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Introduction
We consider the nonlocal Hamilton-Jacobi-Bellman equation of the
following form:

sup
α∈A

{
fα(x) + cα(x)u(x)− Iα[u](x)

}
= 0 in RN , (1)

where A, set of all admissible controls, is a compact metric space.
The integral operator Iα is defined as

Iα[φ](x) :=

∫
RN\{0}

(
φ(x + ηα(z))− φ(t, x)

− ηα(z) · ∇x φ(x)
)
να(dz).

For each α ∈ A, να (singular Lévy measure) is a non-negative Radon
measure on RN \ 0 satisfying∫

|z|<1
|z|2να(dz) +

∫
|z|>1

να( dz) <∞.

Assumptions
We consider two different sets of assumptions for strongly and weakly
degenerate case.

On strongly degenerate equations:
(A.1) For α ∈ A the Lévy measures να are symmetric. Furthermore,

there is some σ ∈ (0, 2), a constant C > 0, and density ν̃α(z) of
να(dz) for |z| < 1 satisfying

0 ≤ ν̃α(z) ≤ C

|z|N+σ
for |z| < 1.

(A.2) cα(x) ≥ λ > 0, and cα(x), fα(x), and ηα(z) are continuous in α, x
and z. In addition, there exists a constant K > 0 such that for every
α,

‖fα‖1 + ‖cα‖1 + ‖ηα‖0 ≤ K.

(A.3) For each α ∈ A, the jump term ηα satisfies

ηα(−z) = −ηα(z) and |ηα(z)| ≤ K1|z| for |z| < 1,

for some constant K1 > 0.

On weakly degenerate equations:
In addition to the above assumptions on the data, we consider the fol-
lowing sets of assumptions for σ > 1 in this case:

(B.1) Weak-degeneracy: There exists α0 ∈ A and cα0
1 > δ for some

δ > 0 such that the density from assumptions (A.1) satisfies

ν̃α0(z) ≥
cα0

1

|z|N+σ
for |z| < 1.

(B.2) There exists β > σ − 1 and a constant K > 0 such that for every α
we have fα ∈ C1,β(RN ) and ‖fα‖1,β ≤ K.

(B.3) There exists a constant K2 > 0 such that for any |z| < 1 and for
each α ∈ A we have

|ηα(z)− ηα(0)− z| ≤ K|z|2.

As the equation (1) is fully nonlinear, the solution for this type of
equations are interpreted through ‘viscosity solution’sense.

Theorem(Regularity of solutions)
(Strongly Degenerate) Assume (A.1)-(A.3) for the equation (1) and
denote λ0 = sup

α∈A
(‖u‖0‖cα‖1+‖fα‖1). If λ > λ0 then the viscosity

solution u of (1) is Lipschitz continuous.

(Weakly Degenerate)Assume (A.1)-(A.3) and (B.2)-(B.3) hold and
let u be the unique viscosity solution of (1), then (−∆)

σ
2 [u] ∈

L∞(RN ).

Remark 1. The improved regularity structure in weakly degenerate
case is still not sufficient to define the equation classically.

Improved Monotone Difference Quadrature
Schemes
we make the approximation in two steps.

Approximations of singular part near origin:
For sufficiently smooth function φ and δ > 0:

Iα[φ](x) =

∫
|z|<δ

(
φ(x + ηα(z))− φ(t, x)− ηα(z) · ∇φ(x)

)
να(dz)

+

∫
|z|>δ

(
φ(x + ηα(z))− φ(t, x)

)
να(dz)

:= Iαδ [φ](x) + Iα,δ[φ](x).

Under the assumptions (A.1)-(A.3), we get by Taylor’s expansion

Iαδ [φ](x) = tr[aαδD
2φ] +O

(
δ4−σ),

where, aαδ = 1
2

∫
|z|<δ η

α(z)ηα(z)T να(dz). The expression of aαδ guar-
anties that it would be a N ×N constant positive semi-definite matrix.
We approximate the equation (1) by replacing Iαδ [φ] with tr[aαδD

2φ]
and write

sup
α∈A

{
fα(x) + cα(x)u(x)−tr[aαδD

2u](x)− Iα,δ[u](x)
}

= 0. (2)

