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Objective
Prove existence of solitary waves,

w(x, t) = u(x− νt) solving the equation

wt + (Lw + n(w))x = 0.

Inserting for w and integrating, u

equivalently solves

(?) − νu+ Lu+ n(u) = 0.

Nonlinearity: n
Has the decomposition n = np + nr.

? For p ∈ R+, the homogenous term np

takes either of the two forms

(1) x 7→ c|x|1+p and c 6= 0,

(2) x 7→ cx|x|p and c > 0.

? The remainder term nr is locally

Lipschitz and satisfies for some r > p,

nr(x) = O(|x|1+r) as x→ 0.

Dispersion: L
Has a real valued even symbol m,

L̂u(ξ) = m(ξ)û(ξ).
? Growth of m−m(0):m(ξ)−m(0) ' |ξ|s′, for |ξ| 6 1,

m(ξ)−m(0) ' |ξ|s, for |ξ| > 1,

where s′ > p
2

and s > p
2+p

.

? Regularity of m:

The function ξ 7→ m(ξ)/〈ξ〉s is

uniformly continuous.

Examples
? Capillary Whitham equation (surface tension T > 0):

m(ξ) =

√
(1 + Tξ2) tanh ξ

ξ
,

np(x) = −x2,

nr(x) = 0,

s′ = 2, s = 1/2,

p = 1, r =∞.

? KdV equation with polynomial nonlinearities:

m(ξ) = ξ2 (after time reversal),

np(x) = x2, nr(x) = x3P (x),

s′ = 2, s = 2,

p = 1, r > p+ 1.

Main Theorem
For every sufficiently small µ > 0, there exists a solution u ∈ H1

of (?) with speed ν satisfying

(i) ‖u′‖2L2 . ‖u‖2L2 = 2µ,

(ii) m(0)− ν ' µβ, where β = s′p
2s′−p,

for implicit constants independent of µ.

Variational approach
? Define the functionals

L(u) = 1
2

∫
m|û|2dξ, Q(u) = 1

2

∫
u2,

N (u) =

∫
N(u), E = L −N ,

where N(x) =
∫ x
0 n(t)dt, and define

the constraint minimization problem

(??) Iµ := inf
Q(u)=µ

E(u).

? By Lagrange’s multiplier principle,
minimizers of (??) solves

νu = E ′(u) = L(u)− n(u)

for some ν ∈ R, and is consequently

also a solution of (?).

? Goal: Construct a minimizer from a

minimizing sequence (ui) of (??).

Remark

An important observation is that it suffices

to consider n being globally Lipschitz; the

validity of the main theorem for this spe-

cial case implies the theorem in general.

Concentration-compactness
A minimizing sequence (ui), can

(1) Concentrate; the L2−mass of ui is

uniformly localized (up to transla-

tion). Convergence follows.

(2) Vanishing; the L2−mass of ui spreads

out as i→∞.

(3) Dichotomy; ui splits in two parts of

fixed mass separating as i→∞.

Excluding vanishing
The Gagliardo–Nirenberg inequality,

‖u‖2+pL2+p . ‖u‖p/sḢs/2
‖u‖(2+p)−p/sL2 ,

together with an ansatz-estimate of Iµ im-
plies a lower and upper bound of

‖u‖Lp+2 and ‖u‖Ḣs/2,

respectively, for near minimizers u. This

further implies some accumulation of

mass (up to translation) of minimizing

sequences.

Excluding dichotomy
For sufficiently small µ > 0, it can be
shown that

Iµ < Iµ−λ + Iλ

for 0 < λ < µ. If a minimizing sequence
(ui) splits in two parts (u1

i) and (u2
i) of

mass µ− λ > 0 and λ > 0, respectively,
we obtain the contradiction

Iµ = lim inf E(u1
i) + E(u

2
i)

> Iµ−λ + Iλ.

Regularity of solutions
By rearranging (?), a solution u satisfies

u = (L− ν)−1n(u).

As (L− ν)−1 is a smoothing operator, the

regularity of n gives a lower bound for the

regularity of u; the Lipschitz continuity of

n suffices to obtain u ∈ H1. The method

used to prove the main theorem also em-

beds solutions in Hs/2; a better regularity

estimate for s > 2.
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