cachazo-Feng-Witten (BCFW) recursive method

@ Introduced by Nima Arkani-Hamed and Jaroslav Trnka in 2013

@ A geometric basis of BCFW recursion is given in terms of a collection of
cells in the positive Grassmannian

@ These cells glue together and form the Amplituhedron A, x m.

Quanta Magazine

A Jewel at the Heart of Quantum Physics
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Properties of amplituhedron

@ The volume is scattering amplitudes for A" = 4 Super Yang-Mills.

@ The canonical form Q(A, x »): a unique top-degree rational form
whose poles are all simple and are exactly along the boundary of A x m.

@ The BCFW recurrence for computing scattering amplitudes is
reformulated as giving a triangulation of the m = 4 amplituhedron.

@ Question: How to find the canonical form and triangulations of A, k m?

Quanta Magazine

A Jewel at the Heart of Quantum Physics

)

Fatemeh Mohammadi (Ghent) The Amplituhedron and Positive Geometries January 22, 2021 4/19



Outline

@ Examples of amplituhedra and their triangulations

e Triangulations of polytopes
e Cyclic polytopes
e Positive Grassmannians

@ The Amplituhedron

e Combinatorial properties
o Generalized triangulations

@ Positive geometries

e Canonical forms
o Further examples

@ Summary and further directions
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Subdivisions of polytopes

@ A subdivision of a polytope is a finite union of polytopes s.t. every two
polytopes are either disjoint or intersect by a common proper face.

SR
=
P

Fatemeh Mohammadi (Ghent) The Amplituhedron and Positive Geometries January 22, 2021 6/19



Subdivisions of polytopes

@ A subdivision of a polytope is a finite union of polytopes s.t. every two
polytopes are either disjoint or intersect by a common proper face.
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@ The secondary fan of P: A fan whose faces correspond to the regular
subdivisions of P. Gelfand-Kapranov-Zelevinski, 1990
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Example 1: The cyclic polytope

@ The cyclic polytope: the convex hull of any n distinct points on
the moment curve {x(t) = (t,£3,...,t%): te R} c RY.
@ The combinatorial type of C(n, d) is independent of the choice of the
points on the moment curve. Edelman-Reiner '96, Rambau '97
C(n,d) =conv{x(t),...,x(t))} for h<--- <ty
@ A triangulation of a polytope P is a finite union of simplices s.t. every
two simplices are either disjoint or intersect by a common proper face.

@ Secondary fan of P: It is a polyhedral fan whose faces correspond to
the regular subdivisions of P. Gelfand-Kapranov-Zelevinskii, '90

Triangulations of P < Maximal dimensional cones of the secondary fan Fp
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Example 2: The positive Grassmannian

@ Grassmannian Gr(k, n): The set of k-dim subspaces in C" (or R").
@ Each element of Gr(k, n) is represented by a full-rank k x n matrix X.
Gr(k, n) is Mat(k, n)/ ~ (up to GL-action.)

1 1 2

X:{1 0 1

]eGr(Z,S) with Pio=1,P13=3,Po3 =1

@ Pliicker coordinate P, for | € ([Z]): The minor of X on the columns /.

@ Positive Grassmannian Gr. (k, n): the set of elements X of real
Grassmannian Gr(k, n) where P/(X) > 0 for all / € (I/}).

@ Based on seminal work on positivity by Lusztig 1994 for (G/P)>o, as
well as Fomin and Zelevinsky 1999, Postnikov 2006, and Rietsch 2007.

@ Gr(k, n) plays the role of the simplex in amplituhedron theory.

Question
How to decompose Gr (k, n) into some topological cells?
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Positroid decomposition of Gr.(k, n)

@ Matroid stratification of Gr(k, n) introduced by
Gelfand-Goresky-MacPherson-Serganova in 1987

@ lts restriction to Gr,.(k, n) studied by Postnikov 2006
@ Given a collection M c (If)) the positroid cell of M is:

Sv={X¢€GCry(k,n): P(X)>0ifandonlyif | € M}.

Theorem (Postnikov 2006, Postnikov-Speyer-Williams 2009)

Every non-empty Sy is a topological cell homeomorphic to an open ball. The
positroid cells glue together to form a CW complex

Gr(k, n) |_|SM
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The Amplituhedron Ak m

Introduced by Arkani-Hamed and Trnka in 2013
An k,m is the image of the positive Grassmannian under a linear map.

Let n, k, m be integers with kK + m < nand m even.

Let Z be an n x (k + m) with positive maximal minors.
m:Gry(k,n) — Gr(k,k+m) with C—Y=CZ

The image of 7 is called the amplituhedron

Ank.m = n(Gry(k,n)) c Gr(k, k + m)

The definition of the amplituhedron depends on the choice of Z. Its
combinatorial/geometric properties are independent of the choice of Z
(similar to cyclic polytopes).
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The properties of Ap k. m

@ The amplituhedron
Ank.m = m(Gry(k,n)) C Gr(k,k + m)

is a semialgebraic subset of Gr(k, k + m)
@ It is of full-dimension km.

@ A, mis the image of Gro(k, n) which decomposes into positroid cells.

Gr(k,n) |_|SM

@ Idea: To use the images of positroid cells to triangulate A, m.

