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Introduction
Global warming and climate change are now understood to be partly
caused by larger concentrations of CO2 in the atmosphere and stabiliz-
ing the level of CO2 in the atmosphere has been the focus of a large body
of research. One potential method of reducing the rise of atmospheric
CO2 levels is to capture it in fossil-burning processes and sequester it
elsewhere. Potential storage sites include depleted petroleum and natu-
ral gas reservoirs, saline aquifers, unminable coal beds and the world’s
oceans. While the oceans are the largest potential reservoir for dissolved
CO2, it appears to be preferable from ecological and climate considera-
tions to store CO2 in undissolved form.
It is well established in [3] that at predominant oceanic temperatures,
CO2 condenses to the liquid phase at depths of about 400m. Due to the
relatively higher compressibility of liquid CO2 than seawater, liquid CO2

is denser than seawater at about 3000m depth. Storage of liquid CO2 in
the deep ocean is thus at least theoretically possible at depths exceeding
3000m.
The changes in the CO2 density imply that at a certain depth it will co-
incide with the density of the ambient seawater. Moreover, unexpected
large changes in the temperature of the ambient seawater may render a
previously stable configuration unstable by making the CO2 buoyant or
neutrally buoyant. In the present work we focus on the borderline case
of vanishing buoyancy which leads to a two-fluid system with fluids of
equal density.

For a large underwater pool of CO2, long waves will be the dominant
wave phenomenon so we restrict our considerations to a shallow-water-
like system of equations of the form (see [1])

ηt +ux+(ηu)x = 0,
ut +gρ1−ρ2

ρ1
ηx+uux = 0.

In the neutrally buoyant case, the densities ρ2 and ρ1 will be equal and
the system reduces to a triangular system of conservation laws of the
form

ut +uux = 0, (1)
ηt +ux+(ηu)x = 0. (2)

This system is derived as a model for internal waves at the interface of
a two-fluid system where a finite uniform layer fluid of density ρ1 and
approximate depth h1 is located below an upper layer of density ρ2 and
very large depth as shown in the figure above.

Objective and Approach

• Investigate wave propagation at the interface of a two-fluid system.

•Derive a shallow-water-like system of equations to analyse the inter-
face wave.

• Solve the Riemann problem for the derived system and show that a
unique solution can be constructed in all cases.

• Present a δ -shock solution as a combination of a Dirac-δ distribution
and a shock wave.

•Verify the solution in the context of the weak asymptotic method

The Riemann problem

The system (1), (2) is of the general form

Ut +F(U)x = 0,

where

U =

(
u
η

)
and F(U) =

(
u2/2

(η +1)u

)
.

The flux Jacobian of F(U) is given by

J =
∂F
∂U

=

(
u 0

η +1 u

)
,

Repeated eigenvalue: λ1,2 = u.

Corresponding right eigenvectors: r1 = (0,1)T .

For an arbitrary constant left state (uL,ηL) and a right state (uR,ηR), the
Rankine-Hugoniot conditions for (1), (2) are respectively

−c[u]+ [u2/2] = 0, (3)
−c[η ]+ [(η +1)u] = 0, (4)

where [u] = uR−uL and [η ] = ηR−ηL.
The shock speed in (3) is well known and has the form

c = (uL+uR)/2≡ ū, (5)

and satisfies the Lax entropy condition

λi(uR)≤ c≤ λi(uL), i = 1,2.

From (4) we obtain the condition: ηR =−(ηL+2)
For constant states uL,uR,ηL and ηR, let the initial data for (1), (2):

u(ξ ,0) =

{
uL, if ξ < 0,
uR, if ξ > 0,

η(ξ ,0) =

{
ηL, if ξ < 0,
ηR, if ξ > 0,

(6)

Theorem 1 Let the constant states uL,uR,ηL and ηR be given such the
(6) represents Riemann initial data for the system (1), (2).

(a) If uL > uR, then u has a single shock whereas η has a single jump

η(x, t) =

{
ηL, if x < ūt,
ηR, if x > ūt,

together with a propagating Dirac mass whose strength is given by

[w] = (t/2)
(
(uL−uR)(ηL+ηR+2)

)
. (7)

(b) If uL < uR, then the weak solution of u is a rarefaction whereas η has
two jump discontinuities given by

η(x, t) =


ηL, if x < uLt,
−1, if uLy≤ x≤ uRt,
ηR, if uRt < x.

(8)

Proof: Define a function w(x, t) by w(x, t) =
∫ x
−κ

η(s, t)ds Transform
(1), (2) into:

ut +uux = 0, (9)
wt +uwx =−u. (10)

Riemann initial data for w:

w(ξ ,0)≡ w0(ξ ) =

{
ηLκ +ηLξ , if ξ ≤ 0,
ηLκ +ηRξ , if ξ ≥ 0.

(11)

Case I: uL > uR

The solution of (9) is given by a shock wave travelling at a speed given
in (5). The characteristics for (10) are

x(t) =

{
uLt +ξ , if ξ < (ū−uL)t,
uRt +ξ , if ξ > (ū−uR)t,

The solution for w(x, t):

w(x, t) =

{
ηLκ +ηL(x−uLt)−uLt, if x≤ ūt,
ηRκ +ηR(x−uRt)−uRt, if x > ūt.

