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Introduction
We consider axisymmetric solitary waves propagating on the surface of
an cylindrical ferrofluid jet surrounding a stationary metal rod. The fer-
rofluid, which is governed by a general (nonlinear) magnetisation law, is
subject to an azimuthal magnetic field generated by an electric current
flowing along the rod. Such waves have previously been studied in for
example [1],[2].
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Governing equations for traveling waves
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φr + φzz = 0, 0 < r < 1 + η(z, t), (0.1)
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where φ is the velocity potential, η is the wave profile,

T (η) =

∫ η

0

(
ν

(
1

1 + s

)
− ν(1)

)
(1 + s) ds,

where ν′(s) = m1(s) and m1 is the magnetization. In addition α =
µ0J

2χ
4π2R2c2 , β = σ

c2R are dimensionless parameters. Solitary waves are
nontrivial solutions of (0.1)–(0.4) with η(z), φ(r, z)→ 0 as z → ±∞.

Hamiltonian formulation
The governing equations follow from the variational principle δL = 0,
where

L =

∫
R
L(η, φ, ηz, φz) dz.

By performing a Legendre transform we introduce new variables ω =
δL
δηz

, ξ = δL
δφz

and obtain the Hamiltonian
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From this we obtain Hamilton’s equation

uz = vH(u) (0.5)

where u = (η, ω, φ, ξ) and vH is the Hamiltonian vector field correspond-
ing to the Hamiltonian H .
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Spatial dynamics
Equation (0.5) is a dynamical system where the spatial variable z plays
the role of time. The idea of formulating the problem in this way is called
the spatial dynamics approach. We write (0.5) on the form

uz = Lu+N(u), (0.6)

where L is the linearization of vH(u) around the trivial solution
(0, 0, 0, 0).

Bifurcations
In order to find solutions of (0.6)
we apply the center manifold the-
orem. It is therefore necessary to
know something about the spec-
trum of L, and in particular how
it depends upon the dimension-
less parameters. The bifurcation
diagram to the right is then ob-
tained, where γ = α − β. The
same diagram is obtained for sur-
face waves, see for example [3]
and the references therein.
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Region I
Truncated reduced equation obtained from the center manifold reduction:

q′′ − q + cq2 = 0, c =
1

2
(αm′

1(1)− 6)

Solitary waves of elevation and depression in region I.

Region II
Truncated reduced equation obtained from the center manifold reduction:

q′′′′ + 2(1 + δ)q′′ + q − 3cq2 = 0, c = 48
√
6(3m′

1(1)− 8)

Primary solitary waves of elevation and depression in region II.

Region III
Truncated reduced equation obtained from the center manifold reduction:

q′′ + c1q + c2q|q|2 = 0, c1 < 0 , c3 > 0

Solitary waves of elevation and depression in region III.


