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Scattering amplitudes in quantum field theory

When particles interact, different outcomes are possible. The probability
of a given outcome is called the scattering amplitude A(in, out).

initial
state

final
state

Feynman diagrams are used for for explicit computations:
∫
DφeiS[φ]

+ + + + ....

Each Feynman diagram is the sum of exponentially many terms that
contribute as a summand to A.
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The Amplituhedron

Novel “on-shell methods" developed to calculate scattering amplitudes
such as the Britto-Cachazo-Feng-Witten (BCFW) recursive method

Introduced by Nima Arkani-Hamed and Jaroslav Trnka in 2013

A geometric basis of BCFW recursion is given in terms of a collection of
cells in the positive Grassmannian

These cells glue together and form the Amplituhedron An,k,m.
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Properties of amplituhedron

The volume is scattering amplitudes for N = 4 Super Yang-Mills.

The canonical form Ω(An,k,m): a unique top-degree rational form
whose poles are all simple and are exactly along the boundary of An,k,m.

The BCFW recurrence for computing scattering amplitudes is
reformulated as giving a triangulation of the m = 4 amplituhedron.

Question: How to find the canonical form and triangulations of An,k,m?
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Subdivisions of polytopes

A subdivision of a polytope is a finite union of polytopes s.t. every two
polytopes are either disjoint or intersect by a common proper face.

The secondary fan of P: A fan whose faces correspond to the regular
subdivisions of P. Gelfand-Kapranov-Zelevinski, 1990
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Example 1: The cyclic polytope

The cyclic polytope: the convex hull of any n distinct points on

the moment curve {x(t) = (t , t2, . . . , td ) : t ∈ R} ⊂ Rd .

The combinatorial type of C(n,d) is independent of the choice of the
points on the moment curve. Edelman-Reiner ’96, Rambau ’97

C(n,d) = conv{x(t1), . . . , x(tn)} for t1 < · · · < tn

A triangulation of a polytope P is a finite union of simplices s.t. every
two simplices are either disjoint or intersect by a common proper face.

Secondary fan of P: It is a polyhedral fan whose faces correspond to
the regular subdivisions of P. Gelfand-Kapranov-Zelevinskii, ’90

Triangulations of P ⇐⇒ Maximal dimensional cones of the secondary fan FP
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Example 2: The positive Grassmannian

Grassmannian Gr(k ,n): The set of k -dim subspaces in Cn (or Rn).

Each element of Gr(k ,n) is represented by a full-rank k × n matrix X .

Gr(k ,n) is Mat(k ,n)/ ∼ (up to GLk -action.)

X =

[
1 1 2
−1 0 1

]
∈ Gr(2,3) with P12 = 1,P13 = 3,P23 = 1

Plücker coordinate PI for I ∈
(
[n]
k

)
: The minor of X on the columns I.

Positive Grassmannian Gr+(k ,n): the set of elements X of real
Grassmannian Gr(k ,n) where PI(X ) ≥ 0 for all I ∈

(
[n]
k

)
.

Based on seminal work on positivity by Lusztig 1994 for (G/P)≥0, as
well as Fomin and Zelevinsky 1999, Postnikov 2006, and Rietsch 2007.

Gr+(k ,n) plays the role of the simplex in amplituhedron theory.

Question
How to decompose Gr+(k ,n) into some topological cells?
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Positroid decomposition of Gr+(k ,n)

Matroid stratification of Gr(k ,n) introduced by
Gelfand-Goresky-MacPherson-Serganova in 1987

Its restriction to Gr+(k ,n) studied by Postnikov 2006

Given a collection M ⊂
(
[n]
k

)
the positroid cell of M is:

SM = {X ∈ Gr+(k ,n) : PI(X ) > 0 if and only if I ∈ M}.

Theorem (Postnikov 2006, Postnikov-Speyer-Williams 2009)
Every non-empty SM is a topological cell homeomorphic to an open ball. The
positroid cells glue together to form a CW complex

Gr+(k ,n) =
⊔
M

SM .
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The Amplituhedron An,k ,m

Introduced by Arkani-Hamed and Trnka in 2013

An,k,m is the image of the positive Grassmannian under a linear map.

Let n, k ,m be integers with k + m ≤ n and m even.

Let Z be an n × (k + m) with positive maximal minors.

π : Gr+(k ,n)→ Gr(k , k + m) with C 7→ Y = C.Z

The image of π is called the amplituhedron

An,k,m := π(Gr+(k ,n)) ⊂ Gr(k , k + m)

The definition of the amplituhedron depends on the choice of Z . Its
combinatorial/geometric properties are independent of the choice of Z
(similar to cyclic polytopes).
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The properties of An,k ,m

The amplituhedron

An,k,m := π(Gr+(k ,n)) ⊂ Gr(k , k + m)

is a semialgebraic subset of Gr(k , k + m)

It is of full-dimension km.

An,k,m is the image of Gr+(k ,n) which decomposes into positroid cells.

Gr+(k ,n) =
⊔
M

SM .

Idea: To use the images of positroid cells to triangulate An,k,m.

π(Gr+(k ,n)) is of full-dimension, but π(SM) might have lower dimension.

Question
Find collections C = {SM} of positroid cells whose images triangulate An,k,m.
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Triangulations of An,k ,m

Triangulation of An,k,m: A collection of positroid cells C = {SM} s.t.

