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Introduction
We are interested in the stochastic Hunter-Saxton equations of the form:

0 =dq +
(
u∂xq +

1

2
q2) dt + ∂x(σq) ◦ dW

q =∂xu,

on [0, T ] × R, where W is a standard 1-dimensional Brownian motion on a stochastic basis
(Ω,F , {Ft}t≥0,P), and σ : R → R is a W 2,∞(R) function. These are sometimes considered theprototypal non-local wave equations exhibiting wave-breaking phenomena (explained below) [5].This particular noise can be derived from a variational principle, by perturbing the Hamiltonian inthe deterministic dynamics.

Background
In the deterministic (σ = 0) setting, the archetypical example is the “box” initial condition:

q(0) = V01[0,1](x) V0 ∈ R,

for which (i) wave-breaking occurs, and (ii) an explicit formula for the solution exists. These boxescan be patched together to form step function approximants to more general initial conditions.We can write down characteristics (the Lagrangian variable) X(t, x) satisfying
X(t, x) = x +

∫ t

0
u(t,X(s, x)) ds.

Solving for the the box, one arrives at
q(t, x) =

2V0

2 + V0t
1{2+V0t>0;X(t,0)<x<X(t,1)}. (1)

Therefore in the case V0 < 0, ‖q‖L∞ → ∞ as t → −2/V0 even as ‖u‖L∞ remains bounded. Thisphenomenon is called wave-breaking. How solutions are continued beyond wave-breaking is thecardinal element in the theory of Hunter-Saxton equations.

Figure 1: The evolution of the box up to near wave-breaking in the deterministic setting.
In the stochastic case one can do something similar — the characteristics become [1]:

dX(t, x) = u(t,X(t, x)) dt + σ(X(t, x)) ◦ dW.

The stochastic Hunter Saxton equation in the Lagrangian variable becomes:
dq(t,X(t, x)) =

−1

2
q2(t,X(t, x))− σ′(X(t, x))q(t,X(t, x)) ◦ dW.

The process q(t,X(t, x)) can, perhaps surprisingly, also be solved for explicitly:
q(t,X(t, x)) =

Z(t, x)

1/q(0, x) +
∫ t

0 Z(s, x)/2 ds
, Z(t, x) = exp

(∫ t

0
σ′(X(s, x)) ◦ dW

)
. (2)

The Case σ′′ ≡ 0

The constant σ case yields deterministic dynamics as the “pathwise” transformation x 7→ x+σW (t)will immediately show [4]. This fails to perturb the di�erence between two characteristics.The σ′′ ≡ 0 case exhibits truly random dynamics. It is a special case of the equation about whichmuch can be explicitly derived. Fixing our attention on the the “box”-type scenario, we see firstof all that over x ∈ (X(t, 0), X(t, 1)), the box remains constant (in space), and outside this randominterval, q(t) is everywhere nought (it remains a box). It can also be shown that:
Wave-breaking occurs when, and only when, characteristics meet.

Though very similar to the deterministic dynamics, the height and width of the box are random asit evolves. The wave-breaking time is also random.By scaling distributions that Yor et al. [6] derived, it is possible to show that wave-breaking occursat a stopping time t∗ satisfying:
P({t∗ ≥ t}) =P

({
A(0)(

(σ′)2t

4
) ≤ −(σ′)2

2V0

})
,

where
P(A(0)(t) ∈ dr) =

[ ∫
R

exp

(
− 1 + e2x

2r

)
ϑ(ex/r, t) dx

]
dr

r
,

ϑ(y, t) =
y√
2π3t

eπ
2/(2t)

∫ ∞
0

e−ξ
2/(2t)e−y cosh(ξ) sinh(ξ) sin

(
πξ

t

)
dξ.

Solutions Post Wave-Breaking

Non-uniqueness arises from the uncountably many ways solutions can be continued past wave-breaking.Two extreme ways exist to continue solutions beyond wave-breaking in the deterministic setting:
(i) Conservative Solutions. One can think of all energy ‖q(t)‖2L2 as passing into a defect-measure atthe moment of wave-breaking [2]. If this energy is released immediately and totally back intothe solution, the solution can be continued by q(t∗+ t) = −q(t∗− t) for t < t∗, and also thereafteras −q is positive and hence can be continued indefinitely. This is equivalent to continuing q byretaining the explicit formula (1) without the factor 1{2+V0t>0}. The energy ‖q(t)‖L2 is conservedin this scenario.
(ii) Dissipative Solutions. The defect measure can also hold up all energy eternally. Then the solutioncan be continued as q(t∗ + t) = 0 for t > t∗, and all energy is dissipated at wave-breaking. Thequantities |q(t)|H−1loc

remain locally Lipschitz in time.
This non-uniqueness persists in the stochastic setting:

(i) “Conservative” Solutions. Solutions can be continued by retaining (2). But away from σ = 0,there is only a bound and no conservation of ‖q(t)‖L2 either before or after wave-breaking. Bysetting σ = 0, deterministic conservative solutions are recovered.
(ii) Dissipative Solutions. Because it can be shown that P almost surely, u(t, x) has no jumps due to

lim
t→t∗

q(t,X(t, x)) exp

(∫ t

0
q(s,X(s, x)) ds +

∫ t

0
σ(X(s, x)) ◦ dW

)
= 0,

it turns out that it is possible to continue solutions beyond wave-breaking by setting it to zero.The quantities |q(t)|H−1loc
remain continuous.

The Case σ′′ 6≡ 0

Boxes are not preserved by the flow, and even with “box”-type initial conditions, wave-breakingcan occur at a point, that is, it cannot be ruled out that at a particular point x,
∂X(t, x)

∂x
= 0.

The wave-breaking dynamics becomes substantially more complicated. However, it remains thecase that when this happens – when characteristics meet – wave-breaking must also occur, andvice versa.

Conclusions

• As in the deterministic problem, solutions can be approximated by step-functions, and analysiscan be focused (to some extent) on negative “box”-type initial conditions.
• In the special case σ′′ ≡ 0, wave-breaking dynamics take on some properties of their determin-istic counterpart. And the distributions of a number of associated quantities can be derived veryexplicitly.
• In the general case σ ∈ W 2,∞(R), wave-breaking dynamics becomes complicated, but can stillbe analysed by considering stochastic characteristics.

Forthcoming Research

We intend to extend this analysis to another notable nonlocal wave model exhibiting wave-breakingbehaviour in the deterministic setting, the (stochastic) Camassa-Holm equations (as given in [3]):
0 =dm + [∂x(um) + m∂xu] dt + [∂x(σm) + m∂xσ] ◦ dW,

m =u− ∂2
xu.
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