

A framework for non-local, non-linear initial value problems

Miłosz Krupski Grzegorz Karch Moritz Kassmann

(1)
$$\begin{cases} \partial_t u + \mathcal{L}_u u = 0 & \text{ on } [0, \infty) \times \mathbb{R}^N \\ u(0) = u_0 & \text{ on } \mathbb{R}^N \end{cases}$$

$$\left(\mathcal{L}_{v}u\right)(x) = \int_{\mathbb{R}^{N}} \left[u(x) - u(y)\right] \rho\left(v(x), v(y); x, y\right) dy$$

Main result

Theorem

Let ρ be a homogeneous jump kernel. For every initial condition $u_0 \in L^{\infty}(\mathbb{R}^N) \cap BV(\mathbb{R}^N)$, problem (1) has a unique very weak solution u such that

$$u \in L^{\infty}([0,\infty), L^{\infty}(\mathbb{R}^N) \cap BV(\mathbb{R}^N)) \cap W^{1,1}_{\text{loc}}([0,\infty), L^1(\mathbb{R}^N)).$$

This solution has the following properties

- mass is conserved: $\int_{\mathbb{R}^N} u(t,x) dx = \int_{\mathbb{R}^N} u_0(x) dx$ for all $t \ge 0$;
- L^p -norms are non-increasing: $||u(t)||_p \leq ||u_0||_p$ for all $p \in [1, \infty]$ and $t \geq 0$;
- if $u_0(x) \ge 0$ for almost every $x \in \mathbb{R}^N$ then $u(t, x) \ge 0$ for almost every $x \in \mathbb{R}^N$ and $t \ge 0.$

Moreover, for two solutions u and \tilde{u} corresponding to initial conditions u_0 and \tilde{u}_0 , respectively, we have

$$\|u(t) - \widetilde{u}(t)\|_1 \le \|u_0 - \widetilde{u}_0\|_1$$
 for every $t \ge 0$

Decoupled jump kernels

(2)
$$\rho(a,b;x,y) = F(a,b) \times \mu(|x-y|),$$

where $F \ge 0$ and μ is a density of a Lévy measure with low singularity, i.e.

$$\int_{\mathbb{R}^N} \left(1 \wedge |y| \right) \mu(|y|) \, dy \le \infty$$

Fractional porous medium equation

Let $f \in C^1(\mathbb{R})$ be a non-decreasing function. If

$$F(a,b) = \frac{f(a) - f(b)}{a - b}$$

then ρ given by formula (2) is a homogeneous jump kernel. This example, for

and if $u_0(x) \ge \widetilde{u}_0(x)$ for almost every $x \in \mathbb{R}^N$ then $u(t,x) \ge \widetilde{u}(x,t)$ for almost every $x \in \mathbb{R}^N$ and $t \geq 0$.

Corollary

Let ρ be a homogeneous jump kernel. For every initial condition $u_0 \in L^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N)$, problem (1) has a very weak solution u such that

$$u \in L^{\infty}([0,\infty), L^{1}(\mathbb{R}^{N}) \cap L^{\infty}(\mathbb{R}^{N})) \cap C([0,\infty), L^{1}(\mathbb{R}^{N}))$$

This solution has the following properties

- mass is conserved: $\int_{\mathbb{R}^N} u(t,x) dx = \int_{\mathbb{R}^N} u_0(x) dx$ for all $t \ge 0$;
- L^p -norms are non-increasing: $||u(t)||_p \leq ||u_0||_p$ for all $p \in [1, \infty]$ and $t \geq 0$;
- if $u_0(x) \ge 0$ for almost every $x \in \mathbb{R}^N$ then $u(t, x) \ge 0$ for almost every $x \in \mathbb{R}^N$ and $t \geq 0.$

Jump kernel

Definition

We say a function $\rho: (\mathbb{R} \times \mathbb{R}) \times (\mathbb{R}^N \times \mathbb{R}^N) \to \mathbb{R}$ is a homogeneous jump kernel if it satisfies conditions (A1)–(A6). For all $a, b, c, d \in \mathbb{R}$ and for almost every $(x, y) \in \mathbb{R}^N \times \mathbb{R}^N$ we assume that

