Travelling waves in non-local dispersive equations
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— h - depth of water at rest
— a- amplitude
— [ - wavelength
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In an incompressible and inviscid fluid with uniform and constant
density (= 1), the flow is governed by the Euler equations:

8H7—|—\7~V\7=—VP+§,
V-v=0,

where V is the flow velocity vector, P is the mechanic pressure and
g represents the body accelerations.
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In an incompressible and inviscid fluid with uniform and constant
density (= 1), the flow is governed by the Euler equations:

OV +V-VV=-VP+g,

V-V=0,
where V is the flow velocity vector, P is the mechanic pressure and
g represents the body accelerations.

— Often desirable to work with a simpler equation which
approximates the Euler equations in a given setting.
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An Example

One of the most famous model equations is the Kortweg-deVries
equation:

’
Us + uuy + <U+Uxx> =0. (1)
6 X
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An Example

One of the most famous model equations is the Kortweg-deVries
equation:

6

Derived from the Euler equations under the assumption that

a h\?
F and (l)
are small and equal.

That is, it is a model for the shallow-water/long-wave regime.

’
Us + uuy + <U+Uxx> =0. (1)
X
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More generally, we can consider equations of the form
Ut + n(u)x + L(u)x = 0, @)

where
— U:RxR—=R,
— nis anon-linear term, e.g. n(u) = uP, p > 1,

~

— L is a Fourier multiplier operator: ff(g) = m(&)f(&).
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More generally, we can consider equations of the form
Ut + n(u)x + L(u)x = 0, @)

where
— U:RxR—=R,
— nis anon-linear term, e.g. n(u) = uP, p > 1,

— L is a Fourier multiplier operator: ff(g) = m(&)f(&).
Can also consider

u + n(u)x + L(u?)x =0
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Travelling waves

A travelling wave is a wave that moves with constant speed and
does not change shape in time:
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Travelling waves

A travelling wave is a wave that moves with constant speed and
does not change shape in time:

— u(x,t) = p(x — ct), where ¢ > 0 is the speed of the wave.
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Travelling waves

A travelling wave is a wave that moves with constant speed and
does not change shape in time:

— u(x,t) = p(x — ct), where ¢ > 0 is the speed of the wave.
From (2) we get
— Cp+n(p) + L(¢) = 0. 3)
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Travelling waves

A travelling wave is a wave that moves with constant speed and
does not change shape in time:

— u(x, t) = p(x — ct), where ¢ > 0 is the speed of the wave.
From (2) we get
— Cp + n(p) + L(¢) =0. 3)
We are interested in:
— Periodic waves,
— Solitary waves: limy_, 1o ¢(x) =0,
— Highest waves (peaked/cusped).
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Waves of maximal height

1
—Cp + 59"+ L(g) =0
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Waves of maximal height

1
—Cp + 59"+ L(g) =0
Peaked/cusped waves cannot exist if L is differentiating:

1 2
(c-Ly=3v

ifc—m+#0andL: C*R) — C*5(R), for some s > 0, then
¢ € C*(R).
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Waves of maximal height

1
—Cp + 59"+ L(g) =0
Peaked/cusped waves cannot exist if L is differentiating:

1 2
(c-Ly=3v

ifc—m+#0andL: C*R) — C*5(R), for some s > 0, then
¢ € C*(R).
For example, the KdV equation has no maximal height.

NTNU
Norwegian University of
Science and Technology

\ Mathias Nikolai Arnesen, Travelling waves

www.ntnu.no \



Maximal height

We can also rewrite —cyp + 0% + L(p) = 0 as

(c— )2 =c®—2L(p)
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Maximal height

We can also rewrite —cyp + 0% + L(p) = 0 as

(c— )2 =c®—2L(p)

Hence, if ¢ < ¢, and L: C*(R) — C**"(R), r > 0, then

p=Cc—/c2-2L(p) = pel™.
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Maximal height
We can also rewrite —cyp + 0% + L(p) = 0 as
(c—¢)? =c®—2L(p)
Hence, if ¢ < ¢, and L: C*(R) — C**"(R), r > 0, then
p=c—1/C2-2L(p) = ¢eC™.
Clearly the same argument also works for

]
—cp+5¢° +L(p*)=a (DP)
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Examples:

— m(¢) = ,/% (Whitham equation)
— m) =", r>0
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Examples:

— m(¢) = % (Whitham equation)

— m&) =€, r>0
We will focus particularly on the Degasperis-Procesi equation:

1 3
_C@+§¢2+§L(S@2):a’ m(f): ] +£2 (4)
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To prove existence and regularity of waves of maximal height, there
are two main steps [Ehrnstrom, Wahlen 2016]
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To prove existence and regularity of waves of maximal height, there
are two main steps [Ehrnstrom, Wahlen 2016]

(a) An analysis of solutions that achieve the maximal height c,
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To prove existence and regularity of waves of maximal height, there
are two main steps [Ehrnstrom, Wahlen 2016]

(a) An analysis of solutions that achieve the maximal height c,

(b) construction of a global curve of smooth periodic solutions
¢ < ¢ which approaches a wave of maximal height in the limit.
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To prove existence and regularity of waves of maximal height, there
are two main steps [Ehrnstrom, Wahlen 2016]

(a) An analysis of solutions that achieve the maximal height c,

(b) construction of a global curve of smooth periodic solutions
¢ < ¢ which approaches a wave of maximal height in the limit.

