p(x)-Calderón's problem in 1D

Tommi Brander, David Winterrose tommi.brander@ntnu.no, dawin@dtu.dk

■ NTNU

Faculty of Information Technology and Electrical Engineering

Department of Mathematical Sciences

p(x)-Calderón's problem

$$\operatorname{div}\left(\gamma(x)\left|\nabla u\right|^{p(x)-2}\nabla u\right) = 0$$

Exponent $p(\cdot)$ is known and we wish to recover the unknown γ from DN map,

$$\Lambda_{\gamma}(m) = \int_{I} \gamma^{-1/(p(x)-1)} K_m^{p(x)/(p(x)-1)} dx,$$

where $K_m \in \mathbb{R}_+$ depends on γ :

$$m = \int_{I} \gamma^{-1/(p(x)-1)} K_m^{1/(p(x)-1)} dx.$$

Main theorem

- Bounded open interval I. $L^2(I, \sigma(p))$ is the L^2 space on I with the coarsest σ -algebra $\sigma(p)$ that makes p measurable.
- $P \colon L^2(I) \to L^2(I, \sigma(p))$ is the orthogonal projection.

Theorem 1. The nonlinear projection

$$\widetilde{P}(\gamma)(x) = \left(P\left(\gamma^{-1/(p-1)}\right)(x)\right)^{-(p(x)-1)}$$

can be constructively recoved from the DN map.

Examples

- If p is **injective**, then P is the identity and γ can be fully recovered.
- If γ is $\sigma(p)$ -measurable, then $\widetilde{P}(\gamma) = \gamma$.
- The projection of f to $L^2(I, \sigma(p))$ is the conditional expectation $\mathbb{E}(f|\sigma(p))$.
- If p is constant on a set, than only an average of γ to a power can be recovered there.

References

- [1] T. Brander, D. Winterrose: Variable exponent Calderón's problem in one dimension, to appear in Annales Academiæ Scientiarum Fennicæ. https://arxiv.org/abs/1808.04168
- [2] T. Brander, J. Ilmavirta, T. Tyni: Optimal recovery of a radiating source with multiple frequencies along one line, preprint https://arxiv.org/abs/1905.08028.

Reconstruction, injective p

The reconstructions are for a slightly simpler problem with Joonas Ilmavirta and Teemu Tyni [2].

Unknown γ_0 (dashed red line) and the numerical solution γ (solid blue line) with 0.5% noise level. Tikhonov-solution (left), TV-solution (right).

Reconstruction, non-injective p

Unknown γ_0 (dashed red line), γ_0 averaged over regions where p is constant (black dot-dash line) and the numerical solution γ (solid blue line) with 0.5% noise level. Tikhonov-solution (left), TV-solution (right).

Steps in the proof

1.

$$\int_{I} \gamma^{-1/(p(x)-1)} \mathrm{d}x$$

can be recovered as the unique fixed point of the DN map. This is the constant p result.

2. The derivatives of the DN map give for all n

$$\int_{I} \gamma^{-1/(p(x)-1)} \left(\frac{1}{p(x)-1} \right)^{n} \mathrm{d}x.$$

- 3. The closure of span $\left\{ \left(\frac{1}{p(x)-1} \right)^n ; n \in \mathbb{N} \right\}$ in L^2 is $L^2(I, \sigma(p))$.
- 4. $\gamma^{-1/(p(x)-1)}$ is coupled with $L^2(I, \sigma(p))$. This gives information in the dual, $L^2(I, \sigma(p))$.