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Outline

» Elasticity complexes
» New finite element discretization

» Finite element systems



Elasticity Strain Complex

» Continuous metrics:

H2(U, V) =20 HL (U, S) 2% HO(U, R).

sven

with:

Hien(U,S) = {u € HY(U,S) : svenu € HO(U,R)}.

v

Exactness and rigid motions.

v

Saint Venant compatibility and linearized curvature.

v

Lower regularity and partitions of unity.



New finite element

symgrad & 74 rotrot
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Figure: Strain complex with continuous metrics.



Spaces

» Vector valued Clough Tocher:

AY(T) = C'P3(R(T), V), (3)
» Continuous P? metrics with integrable sven (9, ut - 7):

AN(T) = CLenP?(R(T),S), (4)

DoFs: values at vertices (3 x 3),
pairings with M(E) for each edge E (3 x 3),
integral against normal vector on edges (3 x 2).

» Piecewise constants:
A(T) =P%R(T),R), (5)

DoFs: integration against affine functions.



Cellular complexes
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Cellular complexes




Cellular complexes




Finite element systems [C. 08, C.-Hu 18]

» Fix a cellular complex T.

> A finite element system A is
AK(T) for k € Nand T € T of all dimensions.
— differentials: d : AK(T) — AAHL(T).
— restrictions: T’ C T gives r : AK(T) — AK(T).
commutation relations. de Rham map.

» Associated global space:

ANT)={ue @ AT) : T'CT=urlp =ur}
TeT

Encodes continuity.

» — FES is a contravariant functor
from a cellular complex to differential complexes.
— Global space is the inverse limit.



Induced operators

r(T.7) —— % [(T.5) — " r(T.R)
u u
1
(u-T,u-v,00u-7,00u-v) (ur - 7yut - v,uv -V, OpuT - T)
u
1 M(E,R? x R?) ME,R3 xR)
(u,grad u)

(u,v,u',v') = (0-u, %(u' +04v), v, 0-u")

(ut + v, Orurt” + O-vur” +|u' TV + V")

(0, v, w, k)

urt' + v(tv" + ") + wor!

r(V,V x M)

(u,v) — sym(v)

r(v,s)



Cochains with coefficients

v

For each T € T, a vectorspace L(T). A discrete vectorbundle.

v

When T’ is a codim 1 face of T, an isomorphism
trr : L(T') — L(T). A discrete connection.

Flatness:

v

trootry e =ttt (6)

Cochains CX(T, L): (u(T))eg« such that u(T) € L(T).

v

» The differential 6f : CX(T, L) — CK*1(T, L) is defined by:
G u)(T)= Y ofT, T)trru(T). (7)
TaT

Flatness gives 6Kt1 o 6k = 0.

v



FES and cochains

» e: AK(T) — L(T). Stokes: For u € Ax"1(T):

erdru = Z O(T, T/)t-,--,-/e-,-/rT/-,-u.

T'edT
» Commutes with differentials:
e: A(T') = C(T, L).

» de Rham theorem:
induces isomorphisms on cohomology groups.
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