Periodic gravity waves on water of finite depth
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A non-dimensional formulation of the problem describing waves

For given flow rate @ and depth h we are looking for a triple (14, 1, 1) satisfying

Ve + Uy =0, (x,y) € D; (1)
Y(x,—h)=—-Q, xé€eR, (2)
b(x,n(x)) =0, xeR (3)
VY(x,n(x))* +2n(x) = p, xR (4)

The squared Froude number p = mc?/(g/) gives the relation between its phase
velocity ¢ and period 27 in the dimensional setting.

Problem (0)—(4) is equivalent to Babenko’s equation with some
r € (0,1), whose spectral form is

1
utow =w+ wlw + §J,(W2), (5)
where 11 > 0 is the same unknown as in (4) and w € W10, 7).

The self-adjoint operator J, = >, X\, P, is defined for every conformal radius
r € [0,1), where P, is the projector onto the subspace of [(0, ) spanned by
cos nt and A, = n(1+ r?")/(1 — r*"). The existence of small solutions of (5)
follows from the Crandall-Rabinowitz theorem.

Modified Babenko’s equation equivalent to equation (5)

Let us derive an equation, whose operators depend on the depth h instead of r
and which is equivalent to (5).
First, we consider the nonlinear functional

rn(w) = exp{—h — Pyw}. (6)
Changing r to this functional in each \,, we obtain

=

well defined provided Pyw = —h. Then we put

n=12 ..., (7)

©.9)

Thw = Z {)\g’)(w)} Pw, wec WY (0,7), Pyw > —h.
n=1

In the same way, we define on L%(0, 7) the nonlinear operator:

Lyw = Pyw + Z {,ugh)(w)} Pw, where plM(w)= n{ll_—k[[rﬁh((mx)]]:”} .

In terms of operators J, and L}, defined for every h > 0, we write down the
equation:

w(l — Po)w = Lyw — Ly(—wTpw) + %(1 — Py)(w?). (8)

Proposition.

Let (u, w), where ;1 > 0 and w € W2(0, ), be a solution of equation
(5) with some fixed parameter r € (0, 1). Define h = — log r— Pyw. Then
h > 0, w belongs to the domain of [, and the pair (1, w) satisfies (8).

On the contrary, let h > 0, and let © > 0 and w € W30, 7)
with Pow > —h solve (8). Then (u,w) is a solution of (5) with
r=exp{—h— Pow} € (0,1).

Tanaka’s phenomenon

It is related to a turning point at the largest value of 11 attained on the
bifurcation curve (; for equation (5). This is related to the ‘“Tanaka instability’
first found numerically and later investigated analytically.

0.1625 -

0.1600 A

0.1575 A

0.1550 -

0.1525 -

0.1500 A

0.1475 A

0.3245 0.3250 0.3255 0.3260 0.3265 0.3270 0.3275

(4
Figure : The solution branch C; for equation (5) with r = 4/5 in a vicinity of the turning

point. The upper bound ||w||o < /2.

An example of secondary bifurcation for equation (5)

0.12 - C3

0.10 -
0.08 -
0.06 A
0.04 -

0.02 -

0.00 A

0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26

i)
Figure : The branch (3 of solutions of equation (5) with r = 4/5, bifurcating from the zero

solution at 113(4/5) = 0.194868414381. The secondary solution branch Gs; bifurcates from C3
at ¢~ 0.25298. The upper bound ||w|| < 1/2.

The wave profile corresponding to the end point on the branch (3
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Figure : The wave profile of the extreme form corresponds to the end-point solution on the

branch (3; for equation (5) with r = 4/5. Its characteristics are as follows: ;= 0.24827 the
profile’s smooth crests (troughs) are at y = y. ~ 0.10406 (y = y; =~ —0.03310 respectively),
whereas the peaks are at y = j. =~ 0.12608. The middle crest forms an angle equalled 27 /3.



