Error Bounds of Monotone Schemes for Strongly and Weakly Degenerate Nonlocal HJB Equation

Indranil Chowdhury, Espen R. Jakobsen

Norwegian University of Science and Technology

Theorem(Rate of convergence)

Let u be the viscosity solution of equation (4) and u_h the solution of the approximate equation (5). (*Strongly degenerate Case*) Assume (A.2) and (A.1) hold. Then for any $\sigma \in (0, 2)$ we have

$$|u - u_h| \le Ch^{\frac{1}{2}}.$$

(Weakly degenerate Case) Assume (B.1) and (B.2) hold. Then

$$\|u-u_h\|_0 \leq \begin{cases} Ch^{\frac{1}{2}} & \text{for} \quad 0 < \sigma \leq 1\\ Ch^{\frac{\sigma}{2}} & \text{for} \quad 1 < \sigma < 2. \end{cases}$$

Discussion:

✓ For σ near 2, higher order accuracy than monotone difference quadrature scheme helps to get better rate of convergence in both strongly and weakly degenerate case.

Introduction

We consider the nonlocal Hamilton-Jacobi-Bellman equation of the following form:

$$\sup_{\alpha \in \mathcal{A}} \left\{ f^{\alpha}(x) + c^{\alpha}(x)u(x) - \mathcal{I}^{\alpha}[u](x) \right\} = 0 \quad \text{in } \mathbb{R}^{N}, \ (1)$$

where A, set of all admissible controls, is a compact metric space. The integral operator \mathcal{I}^{α} is defined as

$$egin{aligned} \mathcal{I}^{oldsymbol{lpha}}[oldsymbol{\phi}](oldsymbol{x}) &:= \int_{\mathbb{R}^N \setminus \{0\}} \left(\phi(x + \eta^lpha(z)) - \phi(t,x) \ &- \eta^lpha(z) \cdot
abla_x \, \phi(x)
ight)
u_lpha(dz). \end{aligned}$$

For each $\alpha \in \mathcal{A}$, ν_{α} (singular Lévy measure) is a non-negative Radon measure on $\mathbb{R}^N \setminus 0$ satisfying

$$\int_{|z|<1} |z|^2 \nu_\alpha(dz) + \int_{|z|>1} \nu_\alpha(dz) < \infty.$$

Monotone discretization of approximate equation (2):

Define $i_h(\phi)(x) = \sum_{\mathbf{j} \in \mathbb{Z}^N} \phi(x_j) \omega_{\mathbf{j}}(x)$ where i_h is linear or multilinear interpolant and the weight function $\omega_{\mathbf{j}} \ge 0$ with $\sum_{\mathbf{j} \in \mathbb{Z}^N} \omega_{\mathbf{j}} = 1$. We approximate the term $tr[a_{\delta}^{\alpha}D^2\phi]$ by semi-Lagrangian (SL) discrete approximations. Denote, $(\sqrt{a_{\delta}^{\alpha}})_i$ as columns of the square root of $a_{\delta}^{\alpha} = \mathcal{O}(\delta^{2-\sigma})$.

$$r[a_{\delta}^{\alpha}D^{2}\phi] = \sum_{i=1}^{N} \frac{i_{h} \left[\phi(x+k(\sqrt{a_{\delta}^{\alpha}})_{i})\right] + i_{h} \left[\phi(x-k(\sqrt{a_{\delta}^{\alpha}})_{i})\right] - 2\phi(x)}{k^{2}} + \mathcal{O}\left(\frac{h^{2}}{k^{2}}\right) + \mathcal{O}\left(\delta^{2(2-\sigma)}k^{2}\right).$$

We denote the local approximation by $\mathcal{L}_{k,h}^{\alpha,\delta}[\phi]$. To approximate the non-local term $\mathcal{I}^{\alpha,\delta}[\phi]$ we use the monotone interpolants i_h to approximate the integrands. We write the monotone approximation of $\mathcal{I}^{\alpha,\delta}$ as

$$\mathcal{I}^{\alpha,\delta}[\phi] = \int_{\mathbb{R}^{d}} i_{h}[\phi(x+z) - \phi(x)]\nu_{\alpha}(dz) + \mathcal{O}\left(\frac{h^{2}}{\delta^{\sigma}}\right)$$

Assumptions

We consider two different sets of assumptions for strongly and weakly degenerate case.

