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Abstract
This poster will briefly discuss the scenarios in which the Rie-
mann problem for the shallow water system arises in a phys-
ically reasonable sense. Similar work has been carried out by
Peregrine [5] and Leveque in [4]. They considered two colliding
bores where one overtakes the other, creating a new shock with
a left and right state defining a Riemann problem. We would
like to build on that work by finding other regions for which the
Riemann problem can originate and more importantly when it
should not be observed in nature.

Shallow water equations

The study of the Riemann problem is important when try-
ing to understand the behaviour of conservation laws. For
example, it can used as a numerical method by decom-
posing general initial values into piecewise constants and
then solve a series of Riemann problems [3]. The shallow
water equations are given by(
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which describes conservation of mass and momentum,
q = hu. The Riemann initial data in one space dimension
is defined as follows,(
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)
(x, 0) = u(x, 0) =

{
uL for x < 0,
uR for x > 0.

These equations are discussed in detail by for example
Whitham [1]. Imposing the entropy conditions and the
Rankine-Hugoniot condition one can find a unique solu-
tion [2] for any right state, (hR, qR) and a given left state,
(hL, qL). Drawn in phase space with momentum q on the
vertical axis and height h on the horizontal axis is shown
below.
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Figure 1: Phase space for a particular left state (hL, qL)

For any right state and a particular left state, the solution
is given by a combination of rarefaction waves described
by the curves

•R1(L) : u = uL − 2
√
gh + 2

√
ghL, u > uL,

•R2(L) : u = uL + 2
√
gh− 2

√
ghL, u > uL,

and the shock curves

• S1(L) : u = uL − (h− hL)
√
g
2(

1
h +

1
hL
), u < uL,

• S2(L) : u = uL + (h− hL)
√
g
2(

1
h +

1
hL
), u < uL.

Note that we have divided the phase space in Figure 1
into four regions. In addition, the entropy solution for
each region is found by two elementary waves going
through some middle state. For instance, we connect S1(L)
with S2(M) to any right state in region III as drawn in
(h, u)−coordinates below.

Height, h

V
el
o
ci
ty
,
u

S2(L)

S1(C)
(hL, uL)

(hR, uR)

(hC , uC)

Height, h

V
el
o
ci
ty
,
u

S1(L)

S2(M)
(hL, uL)

(hR, uR)

(hM , uM)

Figure 2: Collision of two bores (left) and solution of the initial value
problem (on the right)

The solution is given in the figure on the right and satisfies
the Rankine-Hugoniot and entropy condition [2]. On the
other hand, the figure on the left represents two colliding
bores connected by a center state (hC, uC) and creates the
initial value problem.

Also note that for particular solutions in region I , there
are states connected by a middle state with zero height [2].
This is known as the cavitation state in gas dynamics [4]
and is a well defined concept. However, separating two

counter-propagating waves with a dry area in between
does not seem reasonable in shallow water theory. It is
therefore interesting to see if these types of solutions are
excluded when imposing the condition of having a Rie-
mann problem from colliding bores.

Development of the Riemann problem

Collision of S1 and S2 shocks

Lets now consider the origin of the Riemann problem as
a combination of traveling bores. First, we will prove
that certain right states in region III emanate from two
counter-propagating bores, one on S1 and one on the S2
curve. Secondly, a short argument will be given for why it
cannot happen in any other regions.
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Figure 3: Two colliding bores forming the Riemann Problem

Figure 3 displays the special case in Figure 2 with two
bores colliding at t = 0 which then forms the initial value
problem. The general statement is formulated below.

Theorem 1: For a given left state and a right state in re-
gion III there exists a center state connecting them via
a S2 − S1 collision creating the Riemann problem by two
counter-propagating bores if the momentum of the center
state is greater than the right state.

Proof. We need to prove there is a center state connect-
ing two colliding shock waves satisfying the bore condi-
tions. Guided by the discussion above, we should seek
a point (hC, uC) on S2(L) giving rise to a 1−shock, S1(C)
through (hR, uR). The existence of this center state is clear
as u is strictly increasing on S2(L) for h ∈ (0, hL] and
range from (−∞, uL), while any 1−shock going through
the right state is strictly decreasing and unbounded above.
Consequently, we have two curves that intersects which is
described by the equations

S2(L) : uC = uL + (hC − hL)
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and

S1(C) : uR = uC + (hR − hC)
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Adding (1) and (2) we may solve for hC and then use (1)
again to find uC . Furthermore, since (hC, uC) ∈ S2(L) we
must have hC < hL and uC < uL. By the bore properties
discussed in [6] we see that the left shock is moving to the
right. Indeed since hC/hL < 1, we have from the Rankine-
Hugoniot condition that the shock speed of the left most
bore must satisfy

σL =
hLuL − hCuC
hL − hC

=
hL(uL − uChChL)

hL − hC
> 0.

Now consider σR and note that the right state is below the
S2(L) curve, connected by S1(C) for which u is decreasing.
Hence, hC < hR and uR < uC . With respect to the bore
properties it is clear that the bore must move to the left
which is only true for qR < qC . In this case we have

σR =
qR − qC
hR − hC

< 0.

As a result, we have two bores moving toward each other
creating a Riemann problem in a head-on collision.

Additionally, we will leave as a note that it is not possible
to form a Riemann problem by a collision of two counter-
propagating bores for a given left state if the right state is
in region I , II or IV . This is a result of the entropy condi-
tion, as it turns out that any of these cases would give rise
to energy creating bores.

Collision of two S2 shocks

There is still a number of cases to consider, but we will
close this discussion with the case of two fast shocks form-
ing a Riemann problem. A specific case is drawn in phase
space below, using momentum coordinates to guide our
intuition.
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Figure 4: Development of the Riemann problem due to a collision of
two S2−shocks

In Figure 4 we observe the relationship hR < hC < hL and
that the line joining each state has a positive slope. This
implies that both states moves in the positive direction. In
addition, we need the left state to move faster, but that’s
clear due to S2 being convex i.e. the rate of change (shock
speed σ) is positive. Although, we also need to choose an
admissible connection which we will find in the next the-
orem.

Theorem 2: If hR < hC < hL and uR < uC < uL such that
there is a fast shock curve, S2(L) connecting left state and
center state state and a S2(C) curve connecting center state
with right state then it creates a Riemann problem.

Proof. For a general case where this is true we would need
both bores to move in a positive direction. We observe that
the bore on the right moves with speed

σR =
hCuC − hRuR
hC − hR

=
hC(uC − uRhRhC )

hC − hR
> 0.

Similarly for the bore on the left

σL =
hLuL − hCuC
hL − hC

=
hL(uL − uChChL)

hL − hC
> 0.

In addition, we need the right side to be overtaken by the
left side as indicated in Figure 5 below.
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Figure 5: Two colliding bores forming the Riemann Problem

Clearly we need the left shock to be faster than the right
shock. Considering the momentum coordinates we note
that a fast shock is given by a convex function. Thus,
the slope joining the left and center states respectively is
greater than the line connecting the center state with the
right whenever hR < hL. We may therefore conclude that
such a scenario would create a Riemann problem.

Conclusion
We have considered the Riemann problem associated to the shal-
low water equations and imposed a condition that such a prob-
lem should arise from the collision of two bores. Imposing this
condition, we were able to recover solutions consisting of both
rarefaction waves and shock waves, but excluded the possibil-
ity of cavitation. This is made clear in Theorem 1 when having
a combination of fast and slow shocks, finding that admissible
shock curves only live in region III .
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