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Introduction
In their 1994paper,Nessyahu, Tadmor andTassa [3] showed
that a large class of monotone finite volume methods con-
verge to theentropy solutionof thehyperbolic conservation
law

ut + f (u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x),
(1)

at a rate of O(∆x) in the 1-Wasserstein distance W1 underthe assumption that f is strictly convex and the initial datum
u0 is compactly supported and Lip+-bounded.
Recently, Fjordholm and Solem [1] showed a convergence
rate of O(∆x2) in W1 for initial data consisting of finitelymany shocks. This raises the question whether the first-
order rate in W1 of [3] can be improved. In this paper weshow that this is not possible. by constructing a suitable
counterexample.
Heuristic argument
Our proof is based on the following heuristic argument.
Monotone schemes provide approximations of the type
shown in Figure 1 and the W1-distance can be thought ofas measuring the minimal amount of work needed to move
mass from one place to another.

x
Figure 1: Exact and approximate solution of (1)

Since the surplus ofmass on the left (blue area) isO(∆x) and
it needs to be moved a distance of O(1) to the shortage of
mass on the right (orange area) we expect the W1-error tobe no better thanO(∆x) ·O(1) = O(∆x) in this case.
Outline of the proof
•We first write theW1 distance as the L1 norm ofE(x, t) =∫ x
−∞(u(y , t)−v(y , t))dy and showthatE satisfies a certain
transport equation.

•Next, we prove some elementary properties of the cell av-
eraging operatorA that is used in the Godunov scheme.

•Wethen show that theW1 error is bounded frombelowbya sum over all preceding time steps ofW1 errors betweenthe cell averaging operator of the numerical solution and
the numerical solution itself, i.e.,
W1(u(t), u∆x(t)) ≥

N∑
n=0

W1(Aũ∆x(t
n−), ũ∆x(t

n−)).

• Lastly we use the fact that the Godunov scheme evolves
exactly in time to show that these W1 errors accumulatetoO(∆x), more precisely,
W1(Aũ∆x(t

n−), ũ∆x(t
n−)) ≥ C∆t∆x.

The first-order conver-
gence rate of monotone
schemes for conservation
laws in the Wasserstein
distance, proved in 1994,
is optimal.
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Numerical validation
We consider two numerical experiments using Burger’s
equation,

ut +

(
u2

2

)
x

= 0,

with two different initial data. The first initial datum (Figure
2 top, gray) is compactly supported Lip+-bounded initial da-
tum. The second initial datum (Figure2bottom, gray) isLip+-
unbounded and convergence rate results in this case are un-
known.
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Figure 2: Exact solution, numerical approximation and initial datum for Experiment 1 and 2.

Table 1 (left) numerically illustrates the optimality result of
this work. Table 1 (right) indicates that in the case of a sin-
gle upward jump, i.e., Lip+-unbounded initial datum, we can
expect a convergence rate ofO(∆x | log ∆x |) not only inL1 as
shown by Harabetian [2], but also in W1. This is consistentwith the rate O(ε| log ε|) inW1 proved in [4] for the viscousregularization of conservation laws with Lip+-unbounded
initial data.

n L1OOC W1OOC
32 0.822 1.196
64 0.896 1.123

128 0.861 1.075
256 0.884 1.046
512 0.900 1.029

n L1OOC W1OOC
32 0.598 0.764
64 0.641 0.759

128 0.675 0.761
256 0.708 0.769
512 0.739 0.782

Table 1: Observed order of convergence in L1 andW1 for Experiment 1 and 2.
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