Statistical solutions of hyperbolic conservation laws

Ulrik Skre Fjordholm¹

Joint work with: Kjetil Lye², Siddhartha Mishra^{1,2}, Franziska Weber³

6 June 2019

¹University of Oslo ²ETH Zürich ³Carnegie Mellon University

Introduction		Uniqueness, regularity and numerical approximation
000000		

Section 1

Introduction

Introduction		Uniqueness, regularity and numerical approximation
0000000		

Conservation laws

Hyperbolic system of conservation law

$$\partial_t u + \nabla \cdot f(u) = 0$$

 $u(x, 0) = u_0(x)$
(

Conserved variables $u = u(x, t) : \mathbb{R}^d \times \mathbb{R}_+ \to \mathbb{R}^N$ Initial data $u_0 : \mathbb{R}^d \to \mathbb{R}^N$ Flux function $f : \mathbb{R}^N \to \mathbb{R}^{N \times d}$ 1

Introduction		Uniqueness, regularity and numerical approximation
000000		

Conservation laws

Hyperbolic system of conservation law

$$\partial_t u + \nabla \cdot f(u) = 0$$

$$u(x, 0) = u_0(x)$$
(1)

Example (Euler equations for compressible, isentropic gases)

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho v \end{pmatrix} + \nabla \cdot \begin{pmatrix} \rho v \\ \rho v \otimes v + \rho I \end{pmatrix} = 0.$$

Here, $\rho =$ mass density, v = velocity, p = pressure, for instance

$$p(\rho) = \kappa \rho^{\gamma}.$$

Introduction		Uniqueness, regularity and numerical approximation
000000		

Conservation laws

Hyperbolic system of conservation law

$$\partial_t u + \nabla \cdot f(u) = 0$$

$$u(x, 0) = u_0(x)$$
 (1)

Example (Euler equations for compressible, polytropic ideal gases)

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho v \\ E \end{pmatrix} + \nabla \cdot \begin{pmatrix} \rho v \\ \rho v \otimes v + pl \\ (E+p)v \end{pmatrix} = 0.$$

The density ρ , velocity field v, pressure p and total energy E are related by the equation of state

$$E = \frac{p}{\gamma - 1} + \frac{\rho |\mathbf{v}|^2}{2}$$

Introduction				
0000000	000000	000000000	000000	000000

Weak (entropy) solutions

$$\partial_t u +
abla \cdot f(u) = 0$$

 $u(x,0) = u_0(x)$

Definition

A weak solution satisfies (1) in the sense of distributions:

$$\int_{\mathbb{R}^d}\int_{\mathbb{R}_+} u\partial_t \varphi + f(u)\cdot \nabla \varphi \,\,dxdt + \int_{\mathbb{R}^d} u_0(x)\varphi(x,0)\,\,dx = 0 \qquad \forall \,\,\varphi \in C^1_c(\mathbb{R}^d \times \mathbb{R}_+).$$

- Weak solutions are generally non-unique
- Entropy conditions (hopefully!) single out the "physical" solution

(1)

Introduction		
0000000		

Weak (entropy) solutions

$$\partial_t u +
abla \cdot f(u) = 0$$

 $u(x,0) = u_0(x)$

Definition

An entropy solution satisfies for all entropy pairs (η, q)

$$\partial_t \eta(u) + \nabla \cdot q(u) \leqslant 0 \quad \text{in } \mathcal{D}'(\mathbb{R}^d \times \mathbb{R}_+)$$

 $(\eta:\mathbb{R}^N
ightarrow\mathbb{R}$ is convex, $q'(u)=\eta'(u)f'(u))$

- Weak solutions are generally non-unique
- Entropy conditions (hopefully!) single out the "physical" solution

(1)

 Introduction
 Turbulence theory
 Measure-valued and sta

 0000000
 0000000
 00000000

Statistical solutions and turbulence 000000

Uniqueness, regularity and numerical approximation 0000000

Well-posedness of conservation laws

$$\begin{aligned} \nabla_t u + \nabla \cdot f(u) &= 0 \\ u(x,0) &= u_0(x) \end{aligned} \tag{1}$$

Theorem (P. Lax 1957, J. Glimm 1965, N. H. Risebro 1993, A. Bressan et al. 2000)

 δ

For systems of equations in one dimension d = 1, there exists a unique entropy solution of (1) whenever the initial data is sufficiently small (i.e., sufficiently close to a constant solution).