- (A1) ρ is a non-negative Borel function;
- (A2) ρ is symmetric, i.e. $\rho(a, b; x, y) = \rho(b, a; y, x)$;
- (A3) ρ is monotone in the following sense:

$$(a-b)\rho(a,b;x,y) \ge (c-d)\rho(c,d;x,y)$$
 whenever $a \ge c \ge d \ge b;$

(A4) ρ is homogeneous

$$\rho(a,b;x,y) = \rho(a,b;|x-y|);$$

(A5) for every R > 0 there exists a function $m_R : [0, \infty) \to [0, \infty)$ such that $\sup_{-R \leq a, b \leq R} \rho(a, b; x, y) \leq m_R(|x - y|)$ and

$$\int_{\mathbb{R}^N} \left(1 \wedge |y|\right) m_R(|y|) \, dy = K_R < \infty;$$

(A6) ρ is continuous with respect to the first two variables and it is locally Lipschitz-continuous outside diagonals, i.e. for every $\varepsilon > 0$ and every $R > \varepsilon$ there exists a constant $C_{R,\varepsilon}$ such that

$$\left|\rho(a,b,x,y) - \rho(c,d,x,y)\right| \le C_{R,\varepsilon} \left(|a-c|+|b-d|\right) m_R \left(|x-y|\right)$$

for every $a, b, c, d \in [-R, R]$ such that $|a - b| \ge \varepsilon$ and $|c - d| \ge \varepsilon$.

 $\mu(|y|) = |y|^{-N-\alpha}$, $\alpha \in (0,1)$ and $f(u) = u|u|^{m-1}$, corresponds to the following operator

$$\mathcal{L}_u u = \Delta^{\alpha/2} \big(u |u|^{m-1}(x) \big).$$

Fractional *p*-Laplacian

Let $\Phi : \mathbb{R} \to \mathbb{R}$ be a continuous, non-decreasing function satisfying $\Phi(z) \ge 0$ for $z \ge 0$, $\Phi(-z) = -\Phi(z)$ such that $\Phi(z)$ is locally Lipschitz-continuous and $\lim_{z\to 0} \frac{\Phi(z)}{z} < \infty$. If

$$F(a,b) = \frac{\Phi(a-b)}{a-b}$$

then ρ given by formula (2) is a homogeneous jump kernel. The function $\Phi(z) = |z|^{p-2}z$ satisfies the hypothesis of this Proposition if and only if $p \ge 2$. Then we may take $s < \frac{1}{p}$ (so that sp < 1) and we recover the non-local s-fractional p-Laplace operator.

Convex diffusion operator (new!)

Let $f : \mathbb{R} \to [0,\infty)$ be a convex function and

$$F(a,b) = f(a) + f(b).$$

Then ρ given by formula (2) is a homogeneous jump kernel.

Entangled jump kernels

Homogeneous jump kernels which cannot be decomposed as in formula (2) are also part of our framework. Let

$$\Psi(\mathfrak{a};z) = \Psi_1(\mathfrak{a})\mathbb{1}_{z<1}(z) + \Psi_2(\mathfrak{a})\mathbb{1}_{z\geq 1}(z) + \Theta(z),$$

where $\Psi_1: [0,\infty) \to \mathbb{R}$ is non-decreasing, $\Psi_2: [0,\infty) \to \mathbb{R}$ is non-increasing, both Ψ_1 and Ψ_2 are locally Lipschitz-continuous, $\Theta: [0,\infty) \to \mathbb{R}$ is measurable and

$$0 < A_1 \le \Psi(\mathfrak{a}; z) \le A_2 < 1, \qquad A_1 \le \Theta(z) \le A_2$$

Then

$$\rho(a,b;x,y) = |x-y|^{-N - \Psi(|a-b|;|x-y|)}$$

is a homogeneous jump kernel.