On strongly degenerate equations:

(A.1) For $\alpha \in \mathcal{A}$ the Lévy measures ν_{α} are symmetric. Furthermore, there is some $\sigma \in (0, 2)$, a constant C > 0, and density $\tilde{\nu}_{\alpha}(z)$ of $\nu_{\alpha}(dz)$ for |z| < 1 satisfying

 $0 \leq \tilde{\nu}_{\alpha}(z) \leq \frac{C}{|z|^{N+\sigma}} \quad \text{for} \quad |z| < 1.$

(A.2) $c^{\alpha}(x) \ge \lambda > 0$, and $c^{\alpha}(x)$, $f^{\alpha}(x)$, and $\eta^{\alpha}(z)$ are continuous in α, x and z. In addition, there exists a constant K > 0 such that for every α , $\|f^{\alpha}\|_{1} + \|c^{\alpha}\|_{1} + \|\eta^{\alpha}\|_{0} \le K.$

(A.3) For each $\alpha \in \mathcal{A}$, the jump term η^{α} satisfies

$$\eta^{\alpha}(-z) = -\eta^{\alpha}(z)$$
 and $|\eta^{\alpha}(z)| \le K_1|z|$ for $|z| < 1$

for some constant $K_1 > 0$.

On weakly degenerate equations:

In addition to the above assumptions on the data, we consider the following sets of assumptions for $\sigma > 1$ in this case:

(B.1) Weak-degeneracy: There exists $\alpha_0 \in \mathcal{A}$ and $c_1^{\alpha_0} > \delta$ for some $\delta > 0$ such that the density from assumptions (A.1) satisfies

$$J|z| > \delta \qquad (0)$$
$$= \sum_{\mathbf{j} \in \mathbb{Z}^{N}} \left(\phi(x + x_{\mathbf{j}}) - \phi(x) \right) \kappa_{h,\mathbf{j}}^{\alpha,\delta} + \mathcal{O}\left(\frac{h^{2}}{\delta^{\sigma}}\right);$$

where, $\kappa_{h,\mathbf{j}}^{\alpha,\delta} = \int_{|z|>\delta} \omega_{\mathbf{j}}(\eta^{\alpha}(z);h)\nu_{\alpha}(dz)$. Denote $\mathcal{I}_{h}^{\alpha,\delta}[\phi]$ as the nonlocal approximation term. The monotone numerical scheme is written as follows:

 $\sup_{\alpha \in \mathcal{A}} \left\{ f^{\alpha}(x) + c^{\alpha}(x)u_h(x) - \mathcal{L}_{k,h}^{\alpha,\delta}[u_h](x) - \mathcal{I}_h^{\alpha,\delta}[u_h](x) \right\} = 0.$ (3)

Theorem(Rate of convergence)

Fix $\delta = h^{\frac{4}{4+\sigma}}$, let u be the viscosity solution of (1) and u_h the solution of the approximate equation (3). (Strongly degenerate Case) Assume (A.1)-(A.3) hold. Then for any $0 < \sigma < 2$ we have

$$|u - u_h| \le C h^{\frac{4-\sigma}{4+\sigma}}.$$

(Weakly degenerate case) In addition, assume (B.2)-(B.3) hold. Then

$$|u - u_h| \le \begin{cases} C h^{\frac{4-\sigma}{4+\sigma}} & \text{for} \quad 0 < \sigma \le 1 \\ C h^{\frac{\sigma(4-\sigma)}{4+\sigma}} & \text{for} \quad 1 < \sigma < 2. \end{cases}$$

Discussion:

✓ In strongly degenerate case, for $\sigma > 1$ we proved sharper rates than the earlier existing results obtained for singular Lévy measures.