Measure-valued and statistical solutions

Statistical solutions and turbulence 000000

Uniqueness, regularity and numerical approximation
0000000

Well-posedness of conservation laws

Theorem (C. De Lellis, L. Székelyhidi Jr. 2009)

The multi-D incompressible Euler equations

$$\partial_t v +
abla \cdot (v \otimes v) +
abla p = 0$$

 $abla \cdot v = 0$

are <u>ill-posed in the space of continuous solutions</u>. (There exists **"wild"** initial data with infinitely many "entropy solutions".)

Statistical solutions and turbulence

Uniqueness, regularity and numerical approximation

Well-posedness of conservation laws

Theorem (C. De Lellis, L. Székelyhidi Jr. 2010)

The multi-D isentropic Euler equations

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\partial_t (\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) + \nabla p(\rho) = 0$$
(2)

are <u>ill-posed in the sense of entropy solutions</u>. (There exists **"wild"** initial data with infinitely many entropy solutions.)

Theorem (E. Chiodaroli, C. De Lellis, O. Kreml 2013–)

д

There exists Lipschitz continuous initial data for which (2) has infinitely many entropy solutions.

Statistical solutions and turbulence

Uniqueness, regularity and numerical approximation

Well-posedness of conservation laws

Theorem (C. De Lellis, L. Székelyhidi Jr. 2010)

The multi-D isentropic Euler equations

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\partial_t (\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v}) + \nabla p(\rho) = 0$$
(2)

are <u>ill-posed in the sense of entropy solutions</u>. (There exists **"wild**" initial data with infinitely many entropy solutions.)

Theorem (E. Chiodaroli, C. De Lellis, O. Kreml 2013-)

д

There exists Lipschitz continuous initial data for which (2) has infinitely many entropy solutions.

Question

• How should we think of these infinitely many solutions?

Turbulence theory		Uniqueness, regularity and numerical approximation
00000		

Section 2

Turbulence theory

Turbulence theory	
00000	

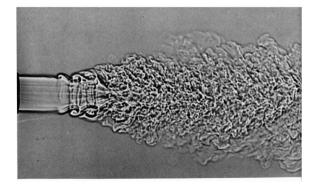
Statistical solutions and turbulence 000000

Uniqueness, regularity and numerical approximation

Turbulence

Quasi definition

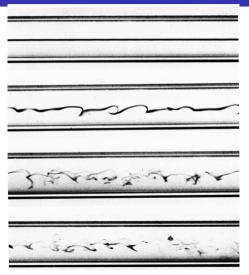
Turbulence is a sudden chaotic, unpredictable behavior of fluids at a multitude of spatial scales.



Introduction 0000000 Measure-valued and statistical solution 0000000000 Statistical solutions and turbulence 000000 Uniqueness, regularity and numerical approximation 0000000

Turbulence, real and simulated

Turbulence theory



Introduction 0000000 Measure-valued and statistical solution: 0000000000 Statistical solutions and turbulence 000000

Uniqueness, regularity and numerical approximation

Turbulence, real and simulated

Turbulence theory

Figure: The Navier-Stokes equations in real life

Introduction 0000000 Measure-valued and statistical solution: 000000000 Statistical solutions and turbulence 000000

Uniqueness, regularity and numerical approximation 0000000

Turbulence, real and simulated

Turbulence theory

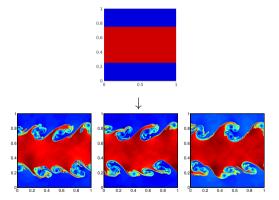


Figure: Numerical simulation of the compressible Euler equations

	Turbulence theory			
0000000	00000	000000000	000000	000000

Approximate solutions and compactness

• A viscous regularization or numerical method for (1) might look like

 $\partial_t u^{\varepsilon} + \nabla \cdot f(u^{\varepsilon}) = \varepsilon Q^{\varepsilon}$ where Q^{ε} is (numerical) diffusion.