@ 7(Gry(k,n)) is of full-dimension, but 7(Sy) might have lower dimension.

Question
Find collections C = {Su} of positroid cells whose images triangulate A k. m.
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Triangulations of A, k. m

@ Triangulation of A, ,: A collection of positroid cells C = {Su} s.t.

(1) 7(Sm) are of full-dimensional km, they are pairwise disjoint, and
cover a dense subset of the amplituhedron.
(2) The map m is injective on each Sy in C.

@ How do the boundary of these cells overlap?

@ Good triangulations:

(8) if the intersection 7 (Sy) N 74 (Sw) of the images of two distinct
cells has codimension one, then 7 (Sy) N 7+ (Sw) equals
7+ (Su), where Sy lies in the closure of both Sy and Sy .

Arkani-Hamed-Trnka '13,..., Lukowski-Parisi-Williams ’20

@ Goal: To find good triangulations of Ap x,m.
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Examples

@ k = 1: a cyclic polytope with n vertices in P. Arkani-Hamed, Trnka ’13.
Its triangulations are governed by the secondary polytope.

@ n = m+ k: positive Grassmannian Gr, (k, n) is a simplex; it is
decomposed into positroid cells. Postnikov 06
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Examples

@ The main case of interest is m = 4; The BCFW recurrence for computing
scattering amplitudes is reformulated as giving a triangulation of A, x 4.

@ The cases m = 1,2 are studied as toy models for m = 4.

e m = 1: homeomorphic to the bounded complex of the cyclic
hyperplane arrangement. Karp-Williams ’19

e m = 2: related to hypersimplex and tropical Grassmannain.
Lukowski-Parisi-Williams ’20

@ Inspired by parity conjugation in quantum field theory.

@ For ¢ =n— m- k there is a bijection between triangulations of A, , » and
triangulations of A, x . Galashin-Lam *18

Theorem (M-Monin-Parisi '20)
There is a well-structured notion of secondary amplituhedra for £ = n—m—1.
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Positive geometry

@ Introduced by Arkani-Hamed-Trnka ‘14, Lam ’14, Arkani-Bai-Lam ’17

@ A positive geometry is recursively defined as a pair (X, X>o) s.t. every
irreducible component of 9X>¢ is a positive geometry.

@ A d-dim positive geometry is a pair (X, X>¢), where

e Xis a d-dim normal, irreducible, complex projective variety
e X>o0 C X(R) is a semialgebraic subset
@ X.o = int(X>o) is a d-dim oriented real manifold

with a unique rational differential top-form Q(X>o) on X s.t.

e its poles are all simple and are exactly along the boundary of X5
e its singularities are recursive, i.e. at every boundary component B

ResgQ(X>0) = Q(B>o).
@ Q(X>o) is called the canonical form.
@ Application: Q(X>) is a physical observable.
@ Polytopes, positive Grassmannian, amplituhedron, associahedron
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Properties of positive geometry

@ Afinite set of positive geometries (S, S>¢) subdivides (X, X>o) if
) USZO = XZO and S>0 - X>0
e The interiors S. 0 are pairwise disjoint
@ The orientations of S- 0 and X5 are compatible

@ Property 1. Given a subdivision C = {(S, S>0)} of (X, X>0) we have:
Q(X>0) = Z Q(S>0)

>

@ Property 2. Given a diffeomorphism = : (X, X>0) — (Y, Y>0), the
canonical form Q(Ys) is the pushforward of Q(X>o) by 7.

@ Given a subdivision C = {Sy} of A, xm we have
Q(Su) = n(Sw)) and QAnkm) =Y _ ASw)

Different subdivisions of A, x m lead to different ways to compute Q(An.«,m)-
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Outlook: Geometry of subdivisions of Ap k. m

Question
Is there a notion of secondary amplituhedron encoding its subdivisions?

Motivated by fiber polytopes’ construction of Billera-Sturmfels 92

@ We extended the projection
. Gro(k,n) = Apkm

to a rational map
7 : Gr(k,n) --» Gr(k, k + m).
and explicitly parametrize the fibers (7=1(Y), 7" (Y)) for Y € Apx.m-
@ The fiber volume form: a top-form wp x m(Y) on the fiber.
@ Q(Apk.m) is the sum of certain residues of the forms wp k. m(Y).

@ When wy «,m(Y) has only poles along some hyperplanes, we can use the
classical Jeffrey-Kirwan residue to compute Q(A k,m)-
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Polytopes and their conjugates

@ lethk=1,l=n—-m—-1and A= A,1,m0r As¢m.

@ The fiber volume forms wn x,m(Y) have only poles along some
hyperplane arrangement (the denominator is a product of linear forms).

@ Let F4(Y) be the chamber fan on the normal rays of these hyperplanes.

@ The structure of the fan F4(Y) is independent of Y and its cones
correspond to positroidal subdivisions of the amplituhedron.

Theorem (M-Monin-Parisi '20)
There is a well-structured notion of secondary amplituhedra for £ =n—m—1. |

v

Question
Is there a notion of secondary amplituhedron in general?
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Reference

@ Triangulations and Canonical Forms of Amplituhedra: a fiber-based
approach beyond polytopes

Mohammadi-Monin-Parisi (arXiv preprint arXiv:2010.07254)

Thank you for your attention!
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