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Introduction

We consider axisymmetric solitary waves propagating on the surface of
an cylindrical ferrofluid jet surrounding a stationary metal rod. The fer-
rofluid, which 1s governed by a general (nonlinear) magnetisation law, 1s
subject to an azimuthal magnetic field generated by an electric current

flowing along the rod. Such waves have previously been studied in for
example [1],[2].
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Governing equations
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where ¢ 1s the velocity potential, 1 1s the wave profile,

/077 (” (1 3> - V(1)> (1+s)ds,

where /(s) = mq(s) and m; is the magnetization. In addition o =

2
prod X . o . .
19m5.3, 0 = -5 are dimensionless parameters.

nontrivial solutions of (0.1)—(0.4) with n(z), ¢(r,

r=1+n(z,t),

Solitary waves are
z) = 0as z — +oo.

Hamiltonian formula

The governing equations follow from the variational principle 0L = 0,
where
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By performing a Legendre transform we introduce new variables w =

9L ¢ =

H(n,w, ¢,&) = /01{%<(1f77)2
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From this we obtain Hamilton’s equation

(0.5)

u, = vy (u)

where u = (1, w, ¢, £) and vy is the Hamiltonian vector field correspond-
ing to the Hamiltonian H.
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Spatial dynamics

Equation (0.5) 1s a dynamical system where the spatial variable z plays
the role of time. The 1dea of formulating the problem 1n this way 1s called
the spatial dynamics approach. We write (0.5) on the form

u, = Lu + N(u), (0.6)

where L is the linearization of wpy(u) around the trivial solution
(0,0,0,0).

Bifurcatio Diagram

In order to find solutions of (0.6) y
we apply the center manifold the-
orem. It 1s therefore necessary to
know something about the spec-
trum of L, and in particular how
it depends upon the dimension-
less parameters. The bifurcation
diagram to the right 1s then ob-
tained, where v = o — . The
same diagram 1s obtained for sur-
face waves, see for example [3]
and the references therein.

Truncated reduced equation obtained from the center manifold reduction:

1
¢ —q+cg® =0, c=— (Oém1(1)—6)
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Solitary waves of elevation and depression in region 1.

Region 11

Truncated reduced equation obtained from the center manifold reduction:

¢" +2(1+6)¢" +q—3cg® =0, ¢ =48V6(3m/ (1)

Primary solitary waves of elevation and depression in region I1.

Region 111

Truncated reduced equation obtained from the center manifold reduction:

q’ +clq+02q|q\2 —0,¢c1<0,¢c3>0

Solitary waves of elevation and depression in region III.