• The diffusion provides (ε -dependent) regularity of u^{ε} , but not enough for compactness in the limit $\varepsilon \to 0$.

Turbulence theory		
000000		

Approximate solutions and compactness

• A viscous regularization or numerical method for (1) might look like

 $\partial_t u^{\varepsilon} + \nabla \cdot f(u^{\varepsilon}) = \varepsilon Q^{\varepsilon}$ where Q^{ε} is (numerical) diffusion.

• The diffusion provides (ε -dependent) regularity of u^{ε} , but not enough for compactness in the limit $\varepsilon \to 0$.

Observations from turbulence theory

- **1** Turbulent flows are only predictable in a **statistical** sense (e.g., over long times or over many realizations)
- ② Ensembles of turbulent flows might have higher regularity than individual realizations of the flow (anomalous dissipation)

Turbulence theory		
000000		

Approximate solutions and compactness

• A viscous regularization or numerical method for (1) might look like

 $\partial_t u^{\varepsilon} + \nabla \cdot f(u^{\varepsilon}) = \varepsilon Q^{\varepsilon}$ where Q^{ε} is (numerical) diffusion.

• The diffusion provides (ε -dependent) regularity of u^{ε} , but not enough for compactness in the limit $\varepsilon \to 0$.

Observations from turbulence theory

- **1** Turbulent flows are only predictable in a **statistical** sense (e.g., over long times or over many realizations)
- **2** Ensembles of turbulent flows might have higher regularity than individual realizations of the flow (*anomalous dissipation*)

Questions

- How do we represent an *uncertain solution*? What equations does it satisfy?
- Or Can we utilize the anomalous dissipation to get compactness of ensembles of approximate solutions?

	Measure-valued and statistical solutions	Uniqueness, regularity and numerical approximation
	000000000	

Section 3

Measure-valued and statistical solutions

	Measure-valued and statistical solutions	Uniqueness, regularity and numerical approximation
	00000000	

Young measures

Definition

A **Young measure** is a map $\nu : x \mapsto \nu_x \in \mathcal{P}(\mathbb{R}^N)$. We denote

$$\langle
u_{\mathsf{x}}, f
angle = \int_{\mathbb{R}^N} f(u) \, d
u_{\mathsf{x}}(u).$$

(Here, $\mathcal{P}(X) = \{\text{probability measures on } X\}.$)

Example

•
$$\nu_x = \delta_{u(x)}$$
 for some function $u = u(x)$ ("atomic measure")
• $\nu_x = \frac{1}{M} \sum_{i=1}^{M} \delta_{u^i(x)}$ for functions u^1, \dots, u^M ("empirical measure")

eory Measure-valued and statistical solutions	 Statistical solutions and turbulence 	Uniqueness, regularity and numerical approximation
00000000		

Measure-valued solutions

$$\partial_t u(x,t) + \nabla \cdot f(u(x,t)) = 0$$

 $u(x,0) = u_0(x)$

- The Young measure $\nu = \nu_{x,t}$ should satisfy (1) in an *averaged sense*.
- Consider u = u(x, t) as a free variable and integrate over $u \in \mathbb{R}^N$ w.r.t. $\nu_{x,t}$ to get:

R. J. DiPerna. "Measure-valued solutions to conservation laws". In: <u>Arch. Rational Mech. Anal.</u> 88 (3 1985), 223–270.

