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Objective
? Study class of evolution equations

ut + (Lu+ n(u))x = 0.

? Show existence of small-amplitude

traveling waves

u = u(x− νt)

with speed ν satisfying

(?) − νu+ Lu+ n(u) = 0

in fractional Sobolev spaces Hs.

Dispersion: L
? Smoothing Fourier multiplier:

L̂u = m û, m(ξ) . 〈ξ〉σ, σ < 0.

? Even symbol m with expansion

m(ξ) = m(0)− cλξ2λ +O
(
ξ2λ+2

)
for some λ = 1, 2, . . . and cλ > 0.

Nonlinearity: n
? Power-type, essentially of the form

n(x) ≈ |x|1+q +O
(
|x|1+q′

)
with q ∈ (0, 4λ) and q′ > q.

? Locally Lipschitz when s ∈ (0, 1);

or n ∈ C1+q(R) if s ∈ [1, 1 + q).

Whitham equation
? Model for surface gravity water-waves

with exact linear dispersion relation:

? n(u) = u2

? m(ξ) =
√

tanh ξ
ξ

= 1− 1
6
ξ2︸ ︷︷ ︸

KdV

+O(ξ4)

. 〈ξ〉−1/2

Whitham

BBM

KdV ξ

? Periodic waves in Hs for all s > 0,

and solitary waves for all s > 1
6
.

Variational approach
? Fix a small parameter µ > 0 and

define functionals

L(u) = −1
2

∫
uLu, Q(u) = 1

2

∫
u2,

N (u) = −
∫
N(u), E = L+N ,

where N is the primitive of n.

? Solutions of (?)↔ critical points

of E constrained to Q(u) = µ by

Lagrange’s multiplier principle.
? Find constrained local minimizers of E.

? Problem: N unbnd. locally in Hs for low s.

? Solution: Cut off n at scale dep. on µ.

A priori estimates of ‖u‖∞ show that the

cut-off is not seen for small µ.

Periodic waves
? Minimization of EP constrained to

QP(u) = µ over a ball of radius R in

P -periodic Sobolev space Hs
P .

? Coercivity-issue: Minimizers may

approach boundary of the ball.
? Consider instead min. of penalized

functional
EP(u) + %

(
‖u‖2Hs

P

)
over enlarged 2R-ball.

? %(t) = 0 for t < R2;

blows up as t ↑ (2R)2.

? Existence of minimizer uP

by standard arguments

(Weierstrass theorem).

R

2R

? A priori estimates ⇒ penalizer inactive:

? Upper bound on infimum of penalized EP .

? Lower bound on wave speed νP .

? ‖uP‖2Hs
P
. µ for small µ.

? Small-amplitude: ‖uP‖∞ . ‖uP‖Hs
P
.

Theorem
If s ∈

(
max

{
1
2
− |σ|, 0

}
, 1 + q

)
and µ is

sufficiently small, there exists Pµ > 0

such that (?) admits a nontrivial solution
uP ∈ Hs

P ∩ L∞ for all P > Pµ, satisfying

‖uP‖2∞ . ‖uP‖2Hs
P
. µ

uniformly in P > Pµ, with supercritical
speed

m(0) + c
(
2µ
P

)q/2
< νP < C.

Periodic −−−→
P→∞ solitary

? Translate and truncate {uP}P so that

its restriction ũP ∈ Hs(R) to
(
−P

2
, P
2

)
stays sufficiently far away from ±P

2
.

? As P →∞, all of

EP(uP)− E(ũP), ‖E ′(ũP)‖Hs(|x|>P
2)
,

‖E ′P(uP)− E
′(ũP)‖Hs(|x|<P

2)

go to 0 (and similarly for Q,QP).

? {uk}k with uk = ũPk and Pk →∞ is

a special minimizing sequence for the

solitary problem with sup‖uk‖2Hs . µ.

Solitary waves
? Concentration-compactness principle

for minimizing sequence {uk} bounded
away from boundary of the Hs-ball,

E(uk)→ Iµ := inf E,
Q(uk) = µ,

sup‖uk‖Hs < R.

? {uk}k can either

? vanish (wave dissolves into ripples);

ruled out with estimates on N ;

? dichotomize (wave splits into two parts);

ruled out by strict sub-additivity

Iµ1+µ2
< Iµ1

+ Iµ2

and frequency decomp. and scaling

arguments for “near-minimizers”;

? concentrate (behavior—up to translations—

as for periodic problem); and since {uk}

stays inside Hs-ball, it also concentrates in

frequency. By Kolmogorov–Riesz’ comp.

theorem + interpolation, {uk} converges to

a minimizer.

? A priori estimates similar as before.

Theorem
Let s > 1

2
− |σ|, s < 1 + q and 2s > q

2+q
.

For µ sufficiently small, there exists a non-
trivial solitary wave u ∈ Hs(R) ∩ L∞ with

‖u‖2∞ . ‖u‖2Hs(R) . µ

and supercritical speed ν > m(0).

References
? J. P. Albert, “Concentration compactness and the stability of solitary-wave solutions to

nonlocal equations”, in Applied analysis (Baton Rouge, LA, 1996), ser. Contemp. Math.

Vol. 221, Amer. Math. Soc., Providence, RI, 1999, pp. 1–29.

? H. Chen and J. L. Bona, “Periodic traveling-wave solutions of nonlinear dispersive evo-

lution equations”, Discrete Contin. Dyn. Syst., vol. 33, no. 11-12, pp. 4841–4873, 2013.

? M. Ehrnström, J. Escher, and L. Pei, “A Note on the Local Well-Posedness for the

Whitham Equation”, English, in Elliptic and Parabolic Equations, ser. Springer Proceed-

ings in Mathematics & Statistics, J. Escher, E. Schrohe, J. Seiler, and C. Walker, Eds.,

vol. 119, Springer International Publishing, 2015, pp. 63–75.

? M. Ehrnström, M. D. Groves, and E. Wahlén, “On the existence and stability of solitary-

wave solutions to a class of evolution equations of Whitham type”, Nonlinearity, vol. 25,

no. 10, pp. 2903–2936, 2012.

? M. Ehrnström and H. Kalisch, “Traveling waves for the Whitham equation”, Differential

and Integral Equations, vol. 22, no. 11/12, pp. 1193–1210, Nov. 2009.

? P.-L. Lions, “The concentration-compactness principle in the calculus of variations. The

locally compact case. I”, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 1, no. 2, pp. 109–
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