- ✓ For $\sigma < 1$, monotone difference quadrature scheme provides better convergence rate than power of discrete Laplacian.
- ✓ For weakly degenerate case The result is optimal for each σ near 2 under the given assumption. The convergence rate approaches to the rate obtained for 2nd order case (the rate is of O(h), c.f. [3]) when $\sigma \rightarrow 2$.

Main Steps for weakly degenerate case

• The central idea of proving rate of convergence for both strongly and weakly degenerate equation is to use Krylov's regularizing argument ('shaking the coefficient method') [3].

• For weakly degenerate case, the major step is to show that

$$\|(-\Delta_h)^{\frac{\sigma}{2}}u_h\|_0 \le K.$$

To see this we consider (5) with $c^{\alpha} = \lambda$ and using structure of the equation we can verify that $v = (-\Delta_h)^{\frac{\sigma}{2}} u_h$ satisfies

$$\lambda v + \sup_{\alpha \in \mathcal{A}} \left\{ (-\Delta_h)^{\frac{\sigma}{2}} [f^{\alpha}](x) + a^{\alpha} (-\Delta_h)^{\frac{\sigma}{2}} [v] \right\} \ge 0.$$
 (6)

By regularity assumption (**B**.2) on f^{α} we get $\|(-\Delta_h)^{\frac{\sigma}{2}}[f^{\alpha}]\|_0 \leq F_2$. Therefore, $-F_2/\lambda$ would be a subsolution of (6). Then applying discrete comparison principle to (6) we get one sided bound

$$(-\Delta_h)^{\frac{\sigma}{2}}[u_h](x) \geq -\frac{F_2}{\lambda}.$$

$$\tilde{\nu}_{\alpha_0}(z) \ge \frac{c_1}{|z|^{N+\sigma}} \quad \text{for} \quad |z| < 1.$$

- (B.2) There exists $\beta > \sigma 1$ and a constant K > 0 such that for every α we have $f^{\alpha} \in C^{1,\beta}(\mathbb{R}^N)$ and $\|f^{\alpha}\|_{1,\beta} \leq K$.
- (B.3) There exists a constant $K_2 > 0$ such that for any |z| < 1 and for each $\alpha \in A$ we have

 $|\eta^{\alpha}(z) - \eta^{\alpha}(0) - z| \le K|z|^2.$

As the equation (1) is fully nonlinear, the solution for this type of equations are interpreted through 'viscosity solution' sense.

Theorem(Regularity of solutions)

(*Strongly Degenerate*) Assume (A.1)-(A.3) for the equation (1) and denote $\lambda_0 = \sup_{\alpha \in \mathcal{A}} (\|u\|_0 \|c^{\alpha}\|_1 + \|f^{\alpha}\|_1)$. If $\lambda > \lambda_0$ then the viscosity solution u of (1) is Lipschitz continuous.

(Weakly Degenerate)Assume (A.1)-(A.3) and (B.2)-(B.3) hold and let u be the unique viscosity solution of (1), then $(-\Delta)^{\frac{\sigma}{2}}[u] \in L^{\infty}(\mathbb{R}^N)$.

Remark 1. The improved regularity structure in weakly degenerate case is still not sufficient to define the equation classically.

Improved Monotone Difference Quadrature Schemes

we make the approximation in two steps.

- ✓ The rate decreases as the order of the nonlocal term increases for $\sigma > 1$ and for σ near 2 the rate asymptotically approaches to $\mathcal{O}(h^{\frac{1}{3}})$.
- ✓ For weakly degenerate case with better regularity structure on data and solution, we observe that the rate of convergence is always more than $\mathcal{O}(h^{\frac{1}{2}})$, also the rate approaches to $\mathcal{O}(h^{\frac{2}{3}})$ when $\sigma \to 2$.