(1)

Measure-valued and statistical solutions	
00000000	

Measure-valued solutions

$$\partial_t u(x,t) + \nabla \cdot f(u(x,t)) = 0$$

 $u(x,0) = u_0(x)$

(1)

(3)

- The Young measure $\nu = \nu_{x,t}$ should satisfy (1) in an *averaged sense*.
- Consider u = u(x, t) as a free variable and integrate over $u \in \mathbb{R}^N$ w.r.t. $\nu_{x,t}$ to get:

Definition

u is a measure-valued (MV) solution of (1) if

$$\partial_t \langle \nu_{\mathsf{x},t}, u
angle +
abla \cdot \langle
u_{\mathsf{x},t}, f(u)
angle = 0 \qquad ext{in } \mathcal{D}'(\mathbb{R}^d imes \mathbb{R}_+).$$

Here,

$$\langle
u_{x,t}, u
angle = \int_{\mathbb{R}^N} u \, d
u_{x,t}(u), \qquad \langle
u_{x,t}, f(u)
angle = \int_{\mathbb{R}^N} f(u) \, d
u_{x,t}(u).$$

R. J. DiPerna. "Measure-valued solutions to conservation laws". In: <u>Arch. Rational Mech. Anal.</u> 88 (3 1985), 223–270.

Measure-valued and statistical solutions

Statistical solutions and turbulence 000000

Uniqueness, regularity and numerical approximation

Deficiencies of MV solutions

Definition (Measure-valued solution)

$$\partial_t \langle \nu_{x,t}, u \rangle + \nabla \cdot \langle \nu_{x,t}, f(u) \rangle = 0 \quad \text{in } \mathcal{D}'(\mathbb{R}^d \times \mathbb{R}_+)$$
(3)

However, measure-valued solutions are **generically non-unique:** Enforcing a condition on only two moments $(\langle \nu_{x,t}, u \rangle$ and $\langle \nu_{x,t}, f(u) \rangle)$ does not uniquely determine the measure $\nu_{x,t}$.

We add instead information about spatial correlations

	Measure-valued and statistical solutions	Uniqueness, regularity and numerical approximation
	00000000	

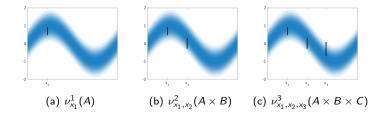
Correlation measures

Definition (USF, S. Lanthaler, S. Mishra 2017)

A correlation measure is a hierarchy of Young measures (ν^1, ν^2, \dots) where

- $\nu_x^1(A)$ = probability that $u(x) \in A$
- $\nu_{x,y}^2(A \times B) = \text{probability that } u(x) \in A \text{ and } u(y) \in B$

•
$$\nu^3_{x_1,x_2,x_3}(A_1 \times A_2 \times A_k) = \dots$$



	Measure-valued and statistical solutions	Uniqueness, regularity and numerical approximation
	000000000	

Correlation measures

Definition (USF, S. Lanthaler, S. Mishra 2017)

A correlation measure is a hierarchy of Young measures ($u^1,
u^2, \dots$) where

- $\nu_x^1(A) =$ probability that $u(x) \in A$
- $\nu_{x,y}^2(A \times B) =$ probability that $u(x) \in A$ and $u(y) \in B$

•
$$\nu^3_{x_1,x_2,x_3}(A_1 \times A_2 \times A_k) = \ldots$$

- Each u^k is a map $(x_1, \ldots, x_k) \mapsto
 u^k_{x_1, \ldots, x_k} \in \mathcal{P}((\mathbb{R}^N)^k)$
- The hierarchy $(
 u^1,
 u^2, \dots)$ must satisfy conditions on
 - 1 measurability
 - 2 consistency
 - 3 symmetry
 - 4 integrability (i.e. $\int_{\mathbb{R}^d} \langle \nu_x^1, |u|^p \rangle \, dx < \infty$)
 - **6** diagonal continuity (ν must satisfy the "Lebesgue Differentiation Theorem")

	Measure-valued and statistical solutions	Uniqueness, regularity and numerical approximation
	000000000	

Correlation measures

Definition (USF, S. Lanthaler, S. Mishra 2017)

