Finite element systems for elasticity

Snorre H. Christiansen

Department of Mathematics University of Oslo

Norwegian PDE meeting, June 6, 2019

joint work with Kaibo Hu

Outline

- Elasticity complexes
- ▶ New finite element discretization
- ► Finite element systems

Elasticity Strain Complex

Continuous metrics:

$$\mathrm{H}^2(U,\mathbb{V}) \xrightarrow{\mathsf{def}} \mathrm{H}^1_{\mathsf{sven}}(U,\mathbb{S}) \xrightarrow{\mathsf{sven}} \mathrm{H}^0(U,\mathbb{R}).$$
 (1)

with:

$$\mathrm{H}^1_{\mathsf{sven}}(U,\mathbb{S}) = \{ u \in \mathrm{H}^1(U,\mathbb{S}) : \mathsf{sven} \ u \in \mathrm{H}^0(U,\mathbb{R}) \}.$$
 (2)

- Exactness and rigid motions.
- Saint Venant compatibility and linearized curvature.
- Lower regularity and partitions of unity.

New finite element

Figure: Strain complex with continuous metrics.

Spaces

Vector valued Clough Tocher:

$$A^{0}(T) = C^{1}P^{3}(\mathcal{R}(T), \mathbb{V}), \tag{3}$$

▶ Continuous P^2 metrics with integrable sven $(\partial_{\nu}u\tau \cdot \tau)$:

$$A^{1}(T) = C_{\text{sven}}^{0} P^{2}(\mathcal{R}(T), \mathbb{S}), \tag{4}$$

DoFs: values at vertices (3×3) , pairings with M(E) for each edge E (3×3) , integral against normal vector on edges (3×2) .

Piecewise constants:

$$A^{2}(T) = P^{0}(\mathcal{R}(T), \mathbb{R}), \tag{5}$$

DoFs: integration against affine functions.

Finite element systems [C. 08, C.-Hu 18]

- ▶ Fix a cellular complex T.
- ▶ A finite element system A is $A^k(T)$ for $k \in \mathbb{N}$ and $T \in \mathcal{T}$ of all dimensions.
 - differentials: $d: A^k(T) \to A^{k+1}(T)$.
 - restrictions: $T' \subseteq T$ gives $r : A^k(T) \to A^k(T')$. commutation relations. de Rham map.
- Associated global space:

$$A^{k}(\mathcal{T}) = \{ u \in \bigoplus_{T \in \mathcal{T}} A^{k}(T) : T' \subseteq T \Rightarrow u_{T}|_{T'} = u_{T'} \}.$$

Encodes continuity.

- FES is a contravariant functor from a cellular complex to differential complexes.
 - Global space is the inverse limit.

Induced operators

$$\Gamma(T, \mathbb{V}) \xrightarrow{\text{def}} \Gamma(T, \mathbb{S}) \xrightarrow{\text{sven}} \Gamma(T, \mathbb{R})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

Cochains with coefficients

- ▶ For each $T \in \mathcal{T}$, a vectorspace L(T). A discrete vectorbundle.
- ▶ When T' is a codim 1 face of T, an isomorphism $t_{TT'}: L(T') \to L(T)$. A discrete connection.
- Flatness:

$$t_{TT_0'}t_{T_0'T''} = t_{TT_1'}t_{T_1'T''}. (6)$$

- ▶ Cochains $C^k(T, L)$: $(u(T))_{T \in T^k}$ such that $u(T) \in L(T)$.
- ▶ The differential $\delta_{\mathbf{t}}^{k}: \mathcal{C}^{k}(\mathcal{T}, L) \to \mathcal{C}^{k+1}(\mathcal{T}, L)$ is defined by:

$$(\delta_{\mathsf{t}}^{k} u)(T) = \sum_{T' \leq T} \mathrm{o}(T, T') \mathsf{t}_{TT'} u(T'). \tag{7}$$

▶ Flatness gives $\delta_{t}^{k+1} \circ \delta_{t}^{k} = 0$.

FES and cochains

• e : $A^k(T) \to L(T)$. Stokes: For $u \in A^{k-1}(T)$:

$$e_T d_T u = \sum_{T' \in \partial T} o(T, T') t_{TT'} e_{T'} r_{T'T} u.$$
 (8)

Commutes with differentials:

$$e: A^{\bullet}(\mathcal{T}') \to \mathcal{C}^{\bullet}(\mathcal{T}', L).$$
 (9)

de Rham theorem: induces isomorphisms on cohomology groups.