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Abstract

In this poster we provide a priori error estimates in standard Sobolev (semi-)norms for ap-
proximation in spline spaces of maximal smoothness on arbitrary grids. The error estimates
are expressed in terms of a power of the maximal grid spacing, an appropriate derivative of
the function to be approximated, and an explicit constant which is, in many cases, sharp.
Some of these error estimates also hold in proper spline subspaces, which additionally en-
joy inverse inequalities. Furthermore, we address spline approximation of eigenfunctions of
certain differential operators, with a particular focus on the special case of periodic splines.

The results presented in this poster can be used to theoretically explain the benefits of spline
approximation under k-refinement by isogeometric discretization methods. They also form
a theoretical foundation for the outperformance of smooth spline discretizations of eigen-
value problems that has been numerically observed in the literature, and for optimality of
geometric multigrid solvers in the isogeometric analysis context.

Introduction

Suppose τ := (τ0, . . . , τN ) is a knot vector such that

a =: τ0 < τ1 < · · · < τN−1 < τN := b,

and let Ij := [τj, τj+1), j = 0, 1, . . . , N − 2, and IN−1 := [τN−1, τN ]. For any p ≥ 0, let Pp be
the space of polynomials of degree at most p. Then, for −1 ≤ k ≤ p− 1, we define the space
Skp,τ of splines of degree p and smoothness k by

Skp,τ := {s ∈ Ck[a, b] : s|Ij ∈ Pp, j = 0, 1, . . . , N − 1}.

In the case of maximal smoothness we set

Sp,τ := Sp−1p,τ .

Main Results

Define the projection Qp : H1(a, b)→ Sp,τ by

(∂Qpu, ∂v) = (∂u, ∂v), ∀v ∈ Sp,τ ,
(Qpu, 1) = (u, 1).

(1)

Theorem 1. For any knot vector τ , let h denote its maximum knot distance. Then, for any
function u ∈ Hr(a, b),

‖u−Qpu‖ ≤
(h
π

)r
‖∂ru‖, ∀p ≥ r − 1,

‖∂(u−Qpu)‖ ≤
(h
π

)r−1
‖∂ru‖, ∀p ≥ r − 1.

Here ‖ · ‖ denotes the L2 norm. For r = 1 the above error estimates are satisfied for certain
reduced spline spaces related to the optimal spline spaces in Figure 2.

Let

Hr
per := {u ∈ Hr(a, b) : ∂αu(a) = ∂αu(b), α = 0, 1, . . . , r − 1},

Sp,τ ,per := {s ∈ Sp,τ : ∂αs(a) = ∂αs(b), α = 0, 1, . . . , p− 1},

and define the projection Q̃p : H1
per→ Sp,τ ,per analogously to (1).

Theorem 2. For any knot vector τ , let h denote its maximum knot distance. Then, for any
function u ∈ Hr

per,

‖u− Q̃pu‖ ≤
(h
π

)r
‖∂ru‖, ∀p ≥ r − 1,

‖∂(u− Q̃pu)‖ ≤
(h
π

)r−1
‖∂ru‖, ∀p ≥ r − 1.

If τ is uniform and dimSp,τ ,per = 2m, then the above result is optimal in the n-width sense.

Kolmogorov n-Widths

For a subset A of L2(a, b) and an n-dimensional subspace Xn of L2(a, b), let

E(A,Xn) := sup
u∈A

inf
v∈Xn

‖u− v‖

be the distance to A from Xn. Then the Kolmogorov n-width of A is defined by

dn(A) := inf
Xn
E(A,Xn).

A subspace Xn is called an optimal subspace for A provided that

dn(A) = E(A,Xn).

dn(A)

Xn

E(A,Xn)

Let

Ar := {u ∈ Hr(a, b) : ‖u(r)‖ ≤ 1}.
Then for any subspace Xn ⊂ L2(a, b) we have the sharp error estimate

inf
v∈Xn

‖u− v‖ ≤ E(Ar,Xn)‖u(r)‖.

Here E(Ar,Xn) is the least possible constant for the subspace Xn. Moreover, if Xn is optimal
for Ar, then

inf
v∈Xn

‖u− v‖ ≤ dn(A
r)‖u(r)‖,

and dn(Ar) is the least possible constant over all n-dimensional subspaces of L2(a, b).

Optimal Spline Spaces
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Basis functions for the optimal spline spaces for A1 of degree 0 to 3 with knot-distance 0.2 (n = 5).
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Basis functions for optimal spline spaces for A1
0 of degree 0 to 3 with knot-distance 0.2 (n = 4).

Convergence to Eigenfunctions

Suppose τ is a uniform knot vector and let n = dimSp,τ ,per. The error estimates in Theo-
rem 2 can then be used to prove convergence, in p, of all the eigenvalues and eigenfunctions
of the discrete eigenvalue problem: find uhj ∈ Sp,τ ,per and λhj ∈ R, j = 0, 1, . . . , n − 1, such
that

(∂uhj , ∂v) = λhj (u
h
j , v), ∀v ∈ Sp,τ ,per.

Similar results hold for the optimal spline spaces in Figures 2 and 3.
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Discretization of the periodic eigenvalue problem in the space Skp,τ ∩H1
per with fixed n = 100 and varying k (k = 0

in black, k = 1 in red, k = p− 1 in blue): relative eigenvalue approximation error λhj/λj − 1, j = 2, . . . , n(p− k),
where each λhj denotes the approximated value of the j-th eigenvalue λj.

Comparing Error Estimates

Let τ be the uniform knot vector on N segments and let ξ be the uniform knot vector on M
segments. Defining Ck := E(Ap+1,Skp,ξ) we compare a lower bound on Ck, k = −1, 0, with
the upper bound on Cp−1 in Theorem 1, under the constraint

dimSp,τ = dimSkp,ξ.
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The blue areas indicate for which p and M we can conclude that approximation with maximally smooth splines
is better than DG approximation (k = −1) and FEM approximation (k = 0) with the same number of degrees
of freedom. The red areas indicate where no conclusion can be obtained from our estimates. The spaces
coincide in the pink areas.
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