A correlation measure is a hierarchy of Young measures ($u^1,
u^2, \dots$) where

- $\nu_x^1(A) = \text{probability that } u(x) \in A$
- $\nu_{x,y}^2(A \times B)$ = probability that $u(x) \in A$ and $u(y) \in B$
- $\nu^3_{x_1,x_2,x_3}(A_1 \times A_2 \times A_k) = \ldots$

Example (Empirical measure)

For some $u_1, \ldots, u_M : \mathbb{R}^d \to \mathbb{R}^N$, let $\nu_x^1 = \frac{1}{M} \sum_{i=1}^M \delta_{u^i(x)}$,

$$u_{x_1,\ldots,x_k}^k = \frac{1}{M} \sum_{i=1}^M \delta_{u^i(x_1)} \otimes \cdots \otimes \delta_{u^i(x_k)}$$

for all $k \in \mathbb{N}$, $x_j \in \mathbb{R}^d$.

Measure-valued and statistical solutions

Statistical solutions and turbulence 000000

Uniqueness, regularity and numerical approximation 0000000

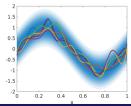
Equivalence between correlation measures and $\mathcal{P}(L^p)$

Theorem (USF, S. Lanthaler, S. Mishra 2017)

Fix p ∈ [1,∞). For every p-integrable correlation measure ν = (ν¹, ν²,...) there exists a unique probability measure μ ∈ P(L^p(ℝ^d, ℝ^N)) satisfying the duality formula

$$\int_{(\mathbb{R}^d)^k}\int_{(\mathbb{R}^N)^k}g(x,u)\ d\nu_x^k(u)dx=\int_{L^p}\int_{(\mathbb{R}^d)^k}g(x,u(x))\ dxd\mu(u)\qquad\forall\ g\in\mathcal{C}^k.$$

Conversely, for every probability measure μ ∈ P(L^p(ℝ^d, ℝ^N)) there exists a unique correlation measure ν satisfying the above.



Equivalence between correlation measures and $\mathcal{P}(L^p)$

Theorem (USF, S. Lanthaler, S. Mishra 2017)

Fix p ∈ [1,∞). For every p-integrable correlation measure ν = (ν¹, ν²,...) there exists a unique probability measure μ ∈ 𝒫(L^p(ℝ^d, ℝ^N)) satisfying the duality formula

$$\int_{(\mathbb{R}^d)^k}\int_{(\mathbb{R}^N)^k}g(x,u)\ d\nu_x^k(u)dx=\int_{L^p}\int_{(\mathbb{R}^d)^k}g(x,u(x))\ dxd\mu(u)\qquad\forall\ g\in\mathcal{C}^k.$$

Conversely, for every probability measure μ ∈ P(L^p(ℝ^d, ℝ^N)) there exists a unique correlation measure ν satisfying the above.

Example

The empirical correlation measure $\nu_{x_1,...,x_k}^k = \frac{1}{M} \sum_{i=1}^M \delta_{u^i(x_1)} \otimes \cdots \otimes \delta_{u^i(x_k)}$ corresponds to

$$\mu = \frac{1}{M} \sum_{i=1}^{M} \delta_{u^{i}}$$
 $(\delta_{u} = \text{Dirac measure on } u \in L^{p}).$

	Measure-valued and statistical solutions	Uniqueness, regularity and numerical approximation
	0000000000	

Statistical solutions

- Each correlation measure ν = (ν¹, ν²,...) can be viewed as a probability measure μ ∈ 𝒫(L^p(ℝ^d, ℝ^N))
- · Corr. meas./prob. meas. are uniquely determined by the correlation functions

$$\langle \nu_{x_1,\ldots,x_k}^k, u_1\cdots u_k\rangle = \int_{L^p} u(x_1)\cdots u(x_k) \ d\mu(u)$$

What evolution equations do correlation functions satisfy?

