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— h - depth of water at rest
— a - amplitude
— l - wavelength
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In an incompressible and inviscid fluid with uniform and constant
density (= 1), the flow is governed by the Euler equations:

∂t~v + ~v · ∇~v = −∇P + ~g,
∇ · ~v = 0,

where ~v is the flow velocity vector, P is the mechanic pressure and
~g represents the body accelerations.

— Often desirable to work with a simpler equation which
approximates the Euler equations in a given setting.
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An Example

One of the most famous model equations is the Kortweg-deVries
equation:

ut + uux +

(
u +

1
6

uxx

)
x
= 0. (1)

Derived from the Euler equations under the assumption that

a
h

and
(

h
l

)2

are small and equal.
That is, it is a model for the shallow-water/long-wave regime.
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More generally, we can consider equations of the form

ut + n(u)x + L(u)x = 0, (2)

where
— u : R× R→ R,
— n is a non-linear term, e.g. n(u) = up, p > 1,

— L is a Fourier multiplier operator: L̂f (ξ) = m(ξ)̂f (ξ).

Can also consider

ut + n(u)x + L(u2)x = 0
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Travelling waves

A travelling wave is a wave that moves with constant speed and
does not change shape in time:

— u(x , t) = ϕ(x − ct), where c > 0 is the speed of the wave.
From (2) we get

− cϕ+ n(ϕ) + L(ϕ) = 0. (3)

We are interested in:
— Periodic waves,
— Solitary waves: limx→±∞ ϕ(x) = 0,
— Highest waves (peaked/cusped).
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Waves of maximal height

−cϕ+
1
2
ϕ2 + L(ϕ) = 0

Peaked/cusped waves cannot exist if L is differentiating:

(c − L)ϕ =
1
2
ϕ2

if c −m 6= 0 and L : Cα(R)→ Cα−s(R), for some s > 0, then
ϕ ∈ C∞(R).
For example, the KdV equation has no maximal height.
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Maximal height
We can also rewrite −cϕ+ 1

2ϕ
2 + L(ϕ) = 0 as

(c − ϕ)2 = c2 − 2L(ϕ)

Hence, if ϕ < c, and L : Cα(R)→ Cα+r (R), r > 0, then

ϕ = c −
√

c2 − 2L(ϕ) ⇒ ϕ ∈ C∞.

Clearly the same argument also works for

−cϕ+
1
2
ϕ2 + L(ϕ2) = a (DP)
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Examples:

— m(ξ) =
√

tanh(ξ)
ξ (Whitham equation)

— m(ξ) = |ξ|−r , r > 0

We will focus particularly on the Degasperis-Procesi equation:

− cϕ+
1
2
ϕ2 +

3
2

L(ϕ2) = a, m(ξ) =
1

1 + ξ2 . (4)
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To prove existence and regularity of waves of maximal height, there
are two main steps [Ehrnström, Wáhlen 2016]

(a) An analysis of solutions that achieve the maximal height c,
(b) construction of a global curve of smooth periodic solutions

ϕ < c which approaches a wave of maximal height in the limit.

For P ∈ (0,∞], we consider non-constant P-periodic solutions ϕ
that are:
— even,
— non-decreasing on (−P/2,0).
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The regularity at the crest where ϕ = c depends on the rate of
decay and regularity of m.

Formally,

L(f )(x) = K ∗ f (x) =
∫
R

K (x − y)f (y) dy , K = F−1(m)

If m and ϕ is even and ϕ(0) = c, then

(c − ϕ(x))2 =L(ϕ)(0)− L(ϕ)(x)

=
1
2

∫
R
(2K (y)− K (x − y)− K (x + y))ϕ(y) dy

If |y | > |x |, then

2K (y)− K (y − x)− K (y + x) = −x2

2
(K ′′(ξ1) + K ′′(ξ2)).
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If
m(j)(ξ) . (1 + |ξ|)−r−j , j = 0,1(...),

then for |x | < 1

K (x) '


|x |r−1, if 0 < r < 1,
ln
(

1
|x |

)
, if r = 1,

1, if r > 1.

Hence if ϕ(0) = c, we expect

c1|x |r ≤ |c − ϕ(x)| ≤ c2|x |r , if 0 < r < 1,
c1|x | ≤ |c − ϕ(x)| ≤ c2|x |, if r > 1.
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Regularity at the crest
Theorem 1 (M. N. A.)

Let ϕ ≤ c be a P-periodic solution to (4) which is even,
non-constant and non-decreasing on (−P/2,0) with ϕ(0) = c.
Then

(i) ϕ is smooth on (−P/2,0).
(ii) ϕ ∈ C0,1(R), i.e. ϕ is Lipschitz.
(iii) ϕ is exactly Lipschitz at x = 0; that is, there exist constants

0 < c1 < c2 such that

c1|x | ≤ |c − ϕ(x)| ≤ c2|x |, |x | � 1.

In particular, the DP equation does not have cuspon solutions.
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Global bifurcation

For α > min{r ,1} and P > 0, let

U := {(ϕ, c) ∈ Cα
even(SP)× (0,∞) : ϕ < c}.

The waves of maximal height lie on the boundary of U.
— Create a global curve of (smooth) solutions in U that

approaches the boundary of U,
— Show that the curve approaches a wave of maximal height in

the limit.
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Theorem 2
For some c > 0, there exists curves s → (ϕ(s), c(s)), s ≥ 0 of
nontrivial solutions, bifurcating from a constant solution, such that
at least one of the three alternatives hold:

(i) ‖(ϕ(s), c(s))‖Cα(SP)×R →∞ as s →∞.
(ii) (ϕ(s), c(s)) approaches the boundary of U as s →∞.
(iii) The function s 7→ (ϕ(s), c(s)) is (finitely) periodic.

Use Arzela-Ascoli’s theorem to show that any sequence of
solutions

{(ϕn, cn)}n, {cn}n bounded

has a subsequence that converges uniformly to a solution.
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To obtain periodic peakons/cuspons Theorem 2, we need to show
that:
— c(s) 6→ ∞,
— c(s) 6→ 0
— Option (iii) does not occur.

If the above holds, then (i) and/or (ii) must occur, but our previous
analysis shows that both (i) and (ii) occur if and only if

lim
s→∞

c(s)− ϕ(s)(0) = 0,

which is exactly what we need.

www.ntnu.no Mathias Nikolai Arnesen, Travelling waves



To obtain periodic peakons/cuspons Theorem 2, we need to show
that:
— c(s) 6→ ∞,
— c(s) 6→ 0
— Option (iii) does not occur.

If the above holds, then (i) and/or (ii) must occur, but our previous
analysis shows that both (i) and (ii) occur if and only if

lim
s→∞

c(s)− ϕ(s)(0) = 0,

which is exactly what we need.

www.ntnu.no Mathias Nikolai Arnesen, Travelling waves



18

Some results

Whitham equation: P-periodic C1/2 cusped solutions for all periods
P > 0. [Ehrnström, Wáhlen 2016]

L has symbol m(ξ) = |ξ|−r : 2π-periodic peakons for all r > 1.
[Brüll, Dhara 2019]

Degasperis-Procesi: P-periodic peakons for all sufficiently small
P > 0. [M. N. A. 2019]
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Thank you for your attention!
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