Monotone discretization of approximate equation (2):
Define ih(φ)(x) =

∑
j∈ZN φ(xj)ωj(x) where ih is linear or multilin-

ear interpolant and the weight function ωj ≥ 0 with
∑

j∈ZN ωj = 1.
We approximate the term tr[aαδD

2φ] by semi-Lagrangian (SL) dis-
crete approximations. Denote, (

√
aαδ )i as columns of the square root

of aαδ = O(δ2−σ).

tr[aαδD
2φ] =

N∑
i=1

ih
[
φ(x + k(

√
aαδ )i)

]
+ ih

[
φ(x− k(

√
aαδ )i)

]
− 2φ(x)

k2

+O
(h2

k2

)
+O

(
δ2(2−σ)k2).

We denote the local approximation by Lα,δk,h[φ]. To approximate the

non-local term Iα,δ[φ] we use the monotone interpolants ih to approx-
imate the integrands. We write the monotone approximation of Iα,δ
as

Iα,δ[φ] =

∫
|z|>δ

ih[φ(x + z)− φ(x)]να(dz) +O

(
h2

δσ

)

=
∑
j∈ZN

(
φ(x + xj)− φ(x)

)
κ
α,δ
h,j +O

(
h2

δσ

)
;

where, κ
α,δ
h,j =

∫
|z|>δ ωj(η

α(z);h)να(dz) . Denote Iα,δh [φ] as the
nonlocal approximation term. The monotone numerical scheme is
written as follows:

sup
α∈A

{
fα(x) + cα(x)uh(x)−Lα,δk,h[uh](x)− Iα,δh [uh](x)

}
= 0.

(3)

Theorem(Rate of convergence)
Fix δ = h

4
4+σ , let u be the viscosity solution of (1) and uh the solu-

tion of the approximate equation (3).
(Strongly degenerate Case) Assume (A.1)-(A.3) hold. Then for any
0 < σ < 2 we have

|u− uh| ≤ C h
4−σ
4+σ .

(Weakly degenerate case) In addition, assume (B.2)-(B.3) hold.
Then

|u− uh| ≤

{
C h

4−σ
4+σ for 0 < σ ≤ 1

C h
σ(4−σ)
4+σ for 1 < σ < 2.

Discussion:
X In strongly degenerate case, for σ > 1 we proved sharper rates than

the earlier existing results obtained for singular Lévy measures.
X The rate decreases as the order of the nonlocal term increases for
σ > 1 and for σ near 2 the rate asymptotically approaches to
O(h

1
3).

X For weakly degenerate case with better regularity structure on data
and solution, we observe that the rate of convergence is always more
than O(h

1
2), also the rate approaches to O(h

2
3) when σ → 2.

Approximation by power of discrete Lapla-
cian
We consider this special discretization method by considering ‘Frac-
tional Laplacian’ as the nonlocal term in equation (1). In particular,
the equation takes the form:

sup
α∈A

{
fα(x) + cα(x)u(x) + aα (−∆)

σ
2u(x)

}
= 0, (4)

The assumptions takes simpler form here due to this special structure.
We consider discrete Laplacian as

4h[φ](x) =
1

h2

N∑
i=1

φ(x + eih) + φ(x− eih)− 2φ(x).

Let et∆hψ be the solution of semi-discrete heat equation

∂tU(x, t) = ∆hU(x, t) for (x, t) ∈ RN × (0,∞)

U(x, 0) = ψ(x) for x ∈ RN .

Then the discretization of fractional Laplace is denoted by (−∆h)
σ
2

and defined as

(−∆h)
σ
2φ(x) :=

1

Γ(−σ2)

∫ ∞
0

(
et∆hφ(x)− φ(x)

) dt

t1+σ
2

=
∑

j∈ZN\{0}

(
φ(x + xj)− φ(x)

)
κh,j.

From the explicit representation of et∆hφwe have that κh,j ≥ 0, which
ensures monotonicity of (−∆h)

σ
2φ. Furthermore, the truncation error

for the power of discrete Laplacian is of O(h2). Details can be found
in [2, 1]. We now write the approximate equation as

sup
α∈A
{fα(x) + cα(x)uh(x) + aα(−∆h)

σ
2 [uh](x)} = 0. (5)

Remark 2. For monotone difference quadrature approximation, the
local truncation error is of orderO(δ4−σ+k2δ2(2−σ)+h2

k2
+h2δ−σ) ≈

O(h
4−σ
2 ) for σ > 1 by the optimal choice of k, δ. Hence for σ > 1,

the maximum order of accuracy for such discretization is 3
2. Whereas,

the novelty of choosing power of discrete Laplacian is that for any
σ ∈ (0, 2) the consistency error is O(h2).