Statistical solutions and turbulence 000000

Uniqueness, regularity and numerical approximation

Evolution equation for correlation functions

Correlation function:
$$\langle v_{x_1,...,x_k}^k, u_1 \cdots u_k \rangle = \int_{L^1} u(x_1) \cdots u(x_k) \ d\mu(u)$$

k = 1:

Deterministic solution:

 $\partial_t u(x) + \partial_x f(u(x)) = 0$

Statistical solution:

 $\partial_t \langle \nu_x^1, u \rangle + \partial_x \langle \nu_x^1, f(u) \rangle = 0$

Statistical solutions and turbulence 000000

Uniqueness, regularity and numerical approximation

Evolution equation for correlation functions

Correlation function:
$$\langle v_{x_1,\ldots,x_k}^k, u_1\cdots u_k \rangle = \int_{L^1} u(x_1)\cdots u(x_k) \ d\mu(u)$$

k = **2**:

Deterministic solution:

$$\partial_t (u(x_1)u(x_2)) + \partial_{x_1} (f(u(x_1))u(x_2)) + \partial_{x_2} (u(x_1)f(u(x_2))) = 0$$

Statistical solution:

$$\partial_t \langle \nu_{x_1,x_2}^2, u_1 u_2 \rangle + \partial_{x_1} \langle \nu_{x_1,x_2}^2, f(u_1) u_2 \rangle + \partial_{x_2} \langle \nu_{x_1,x_2}^2, u_1 f(u_2) \rangle = 0$$

Measure-valued and statistical solutions

Statistical solutions and turbulence 000000

Uniqueness, regularity and numerical approximation

Evolution equation for correlation functions

Correlation function:
$$\langle v_{x_1,...,x_k}^k, u_1 \cdots u_k \rangle = \int_{L^1} u(x_1) \cdots u(x_k) d\mu(u)$$

General $k \in \mathbb{N}$:

Deterministic solution:

$$\partial_t (u(x_1)\cdots u(x_k)) + \sum_{i=1}^k \partial_{x_i} (u(x_1)\cdots f(u(x_i))\cdots u(x_k)) = 0$$

Statistical solution:

$$\partial_t \langle \nu_{t,x_1,\ldots,x_k}^k, u_1 \cdots u_k \rangle + \sum_{i=1}^k \partial_{x_i} \langle \nu_{t,x_1,\ldots,x_k}^k, u_1 \cdots f(u_i) \cdots u_k \rangle = 0.$$

Note: These equations are in divergence form, so they can be interpreted weakly!

U. S. Fjordholm

roduction Turbulence theory Measure-valued and statistical solutions 000000 00000000000000000 Statistical solutions and turbulence

Uniqueness, regularity and numerical approximation

Evolution equation for statistical solutions (multi-D systems)

Let $\mu_0 \in \mathcal{P}(L^1(\mathbb{R}^d, \mathbb{R}^N))$ be given initial data.

Definition (USF, S. Lanthaler, S. Mishra 2017)

A map $t \mapsto \mu_t \in \mathcal{P}(L^1(\mathbb{R}^d, \mathbb{R}^N))$ is a statistical solution of (1) if

- $\lim_{t\to 0} \mu_t = \mu_0$
- the corresponding correlation measure $(\nu_t^1, \nu_t^2, \dots)$ satisfies

$$\partial_t \langle \nu_{t,x_1,\ldots,x_k}^k, u_1 \otimes \cdots \otimes u_k \rangle + \sum_{i=1}^k \nabla_{x_i} \cdot \langle \nu_{t,x_1,\ldots,x_k}^k, u_1 \otimes \cdots \otimes f(u_i) \otimes \cdots \otimes u_k \rangle = 0 \qquad \forall \ k \in \mathbb{N}$$

in $\mathcal{D}'(\mathbb{R}^{dk} \times [0,\infty), \mathbb{R}^N)$, for all $k \in \mathbb{N}$.