Approximation by power of discrete Laplacian

We consider this special discretization method by considering 'Fractional Laplacian' as the nonlocal term in equation (1). In particular, the equation takes the form:

$$\sup_{\alpha \in \mathcal{A}} \left\{ f^{\alpha}(x) + c^{\alpha}(x)u(x) + a^{\alpha}\left(-\Delta\right)^{\frac{\sigma}{2}}u(x) \right\} = 0, \qquad (4)$$

The assumptions takes simpler form here due to this special structure. We consider discrete Laplacian as

$$\Delta_h[\phi](x) = \frac{1}{h^2} \sum_{i=1}^N \phi(x + e_i h) + \phi(x - e_i h) - 2\phi(x).$$

Let $e^{t\Delta_h}\psi$ be the solution of semi-discrete heat equation $\partial_t U(x,t) = \Delta_h U(x,t) \text{ for } (x,t) \in \mathbb{R}^N \times (0,\infty)$ $U(x,0) = \psi(x) \text{ for } x \in \mathbb{R}^N.$

Then the discretization of fractional Laplace is denoted by $(-\Delta_h)^{\frac{\sigma}{2}}$

For the upper bound, without loss of generality assume $(-\Delta_h)^{\frac{\sigma}{2}}[u_h](x) > 0$ for each $x \in \mathbb{R}^N$, then by weak degeneracy condition (**B**.1)

$$\delta\left(-\Delta_{h}\right)^{\frac{\sigma}{2}}[u_{h}](x) \leq \lambda u_{h}(x) + \sup_{\alpha \in \mathcal{A}} \left\{ a^{\alpha} \left(-\Delta_{h}\right)^{\frac{\sigma}{2}}[u_{h}](x) + f^{\alpha}(x) \right\} + K\left(\|u_{h}\|_{0} + \|f^{\alpha}\|_{0} \right) \leq K_{1}.$$

• We define, $u_h^{(\epsilon)} = u_h * \rho_{\epsilon}$ where ρ_{ϵ} is a mollifier. To prove the precise rate for weakly degenerate case it is crucial to prove improved estimate on $||u_h^{(\epsilon)} - u_h||_0$.

By considering fractional heat kernel as the specific mollifier and using the consistency bound of $(-\Delta_h)^{\frac{\sigma}{2}}$ we prove

$$\|u_h^{(\epsilon)} - u_h\|_0 \le K \Big(\epsilon^{\sigma} \|(-\Delta_h)^{\frac{\sigma}{2}} [u_h]\|_0 + \omega(h)\Big).$$

$$\tag{7}$$

Whereas, in general the estimate is $||u_h^{(\epsilon)} - u_h||_0 \le K\epsilon ||u_h||_{0,1}$.

• We regularize the equation (5) by taking 'fractional heat kernel' as mollifier. By noting $||f^{\alpha} - (f^{\alpha})^{(\epsilon)}||_0 \leq K\epsilon^{\sigma}$ and using consistency error of $(-\Delta_h)^{\frac{\sigma}{2}}$ we get

$$\begin{split} \lambda \, u_h^{(\epsilon)} + \sup_{\alpha \in \mathcal{A}} \left\{ f^{\alpha}(x) + a^{\alpha} (-\Delta)^{\frac{\sigma}{2}} u_h^{(\epsilon)} \right\} \\ \leq & \epsilon^{\sigma} + Ch^2 \Big(\| D^4 u_h^{(\epsilon)} \|_0 + \| u_h^{(\epsilon)} \|_0 \Big). \end{split}$$

By using comparison principle for (4) and using the estimate (7) we have

Approximations of singular part near origin:

For sufficiently smooth function ϕ and $\delta > 0$:

$$\begin{split} \mathcal{I}^{\alpha}[\phi](x) &= \int_{|z|<\delta} \left(\phi(x+\eta^{\alpha}(z)) - \phi(t,x) - \eta^{\alpha}(z) \cdot \nabla \phi(x) \right) \nu_{\alpha}(dz) \\ &+ \int_{|z|>\delta} \left(\phi(x+\eta^{\alpha}(z)) - \phi(t,x) \right) \nu_{\alpha}(dz) \\ &:= \mathcal{I}^{\alpha}_{\delta}[\phi](x) + \mathcal{I}^{\alpha,\delta}[\phi](x). \end{split}$$