Theorem(Rate of convergence)
Let u be the viscosity solution of equation (4) and uh the solution
of the approximate equation (5).
(Strongly degenerate Case) Assume (A.2) and (A.1) hold. Then for
any σ ∈ (0, 2) we have

|u− uh| ≤ Ch
1
2.

(Weakly degenerate Case) Assume (B.1) and (B.2) hold. Then

‖u− uh‖0 ≤

{
Ch

1
2 for 0 < σ ≤ 1

Ch
σ
2 for 1 < σ < 2.

Discussion:

X For σ near 2, higher order accuracy than monotone difference
quadrature scheme helps to get better rate of convergence in both
strongly and weakly degenerate case.

X For σ < 1, monotone difference quadrature scheme provides better
convergence rate than power of discrete Laplacian.

X For weakly degenerate case The result is optimal for each σ near
2 under the given assumption. The convergence rate approaches to
the rate obtained for 2nd order case (the rate is of O(h), c.f. [3])
when σ → 2.

Main Steps for weakly degenerate case

• The central idea of proving rate of convergence for both strongly
and weakly degenerate equation is to use Krylov’s regularizing ar-
gument (‘shaking the coefficient method’) [3].

• For weakly degenerate case, the major step is to show that

‖(−∆h)
σ
2uh‖0 ≤ K.

To see this we consider (5) with cα = λ and using structure of the
equation we can verify that v = (−∆h)

σ
2uh satisfies

λ v + sup
α∈A

{
(−∆h)

σ
2 [fα](x) + aα (−∆h)

σ
2
[
v
]}
≥ 0. (6)

By regularity assumption (B.2) on fα we get ‖(−∆h)
σ
2 [fα]‖0 ≤ F2.

Therefore, −F2/λ would be a subsolution of (6). Then applying
discrete comparison principle to (6) we get one sided bound

(−∆h)
σ
2 [uh](x) ≥ −F2

λ
.

For the upper bound, without loss of generality assume
(−∆h)

σ
2 [uh](x) > 0 for each x ∈ RN , then by weak degeneracy

condition (B.1)

δ (−∆h)
σ
2 [uh](x) ≤ λuh(x) + sup

α∈A

{
aα (−∆h)

σ
2 [uh](x) + fα(x)

}
+ K

(
‖uh‖0 + ‖fα‖0

)
≤ K1.

•We define, u(ε)
h = uh ∗ ρε where ρε is a mollifier. To prove the pre-

cise rate for weakly degenerate case it is crucial to prove improved
estimate on ‖u(ε)

h − uh‖0.
By considering fractional heat kernel as the specific mollifier and
using the consistency bound of (−∆h)

σ
2 we prove

‖u(ε)
h − uh‖0 ≤ K

(
εσ‖(−∆h)

σ
2 [uh]‖0 + ω(h)

)
. (7)

Whereas, in general the estimate is ‖u(ε)
h − uh‖0 ≤ Kε‖uh‖0,1.

•We regularize the equation (5) by taking ‘fractional heat kernel’ as
mollifier. By noting ‖fα− (fα)(ε)‖0 ≤ Kεσ and using consistency
error of (−∆h)

σ
2 we get

λu
(ε)
h + sup

α∈A

{
fα(x) + aα(−∆)

σ
2u

(ε)
h

}
≤εσ + Ch2

(
‖D4u

(ε)
h ‖0 + ‖u(ε)

h ‖0
)
.

By using comparison principle for (4) and using the estimate (7) we
have

uh − u ≤
C

λ

(
εσ + h2‖D4u

(ε)
h ‖0 + h2‖u(ε)

h ‖0
)
.

Other inequality follows by using similar arguments. Finally the re-
sult follows by using precise estimate of ‖D4u

(ε)
h ‖0 and by optimal

choice of ε.
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