	Statistical solutions and turbulence	Uniqueness, regularity and numerical approximation
	00000	

Section 4

Statistical solutions and turbulence

Uniqueness, regularity and numerical approximation 0000000

Inviscid limit of Navier–Stokes

Incompressible Navier–Stokes equation

$$\partial_t u + \nabla \cdot (u \otimes u) + \nabla p = \varepsilon \Delta u, \qquad \nabla \cdot u = 0.$$
 (4a)

• Solutions satisfy

$$\frac{d}{dt}\int_{\mathbb{T}^3}\frac{|u(t)|^2}{2}\,dx+\varepsilon\int_{\mathbb{T}^3}|\nabla u|^2\,dx=0. \tag{4b}$$

What happens in the limit $\varepsilon \rightarrow 0$?

• The dissipation term

$$\mathcal{E} = \varepsilon \int_0^T \int_{\mathbb{T}^3} |\nabla u|^2 \, dx dt$$

might not vanish as $\varepsilon \rightarrow 0$ (anomalous dissipation)

		Measure-valued and statistical solutions	Statistic
000000	000000	000000000	00000

Statistical solutions and turbulence

Uniqueness, regularity and numerical approximation 0000000

Inviscid limit of Navier–Stokes

$$\frac{d}{dt}\int_{\mathbb{T}^3}\frac{|u(t)|^2}{2}\,dx+\varepsilon\int_{\mathbb{T}^3}|\nabla u|^2\,dx=0. \tag{4b}$$

Kolmogorov (1941) proved, under "reasonable assumptions", that

 $\mathsf{S}_2(r)\simeq r^{1/3}\mathcal{E}^{1/3}$

in the limit $\varepsilon \to 0$ for homogeneous, isotropic 3D turbulence. The structure function is defined as⁴

$$\mathsf{S}_2(r) := \mathbb{E}\left[\int_{\mathbb{T}^3} \oint_{B_r(0)} |u(x+z) - u(x)|^2 \, dz dx\right]^{1/2}$$

 ${}^{4}\mathbb{E}[\dots]$ is expected value w.r.t. a statistical solution.

	Statistical solutions and turbulence	
	000000	

Inviscid limit of Navier–Stokes

Theorem (USF, S. Mishra, F. Weber 2019)

Let μ^{ε} be statistical solutions of incompressible Navier–Stokes such that

$$\int_{\mathbb{T}^3} \langle \nu_{t,x}^{\varepsilon,1}, |u|^2 \rangle \, dx \leqslant C \tag{L^2 bound}$$

$$arepsilon {S}_2^arepsilon(arepsilon)^2 \lesssim arepsilon ~~ orall arepsilon > 0$$
 (weak H^1 bound)

$$\mathsf{S}_2^arepsilon(\lambda r)\lesssim\lambda^lpha\mathsf{S}_2^arepsilon(r)\qquad orall\ \lambda,r>0$$
 (scaling law)

for some $\alpha > 0$ and $S_2^{\varepsilon}(r) := \left[\int_{\mathbb{T}^3} \int_{B_r(0)} \langle \nu_{t,x,x+z}^{\varepsilon,2}, |u_1 - u_2|^2 \rangle \, dz dx \right]^{1/2}$. Then \exists a statistical solution μ of incompressible Euler, and^a

$$\mu^{\varepsilon} \rightharpoonup \mu$$
 as $\varepsilon \to 0$ (along a subsequence).

 ${}^{s}\mu^{\varepsilon} \rightharpoonup \mu$ denotes weak ("narrow") convergence in the sense of measures

Statistical solutions and turbulence OOOOOO

Jniqueness, regularity and numerical approximation
0000000

Inviscid limit of Navier–Stokes

Idea of proof.

- **1** The domain \mathbb{T}^3 is bounded
- ((weak H^1 bound)+(scaling law) yield bounds on oscillations
- 3 A "Kolmogorov compactness theorem"^a yields compactness.

^aU. S. Fjordholm, S. Mishra, K. Lye, and F. Weber. "Statistical solutions of hyperbolic systems of conservation laws: numerical approximation". In preparation. 2019.