Under the assumptions (A.1)-(A.3), we get by Taylor's expansion

 $\mathcal{I}^{\alpha}_{\delta}[\phi](x) = tr[a^{\alpha}_{\delta}D^{2}\phi] + \mathcal{O}(\delta^{4-\sigma}),$

where, $a_{\delta}^{\alpha} = \frac{1}{2} \int_{|z| < \delta} \eta^{\alpha}(z) \eta^{\alpha}(z)^{T} \nu_{\alpha}(dz)$. The expression of a_{δ}^{α} guaranties that it would be a $N \times N$ constant *positive semi-definite matrix*. We approximate the equation (1) by replacing $\mathcal{I}_{\delta}^{\alpha}[\phi]$ with $tr[a_{\delta}^{\alpha}D^{2}\phi]$ and write

$$\sup_{\alpha \in \mathcal{A}} \left\{ f^{\alpha}(x) + c^{\alpha}(x)u(x) - tr[a^{\alpha}_{\delta}D^{2}u](x) - \mathcal{I}^{\alpha,\delta}[u](x) \right\} = 0.$$
(2)

and defined as $(-\Delta_{h})^{\frac{\sigma}{2}}\phi(x) := \frac{1}{\Gamma(-\frac{\sigma}{2})} \int_{0}^{\infty} \left(e^{t\Delta_{h}}\phi(x) - \phi(x)\right) \frac{dt}{t^{1+\frac{\sigma}{2}}}$ $= \sum \left(\phi(x+x_{j}) - \phi(x)\right) \kappa_{h,j}.$

 $\mathbf{j} \in \mathbb{Z}^N \setminus \{0\}$

From the explicit representation of $e^{t\Delta_h}\phi$ we have that $\kappa_{h,\mathbf{j}} \ge 0$, which ensures monotonicity of $(-\Delta_h)^{\frac{\sigma}{2}}\phi$. Furthermore, the *truncation error* for the power of discrete Laplacian is of $\mathcal{O}(h^2)$. Details can be found in [2, 1]. We now write the approximate equation as

 $\sup_{\alpha \in \mathcal{A}} \left\{ f^{\alpha}(x) + c^{\alpha}(x)u_h(x) + a^{\alpha}(-\Delta_h)^{\frac{\sigma}{2}}[u_h](x) \right\} = 0.$ (5)

Remark 2. For monotone difference quadrature approximation, the local truncation error is of order $\mathcal{O}(\delta^{4-\sigma}+k^2\delta^{2(2-\sigma)}+\frac{h^2}{k^2}+h^2\delta^{-\sigma}) \approx \mathcal{O}(h^{\frac{4-\sigma}{2}})$ for $\sigma > 1$ by the optimal choice of k, δ . Hence for $\sigma > 1$, the maximum order of accuracy for such discretization is $\frac{3}{2}$. Whereas, the novelty of choosing power of discrete Laplacian is that for any $\sigma \in (0,2)$ the consistency error is $\mathcal{O}(h^2)$.

$u_{h} - u \leq \frac{C}{\lambda} \Big(\epsilon^{\sigma} + h^{2} \| D^{4} u_{h}^{(\epsilon)} \|_{0} + h^{2} \| u_{h}^{(\epsilon)} \|_{0} \Big).$

Other inequality follows by using similar arguments. Finally the result follows by using precise estimate of $||D^4u_h^{(\epsilon)}||_0$ and by optimal choice of ϵ .

References

[1] Indranil Chowdhury and Espen R. Jakobsen. Error bounds of monotone schemes for strongly and weakly degenerate nonlocal HJB equation. *Preprint*, 2019.

[2] Félix del Teso, Jørgen Endal, and Espen R. Jakobsen. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. *SIAM J. Numer. Anal.*, 56(6):3611–3647, 2018.

[3] Hongjie Dong and N. V. Krylov. On the rate of convergence of finite-difference approximations for Bellman equations with constant coefficients. *Algebra i Analiz*, 17(2):108–132, 2005.