Since the initial assumption is that uL > uR, the characteristics emanat-
ing from ξ < 0 will propagate values of w(x, t) which are different from
those propagated by the characteristics originating from ξ > 0. The char-
acteristics together with the initial Riemann data (11) give

wL = ηLκ +
(
ηl(ū−uL)−uL

)
t,

wR = ηLκ +
(
ηR(ū−uR)−uR

)
t.

The strength of the jump:

[w] = wR−wL =
t
2
(
uL−uR

)(
ηL+ηR+2

)
. (12)

Case II: uL < uR

The solution of (9) is a rarefaction wave. The characteristic equations
for (10):

x(t) =


uRt +ξ , if ξ > 0,
γt, if ξ = 0, uL < γ < uR

uLt +ξ , if ξ < 0,

A graphical representation of the characteristics:

The solution of (10) is

w(x, t) =


ηLκ +ηL(x−uLt)−uLt, if x < uLt,
ηLκ− x, if uLt ≤ x≤ uRt,
ηlκ +ηR(x−uRt)−uRt, if uRt < x.

A partial derivative with respect to x gives the solution of η(x, t).

Weak asymptotic solution

Definition 1 Let fε(x, t) ∈ D ′(R) denote a collection of distributions
which depend on ε ∈ (0,1). If the estimate

〈 fε(x, t),ϕ(x)〉= o(1), as ε → 0, (13)

holds uniformly for any test function ϕ(x) ∈ D(R), then we have fε =
oD ′(1).

Definition 2 The family of smooth, complex-valued (real-valued) distri-
butions (uε) and (ηε) is a weak asymptotic solution to the system (1), (2)
if u, η ∈C

(
R+;D ′(R)

)
are real-valued distributions such that

uε ⇀ u, ηε ⇀ η as ε → 0,

holds for any fixed t ∈ (0,∞) in the sense of distributions in D ′(R) and

∂uε

∂ t
+

1
2

∂u2
ε

∂x
= oD ′(1), (14)

∂ηε

∂ t
+

∂
(
(ηε +1)uε

)
∂x

= oD ′(1). (15)

In addition, the initial data must satisfy

uε(ξ ,0)→ u(ξ ,0) and ηε(ξ ,0)→ η(ξ ,0),

Theorem 2 Let the constant states uL,uR,ηL and ηR be given such that
(6) represents Riemann initial data for the system (1), (2) and c is the
admissible shock speed given in (5). Then there exist weak asymptotic
solutions uε and ηε such that the families (uε) and (ηε) have distribu-
tional limits given by

u(x, t) = uL+(uR−uL)H(x− ct), (16)
η(x, t) = ηL+(ηR−ηL)H(x− ct)+α(t)δ (x− ct), (17)

where H is the Heaviside function, δ is the Dirac delta distribution, and

α(t) = [w].

Proof: Define an approximate delta distribution

δε(x, t) =
1

2ε
ρ

(
x− ct−3ε

ε

)
+

1
2ε

ρ

(
x− ct +3ε

ε

)
.

Define a regularized smooth function

Hε(x, t) =


1, if x≤ ct−10ε,
1
2, if ct−5ε < x < ct +5ε,

0, if x≥ ct +10ε,

which continuous smoothly in (−10ε,−5ε) and (5ε,10ε). Then:

δε(x− ct)⇀ δ (x− ct) as ε → 0 (18)

Hε(x− ct)δε(x− ct)⇀
1
2

δ (x− ct) (19)

Hε(x, t)
∂Hε(x, t)

∂x
=

1
2

δε(x, t)+oD ′(1) (20)

We start with the singular ansatz:

uε(x, t) = uL+(uR−uL)Hε(x− ct), (21)
ηε(x, t) = ηL+(ηR−ηL)Hε(x− ct)+α(t)δε(x− ct). (22)

Equation (2) becomes:

(ηR−ηL)∂tHε +α
′(t)δε− cα(t)δ ′+(uR−uL)∂xHε +uL(ηR−ηL)∂xHε

+uLα(t)δ ′+ηL(uR−uL)∂xHε +(uR−uL)(ηR−ηL)∂xH2
ε

+
α(t)

2
(uR−uL)δ

′ = oD ′(1).

By using (18)–(20), it follows from Definition 2 that

α
′(t) =

1
2
(
uL−uR

)(
ηL+ηR+2

)
,

Conclusion
•A hyperbolic system arising in the study of long waves in two-fluid

systems has been studied. The system is not strictly hyperbolic and
hence, the standard theory of hyperbolic conservation laws cannot be
used to find admissible weak solutions.

•However, the structure of the system makes it possible to reformulate
(2) in terms of the primitive w of the unknown η .

•An exact weak solution to the Riemann problem associated to the orig-
inal system (1), (2) has been found by solving a transport equation to
obtain unique solutions.

• The unique solutions to the hyperbolic system is given by a singular
solution featuring a Dirac delta distribution whose strength is α(t)
travelling with the Delta shock.

• The solution is redefined in terms of the theory of weak asymptotic
[2] solutions leading to a Delta shock with a strength α(t), where the
derivative α ′(t) represents the Rankine–Hugoniot deficit
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