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Optimal Spline Spaces

In this poster we provide a priori error estimates in standard Sobolev (semi-)norms for ap-
proximation in spline spaces of maximal smoothness on arbitrary grids. The error estimates
are expressed in terms of a power of the maximal grid spacing, an appropriate derivative of
the function to be approximated, and an explicit constant which is, in many cases, sharp.
Some of these error estimates also hold in proper spline subspaces, which additionally en-
joy inverse inequalities. Furthermore, we address spline approximation of eigenfunctions of
certain differential operators, with a particular focus on the special case of periodic splines.

The results presented in this poster can be used to theoretically explain the benefits of spline
approximation under k-refinement by isogeometric discretization methods. They also form
a theoretical foundation for the outperformance of smooth spline discretizations of eigen-
value problems that has been numerically observed in the literature, and for optimality of
geometric multigrid solvers in the isogeometric analysis context.

Introduction

Suppose T = (79, ..., 7N ) IS @ knot vector such that
a=T)<T < - <TN_1<TN =D,

andlet I; .= |7;,7j11),j =0,1,...,N —2,and Iy_; := [ry_1,7n]. Forany p > 0, let P, be
the space of polynomials of degree at most p. Then, for —1 < k < p—1, we define the space
Sgﬁ of splines of degree p and smoothness k by

Sy r={s€C"a,b]:s|; €Pp, j=0,1,...,N—1}.
In the case of maximal smoothness we set

—1
Spﬂ- L= 8]]9977- .

Define the projection Q,, : H'(a,b) — Sy + by

(0Qpu, Ov) = (Ou,0v), Yv € Spr,
(qua 1) — (ua 1)

Theorem 1. For any knot vector T, let h denote its maximum knot distance. Then, for any
functionu € H'" (a,b),

(1)

h\T
Ju=Quull < (=) 10"ul, ¥p>r—1,
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hr—1
00w = Quu)| < (=) [19"ull, ¥p =7~ 1.
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Here || - || denotes the L? norm. For r = 1 the above error estimates are satisfied for certain
reduced spline spaces related to the optimal spline spaces in Figure 2.
Let

Hyep = {u € H'(a,b) : 0%u(a) = 0%u(b), a =0,1,...,7 — 1},
Spﬂ-’per = {S c Spﬂ- . aa5<a) — aOZS(b>, X = O, 1, .« o ,p — 1}7

and define the projection Q : H}.. — Sy r per @analogously to (1).

Theorem 2. For any knot vector T, let h denote its maximum knot distance. Then, for any

/ r
function u € H,,,

~ h
Ju—Gpull < (2) l07ull, ¥p>r—1,

T

~ hr—1

|00 = Quu)ll < (=) l0"ull, Vp > —1
(s

If 7 is uniform and dim S, r per = 2m, then the above result is optimal in the n-width sense.

Kolmogorov n-Widths

For a subset A of L?(a,b) and an n-dimensional subspace X,, of L*(a, b), let

E(A, X)) .= sup inf |ju— v
uc Avedk,

be the distance to A from AX},. Then the Kolmogorov n-width of A is defined by

dn(A) = inf B(A, Xp).

A subspace X, is called an optimal subspace for A provided that
dn(A) = E(A, X)).

Let

A" = {ue H (a,b) : |u")] < 1}
Then for any subspace X,, C L?(a, b) we have the sharp error estimate

inf |lu— vl < E(A", &,)||ul)]].
veX,
Here E(A", X)) is the least possible constant for the subspace &),. Moreover, if X}, is optimal
for A", then
inf [Ju— vl < dn(A")[ul")]),
VEAX,

and d,,(A") is the least possible constant over all n-dimensional subspaces of L?(a, b).

Basis functions for the optimal spline spaces for A! of degree 0 to 3 with knot-distance 0.2 (n = 5).

Basis functions for optimal spline spaces for A} of degree 0 to 3 with knot-distance 0.2 (n = 4).

Convergence to Eigenfunctions

Suppose T is a uniform knot vector and let n = dim Sy, - per. The error estimates in Theo-
rem 2 can then be used to prove convergence, in p, of all the eigenvalues and eigenfunctions
of the discrete eigenvalue problem: find u? € Sp.r.per aNd A? eR,j=0,1,....,n—1, such
that

(0, 00) = M (ult v), Vo € Sprper

Similar results hold for the optimal spline spaces in Figures 2 and 3.
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Discretization of the periodic eigenvalue problem in the space S;fﬁmH;er with fixed n = 100 and varying k£ (k = 0

in black, £k = 1inred, k£ = p — 1 in blue): relative eigenvalue approximation error )\?/)\j —1L,j=2,....,n(p—k),
where each A"} denotes the approximated value of the j-th eigenvalue \;.

Comparing Error Estimates

Let 7 be the uniform knot vector on N segments and let & be the uniform knot vector on M
segments. Defining C}. = E(APH,S]fS) we compare a lower bound on C}., k£ = —1,0, with
the upper bound on C,_; in Theorem 1, under the constraint

dim S + = dim 8575.
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The blue areas indicate for which p and M we can conclude that approximation with maximally smooth splines
is better than DG approximation (kK = —1) and FEM approximation (k¥ = 0) with the same number of degrees
of freedom. The red areas indicate where no conclusion can be obtained from our estimates. The spaces
coincide in the pink areas.
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