For P € (0, oc], we consider non-constant P-periodic solutions ¢
that are:
— even,

— non-decreasing on (—P/2,0).
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The regularity at the crest where ¢ = ¢ depends on the rate of
decay and regularity of m.
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The regularity at the crest where ¢ = ¢ depends on the rate of
decay and regularity of m. Formally,

L()(x) = K + (x) = /R K(x—y)fy)dy, K=7"(m)
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The regularity at the crest where ¢ = ¢ depends on the rate of
decay and regularity of m. Formally,

L(F)(x) = K * f(x / K(x — y)f(y)dy, K=2""(m)
If mand ¢ is even and ¢(0) = c, then

(6~ 6())? =L(£)(0) ~ L(£)(X
- / (2K(y) — K(x = ¥) = K(x+ ¥) ¢(y) dy
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The regularity at the crest where ¢ = ¢ depends on the rate of
decay and regularity of m. Formally,

LW = K+ 100 = | Kix=pfy)ay. K= 7" (m)
If mand  is even and x(0) = c, then
(¢ — ()% =L(¥)(0) - LH)(x)
=5 / (2K(y) ~ K(x =) = K(x + 1)) (¥ dy

If |y| > |x|, then

2
2K(y) = K(y = X) = K(y + x) = =5 (K"(¢1) + K"(&)):
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mDE) S A+1E) ", j=0,1(.),
then for |x| < 1

x| 1, if0<r<1,
~Y i i —
K(x) ~ In(|xl), ifr=1,
1, if r>1.
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m(E) < (T +1E)~", j=0,1(.),
then for |x| < 1

x| 1, if0<r<1,
~ 1 i —_
K(x) ~ In(lx|) ifr=1,
1, if r>1.

Hence if ¢(0) = ¢, we expect

cilx|" <[c—p(X)| < clx|, if 0<r<At,
cilx| < fc—p(X)| < colx|, it r>1.
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Regularity at the crest
Theorem 1 (M. N. A))

Let ¢ < ¢ be a P-periodic solution to (4) which is even,

non-constant and non-decreasing on (—P/2,0) with »(0) = c.
Then

(i) ¢ is smooth on (—P/2,0).
(i) ¢ € CO'(R), i.e. ¢ is Lipschitz.

(iii) » is exactly Lipschitz at x = 0; that is, there exist constants
0 < ¢y < &> such that

cilx| < e —p(X)| < x|, |x] < 1.
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Regularity at the crest
Theorem 1 (M. N. A))

Let ¢ < ¢ be a P-periodic solution to (4) which is even,
non-constant and non-decreasing on (—P/2,0) with »(0) = c.
Then

(i) ¢ is smooth on (—P/2,0).

(i) ¢ € CO'(R), i.e. ¢ is Lipschitz.

(iii) » is exactly Lipschitz at x = 0; that is, there exist constants
0 < ¢y < &> such that

ci|x| < fc—o(X)| < c2lx|, x| < 1.

In particular, the DP equation does not have orvsolutions.
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Global bifurcation

For & > min{r,1} and P > 0, let

U :={(¢,¢) € Cgren(Sp) x (0,00) : p < c}.
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Global bifurcation

For & > min{r,1} and P > 0, let

U:={(,c) € Cgren(Sp) x (0,00) : p < c}.

The waves of maximal height lie on the boundary of U.
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Global bifurcation

For & > min{r,1} and P > 0, let

U:={(,c) € Cgren(Sp) x (0,00) : p < c}.

The waves of maximal height lie on the boundary of U.

— Create a global curve of (smooth) solutions in U that
approaches the boundary of U,

— Show that the curve approaches a wave of maximal height in
the limit.
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Theorem 2

For some ¢ > 0, there exists curves s — (¢(s), c(s)), s > 0 of
nontrivial solutions, bifurcating from a constant solution, such that
at least one of the three alternatives hold:

(i) [I(e(s), c(s))llca(sp)xr —> 00 @s § — oo.
(i) (p(s),c(s)) approaches the boundary of U as s — c.
(ii) The function s — (¢(s), c(s)) is (finitely) periodic.
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Theorem 2

For some ¢ > 0, there exists curves s — (¢(s), c(s)), s > 0 of
nontrivial solutions, bifurcating from a constant solution, such that

at least one of the three alternatives hold:

(i) 11(5), &(5))lca(sp)xr — 00 @s s = oo.

(i) (p(s),c(s)) approaches the boundary of U as s — c.
(ii) The function s — (¢(s), c(s)) is (finitely) periodic.

Use Arzela-Ascoli’s theorem to show that any sequence of

solutions
{(¢n,cn)}n, {cn}n bounded

has a subsequence that converges uniformly to a solution.
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To obtain periodic peakons/cuspons Theorem 2, we need to show
that:

— ¢(8) /4 oo,
—c(s) A0

— Option (iii) does not occur.
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To obtain periodic peakons/cuspons Theorem 2, we need to show
that:

— ¢(8) /4 oo,
—c(s) A0
— Option (iii) does not occur.

If the above holds, then (i) and/or (ii) must occur, but our previous
analysis shows that both (i) and (ii) occur if and only if

lim ¢(s) — »(s)(0) =0,

S—00

which is exactly what we need.
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Some results

Whitham equation: P-periodic C'/? cusped solutions for all periods
P > 0. [Ehrnstrém, Wahlen 2016]
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Some results

Whitham equation: P-periodic C'/? cusped solutions for all periods
P > 0. [Ehrnstrém, Wahlen 2016]

L has symbol m(§) = |£|~": 2x-periodic peakons for all r > 1.
[Brall, Dhara 2019]
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Some results

Whitham equation: P-periodic C'/? cusped solutions for all periods
P > 0. [Ehrnstrém, Wahlen 2016]

L has symbol m(§) = |£|~": 2x-periodic peakons for all r > 1.
[Brall, Dhara 2019]

Degasperis-Procesi: P-periodic peakons for all sufficiently small
P> 0.[M.N.A.2019]
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Thank you for your attention!
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