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A non-dimensional formulation of the problem describing waves
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For given flow rate Q and depth h we are looking for a triple (µ, η, ψ) satisfying

ψxx + ψyy = 0, (x , y) ∈ D; (1)

ψ(x ,−h) = −Q, x ∈ R; (2)

ψ(x , η(x)) = 0, x ∈ R; (3)

|∇ψ(x , η(x))|2 + 2η(x) = µ, x ∈ R. (4)

The squared Froude number µ = πc2/(g`) gives the relation between its phase
velocity c and period 2` in the dimensional setting.

Problem (0)–(4) is equivalent to Babenko’s equation with some
r ∈ (0, 1), whose spectral form is

µJrw = w + wJrw +
1

2
Jr(w

2), (5)

where µ > 0 is the same unknown as in (4) and w ∈ W 1,2(0, π).

The self-adjoint operator Jr =
∑∞

n=1 λnPn is defined for every conformal radius
r ∈ [0, 1), where Pn is the projector onto the subspace of L2(0, π) spanned by
cos nt and λn = n(1 + r 2n)/(1− r 2n). The existence of small solutions of (5)
follows from the Crandall–Rabinowitz theorem.

Modified Babenko’s equation equivalent to equation (5)

Let us derive an equation, whose operators depend on the depth h instead of r
and which is equivalent to (5).
First, we consider the nonlinear functional

rh(w) = exp{−h − P0w}. (6)

Changing r to this functional in each λn, we obtain

λ(h)
n (w) = n

1 + [rh(w)]2n

1− [rh(w)]2n
, n = 1, 2, . . . , (7)

well defined provided P0w 6= −h. Then we put

Jhw =
∞∑

n=1

[
λ(h)
n (w)

]
Pnw , w ∈ W 1,2(0, π), P0w > −h.

In the same way, we define on L2(0, π) the nonlinear operator:

Lhw = P0w +
∞∑

n=1

[
µ(h)
n (w)

]
Pnw , where µ(h)

n (w) =
1− [rh(w)]2n

n{1 + [rh(w)]2n} .

In terms of operators Jh and Lh defined for every h > 0, we write down the
equation:

µ(1− P0)w = Lhw − Lh(−wJhw) +
1

2
(1− P0)(w 2). (8)

Proposition.
Let (µ,w), where µ > 0 and w ∈ W 1,2(0, π), be a solution of equation
(5) with some fixed parameter r ∈ (0, 1). Define h = − log r−P0w . Then
h > 0, w belongs to the domain of Jh and the pair (µ,w) satisfies (8).

On the contrary, let h > 0, and let µ > 0 and w ∈ W 1,2(0, π)
with P0w > −h solve (8). Then (µ,w) is a solution of (5) with
r = exp{−h − P0w} ∈ (0, 1).

Tanaka’s phenomenon

It is related to a turning point at the largest value of µ attained on the
bifurcation curve C1 for equation (5). This is related to the ‘Tanaka instability’
first found numerically and later investigated analytically.

0.3245 0.3250 0.3255 0.3260 0.3265 0.3270 0.3275

0.1475

0.1500

0.1525

0.1550

0.1575

0.1600

0.1625

µ

C1

‖w‖∞

Figure : The solution branch C1 for equation (5) with r = 4/5 in a vicinity of the turning
point. The upper bound ‖w‖∞ 6 µ/2.

An example of secondary bifurcation for equation (5)
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Figure : The branch C3 of solutions of equation (5) with r = 4/5, bifurcating from the zero
solution at µ3(4/5) = 0.194868414381. The secondary solution branch C31 bifurcates from C3

at µ ≈ 0.25298. The upper bound ‖w‖∞ 6 µ/2.

The wave profile corresponding to the end point on the branch C31
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Figure : The wave profile of the extreme form corresponds to the end-point solution on the
branch C31 for equation (5) with r = 4/5. Its characteristics are as follows: µ ≈ 0.24827 the
profile’s smooth crests (troughs) are at y = ỹc ≈ 0.10406 (y = yt ≈ −0.03310 respectively),
whereas the peaks are at y = ŷc ≈ 0.12608. The middle crest forms an angle equalled 2π/3.