(1) π(SM) are of full-dimensional km, they are pairwise disjoint, and
cover a dense subset of the amplituhedron.

(2) The map π is injective on each SM in C.
How do the boundary of these cells overlap?

Good triangulations:

(3) if the intersection π+(SM) ∩ π+(SM′) of the images of two distinct
cells has codimension one, then π+(SM) ∩ π+(SM′) equals
π+(SM′′), where SM′′ lies in the closure of both SM and SM′ .

Arkani-Hamed-Trnka ’13,..., Lukowski-Parisi-Williams ’20

Goal: To find good triangulations of An,k,m.
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Examples

k = 1: a cyclic polytope with n vertices in Pm. Arkani-Hamed, Trnka ’13.
Its triangulations are governed by the secondary polytope.

n = m + k : positive Grassmannian Gr+(k ,n) is a simplex; it is
decomposed into positroid cells. Postnikov ’06
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Examples

The main case of interest is m = 4; The BCFW recurrence for computing
scattering amplitudes is reformulated as giving a triangulation of An,k,4.

The cases m = 1,2 are studied as toy models for m = 4.

m = 1: homeomorphic to the bounded complex of the cyclic
hyperplane arrangement. Karp-Williams ’19
m = 2: related to hypersimplex and tropical Grassmannain.
Lukowski-Parisi-Williams ’20

Inspired by parity conjugation in quantum field theory.

For ` = n −m − k there is a bijection between triangulations of An,`,m and
triangulations of An,k,m. Galashin-Lam ’18

Theorem (M-Monin-Parisi ’20)
There is a well-structured notion of secondary amplituhedra for ` = n−m− 1.
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Positive geometry

Introduced by Arkani-Hamed-Trnka ’14, Lam ’14, Arkani-Bai-Lam ’17

A positive geometry is recursively defined as a pair (X ,X≥0) s.t. every
irreducible component of ∂X≥0 is a positive geometry.

A d-dim positive geometry is a pair (X ,X≥0), where

X is a d-dim normal, irreducible, complex projective variety
X≥0 ⊂ X (R) is a semialgebraic subset
X>0 = int(X≥0) is a d-dim oriented real manifold

with a unique rational differential top-form Ω(X≥0) on X s.t.

its poles are all simple and are exactly along the boundary of X≥0
its singularities are recursive, i.e. at every boundary component B

ResBΩ(X≥0) = Ω(B≥0).

Ω(X≥0) is called the canonical form.

Application: Ω(X≥0) is a physical observable.

Polytopes, positive Grassmannian, amplituhedron, associahedron

Fatemeh Mohammadi (Ghent) The Amplituhedron and Positive Geometries January 22, 2021 15 / 19



Properties of positive geometry

A finite set of positive geometries (S,S≥0) subdivides (X ,X≥0) if⋃
S≥0 = X≥0 and S>0 ⊂ X>0

The interiors S>0 are pairwise disjoint
The orientations of S>0 and X>0 are compatible

Property 1. Given a subdivision C = {(S,S≥0)} of (X ,X≥0) we have:

Ω(X≥0) =
∑

Ω(S≥0)

Property 2. Given a diffeomorphism π : (X ,X≥0)→ (Y ,Y≥0), the
canonical form Ω(Y≥0) is the pushforward of Ω(X≥0) by π.

Given a subdivision C = {SM} of An,k,m we have

Ω(SM) = Ω(π(SM)) and Ω(An,k,m) =
∑

Ω(SM)

Different subdivisions of An,k,m lead to different ways to compute Ω(An,k,m).
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Outlook: Geometry of subdivisions of An,k ,m

Question
Is there a notion of secondary amplituhedron encoding its subdivisions?

Motivated by fiber polytopes’ construction of Billera-Sturmfels ’92

We extended the projection

π+ : Gr+(k ,n)→ An,k,m

to a rational map
π : Gr(k ,n) 99K Gr(k , k + m).

and explicitly parametrize the fibers (π−1(Y ), π−1
+ (Y )) for Y ∈ An,k,m.

The fiber volume form: a top-form ωn,k,m(Y ) on the fiber.

Ω(An,k,m) is the sum of certain residues of the forms ωn,k,m(Y ).

When ωn,k,m(Y ) has only poles along some hyperplanes, we can use the
classical Jeffrey-Kirwan residue to compute Ω(An,k,m).
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Polytopes and their conjugates

Let k = 1, ` = n −m − 1 and A = An,1,m or An,`,m.

The fiber volume forms ωn,k,m(Y ) have only poles along some
hyperplane arrangement (the denominator is a product of linear forms).

Let FA(Y ) be the chamber fan on the normal rays of these hyperplanes.

The structure of the fan FA(Y ) is independent of Y and its cones
correspond to positroidal subdivisions of the amplituhedron.

Theorem (M-Monin-Parisi ’20)
There is a well-structured notion of secondary amplituhedra for ` = n−m− 1.

Question
Is there a notion of secondary amplituhedron in general?
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Reference

Triangulations and Canonical Forms of Amplituhedra: a fiber-based
approach beyond polytopes

Mohammadi-Monin-Parisi (arXiv preprint arXiv:2010.07254)

Thank you for your attention!
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