Solitary waves to Degasperis-Procesi equation: exponential decay and symmetry

Long Pei

Norwegian University of Science and Technology Norwegian meeting on PDEs 2019

The Degaspries-Procesi (DP) equation

$$u_t - u_{xxt} + 4uu_x - 3u_x u_{xx} - uu_{xxx} = 0$$

has nonlocal formulation

$$\partial_t u + u \partial_x u + \partial_x L(\frac{3}{2}u^2) = 0, \quad L := (1 - \partial_x^2)^{-1}$$

The solitary wave $u(t,x):=\phi(x-ct)$ with speed c satisfies the steady equation

$$\frac{\phi}{3}(2c - \phi) = K * \phi^2 + a.$$

where $K(x) = e^{-|x|}$ denotes the kernel for L and a denotes integral constant.

1 Exponential decay of solitary wave

Preliminary estimate for the decay:

- ullet The constant a is trivial actually for solitary waves.
- Positivity and strict upper bound for ϕ :

$$0 < \phi \le \sup_{x} \phi(x) < 2c$$

An improved convolution estimate based on [Bona-Li, 1997, JMPA]: For 0 < l < m and any $\sigma > 0$, the following inequality holds

$$\int_{\mathbb{R}} \frac{e^{l|x|}}{(1+\sigma e^{|x|})^m e^{m|x-y|}} dx \le B \frac{e^{l|y|}}{(1+\sigma e^{|y|})^m}, \quad y \in \mathbb{R},$$

where $B = (\min\{l, m - l\})^{-1}$.

The decay of solitary waves:

Theorem 1.1 The map $x \mapsto e^{|x|}\phi(x) \in L^{\infty}(\mathbb{R}, \mathbb{R})$.

Hints for proof:

ullet Prove decay estimate in L^q : for any $lpha\in(0,1)$ and q>1, it is true that

$$e^{\alpha|\cdot|}\phi(\cdot)\in L^q(\mathbb{R})$$

The key estimate is

$$\int_{|y|\geq R_{\delta}} |\phi^{2}(y)|^{q} \left[\int_{|x|\geq R_{\delta}} \frac{e^{lq|x|}}{(1+\epsilon e^{|x|})^{\alpha q} e^{\alpha q|x-y|}} dx \right] dy \leq \int_{|y|\geq R_{\delta}} |\phi^{2}(y)|^{q} \frac{Be^{lq|y|}}{(1+\epsilon e^{|y|})^{\alpha q} e^{\alpha q|y|}} dy$$

ullet Improve the decay in L^q to L^∞ and from lpha < 1 to lpha = 1.

$e^{\alpha|x|}\phi(x) \lesssim \frac{3}{2c-M} \left[\left(e^{\alpha|\cdot|K(\cdot)} \right) * \left(e^{\alpha|\cdot|\phi^2(\cdot)} \right) \right] (x) \in L^{\infty}(\mathbb{R})$

2 Symmetry and one-side of monotonicity of solitary waves

Definition 1 (Super-solution & sub-solution) A solution ϕ to the steady Degasperis-Procesi equation is called a supersolution if

$$\frac{\phi}{3}(2c - \phi) \ge K * \phi^2$$

and a subsolution if the inequality above is replaced by \leq .

Lemma 2.1 (Touching lemma) Let ϕ_1 and ϕ_2 be a super– and a subsolution of the steady Degasperis-Procesi equation on a subset $[\lambda, \infty) \subset \mathbb{R}$, respectively, satisfying $\phi_1 \geq \phi_2$ on $[\lambda, \infty)$ and $\phi_1^2 - \phi_2^2$ being odd with respect to λ , that is $(\phi_1^2 - \phi_2^2)(x) = -(\phi_1^2 - \phi_2^2)(2\lambda - x)$. Then either

- $ullet \phi_1 = \phi_2$ in $[\lambda, \infty)$, or
- $ullet \phi_1 > \phi_2$ with $\phi_1 + \phi_2 < 2c$ in (λ, ∞) .

Theorem 2.2 (Reflection) There exists a N>0 suffciently large such that

$$\phi(x) < \phi_{\lambda}(x), \quad x < \lambda,$$

for any $\lambda \leq -N$. In other words, $\Sigma_{\lambda}^{-} = \emptyset$ for any $\lambda \leq -N$.

2.1 Symmetry of waves below the maximum height

Hints for proof:

- Make reflection of the solitary wave at $x=\lambda$ so that $\phi(x)$, $x<\lambda$, stays strictly below its reflection $\phi(2\lambda-x)$
- Move the line $x=\lambda$ to the right until it reaches a local maximum of ϕ or the reflection $\phi(2\lambda-x)$, $x<\lambda$, touches ϕ at some point $x=x_0$

- Exclude the possibility that the reflection $\phi(2\lambda-x)$, $x<\lambda$, touches ϕ at some point $x=x_0$
- ullet Prove that if $x=\lambda$ reaches a local maximum of ϕ then it is a global maximum and the wave is symmetric

$$[2c - (\phi(x) + \phi_{\lambda}(x))](\phi_{\lambda} - \phi)(x) \le 3 \int_{\Sigma_{-}} (K(x - y) - K(2\lambda - x - y))(\phi_{\lambda}^{2}(y) - \phi^{2}(y)) dy$$

2.2 Symmetry of waves of the maximum height

Key ingredient in proof: compare the contribution of

$$2c - (\phi(x) + \phi(2\lambda - x))$$

and

$$K(x-y) - K(2\lambda - x - y)$$

on Σ_z .

Symmetric waves are traveling waves

Symmetric solutions $u(t,x) = u(t,2\lambda(t)-x)$ satisfies

$$u_t + \dot{\lambda}u_x = 0,$$
$$-\dot{\lambda}u_x + uu_x + 3L(uu_x) = 0.$$

We discover that these two equations determine the form and propagation speed of waves, respectively.