The Degaspries-Procesi (DP) equation

has nonlocal formulation

Ayu + udpu + axL(gu )=0, L:=(1-092)""

The solitary wave u(t, ) := ¢(x — ct) with speed c satisfies the steady equation

g(Qc—gb):K*ngqLa.

where K (z) = e~ 1%l denotes the kernel for L and a denotes integral constant.

1 Exponential decay of solitary wave

Preliminary estimate for the decay:

e The constant a is trivial actually for solitary waves.

e Positivity and strict upper bound for ¢:

0< ¢ <supo(z) < 2c

An improved convolution estimate based on [Bona-Li, 1997, JMPA]: For 0 <
[ < m and any o > 0, the following inequality holds

ol oyl
/ dr < B .y eR,
R (1+ Oe‘x‘)mem‘x_y‘ (1+ ae‘y‘)m

where B = (min{l,m —1})~1.

The decay of solitary waves:
Theorem 1.1 The map z — el*lp(z) € L®°(R, R).

Hints for proof:
e Prove decay estimate in L9: for any o € (0,1) and ¢ > 1, it is true that

*lo(-) € LI(R)

The key estimate is
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e Improve the decay in L9 to L°° and from o« < 1 to a = 1.

dy
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Wlg(a) € o [(2HEO) e (eH162()) ] (2) € Lo(R)

~ 2c —

2 Symmetry and one-side of monotonicity of soli-
tary waves

Definition 1 (Super-solution & sub-solution) A solution ¢ to the steady
Degasperis-Procesi equation is called a supersolution if

g(Qc—qﬁ)ZK*qﬁQ

and a subsolution if the inequality above is replaced by <.

Lemma 2.1 (Touching lemma) Let ¢; and ¢9 be a super— and a subsolution
of the steady Degasperis-Procesi equation on a subset |\,00) C R, respectively,
satisfying ¢1 > ¢9 on |\, 00) and gb% — gb% being odd with respect to \, that is

(9% — #3)(x) = —(¢F — ¢5)(2\ — z). Then either
® )1 = P9 in |\, 00), or
® O > o with ¢ + ¢9 < 2c¢ in (A, 0) .

Theorem 2.2 (Reflection) There exists a N > 0 suffciently large such that

¢(3§) < ¢)\(£C>, T <A,

for any A < —N. In other words, ¥\ = O for any A < —N.

¢(z)

2.1 Symmetry of waves below the maximum height

Hints for proof:

e Make reflection of the solitary wave at x = A so that ¢(x), x < ), stays strictly
below its reflection ¢(2\ — x)

e Move the line x = X to the right until it reaches a local maximum of ¢ or the
reflection ¢(2\ — x),x < A, touches ¢ at some point x = x

6(2) — )
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e Exclude the possibility that the reflection ¢(2\ — x),z < A, touches ¢ at some
point x = x

e Prove that if x+ = A reaches a local maximum of ¢ then it is a global maximum
and the wave is symmetric

2c=(@(x)+@x(2))(Pr—9)(z) < 3 / (K (z—y)—K(2A—z—y)) (3 (y)—¢"(y))dy

2y

2.2 Symmetry of waves of the maximum height

Key ingredient in proof: compare the contribution of

2¢ — (o(x) + G2\ — )

and

Kz —y)— K2\ — 1z —y)

on > ..

3 Symmetric waves are traveling waves
Symmetric solutions u(t, x) = u(t,2A(t) — ) satisfies

—\ug + vty + 3L(uug) = 0.

We discover that these two equations determine the form and propagation speed of
waves, respectively.