Uniqueness, regularity and numerical approximation 0000000

Numerical approximation of hyperbolic conservation law

Theorem (USF, K. Lye, S. Mishra, F. Weber 2019)

Let $\mu^{\Delta x}$ be numerically computed approximate statistical solutions of a hyperbolic conservation law (1) such that, for some $p \ge 1$,

$$\Delta x^d \sum_{i \in \mathbb{Z}^d} \left| u_i^{\Delta x}(t) \right|^p \leqslant C$$
 (*L^p* bound)

$$\Delta x^d \int_0^T \sum_{m=1}^d \sum_{\mathbf{i} \in \mathbb{Z}^d} \left| u_{\mathbf{i} + \mathbf{e}_m}^{\Delta x}(t) - u_{\mathbf{i}}^{\Delta x}(t) \right|^s dt \leqslant C \Delta x \quad \text{for } s \geqslant p \quad (\text{weak } W^{1,s} \text{ bound})$$

$$\mathsf{S}^{arepsilon}_{m{
ho}}(\lambda r)\lesssim\lambda^{lpha}\mathsf{S}^{arepsilon}_{m{
ho}}(r)\qquad orall\ \lambda,r>0$$
 (scaling law)

for some $\alpha > 0$. Then \exists a statistical solution μ of (1), and

$$\mu^{\varepsilon}
ightarrow \mu$$
 as $\varepsilon
ightarrow 0$ (along a subsequence).

		Uniqueness, regularity and numerical approximation
		000000

Section 5

Uniqueness, regularity and numerical approximation

Statistical solutions and turbulence 000000

Uniqueness, regularity and numerical approximation $0 \bullet 00000$

1. Weak-strong uniqueness

Weak-strong uniqueness

"If there exists a classical solution w, then any other solution u coincides with w."

Technique: Uses the method of relative energy: Compute

$$\frac{d}{dt}\|u(t)-w(t)\|_{L^2}^2.$$

 $\partial_t w$ exists strongly, and $\partial_t u$ exists weakly.

Result: Entropy condition on u + Gronwall estimate yields

$$\|u(t) - w(t)\|_{L^2}^2 \leq e^{Ct} \|u(0) - w(0)\|_{L^2}^2.$$

Statistical solutions and turbulen

Uniqueness, regularity and numerical approximation OOOOOOO

1. Weak-strong uniqueness

Theorem (USF, K. Lye, S. Mishra, F. Weber 2019)

Consider a hyperbolic system of conservation laws (1).

- Let ρ be a strong statistical solution (concentrated on strong solutions of (1))
- Let μ be a dissipative statistical solution (satisfies an additional entropy condition) Then

 $W_p(\mu_t, \rho_t) \leqslant e^{Ct} W_p(\mu_0, \rho_0)$ (W_p is Wasserstein distance).

Uniqueness, regularity and numerical approximation $\texttt{OOO}{\bullet}\texttt{OOO}$

2. Energy conservation for incompressible Euler

Incompressible Euler equations

$$\partial_t u + \nabla \cdot (u \otimes u) + \nabla p = 0, \qquad \nabla \cdot u = 0$$

Onsager's conjecture

Let u be an α -Hölder continuous solution of (5). Lars Onsager conjectured (1949) that if $\alpha > 1/3$ then u preserves the energy $\int |u|^2 dx$, $\alpha \leq 1/3$ then u might dissipate energy.

Energy preservation: Proved by Eyink 1994; Constantin, E, Titi in 1994 Energy dissipation: Proved by Ph. Isett 2016 (5)

Uniqueness, regularity and numerical approximation 0000 \bullet 00

2. Energy conservation for incompressible Euler

Incompressible Euler equations

$$\partial_t u +
abla \cdot (u \otimes u) +
abla p = 0, \qquad
abla \cdot u = 0$$

Theorem (USF, E. Wiedemann 2017)

Let μ be a statistical solution of (5) satisfying

$$\mathsf{S}_3(h) \lesssim C |h|^lpha, \qquad \mathsf{S}_3(h) := \left[\int_{L^2(\mathbb{T}^3)} \int_{\mathbb{T}^3} |u(x+h) - u(x)|^3 \, dx \, d\mu_t(u)
ight]^{1/3}$$

for some $\alpha > 1/3$. Then μ preserves energy:

$$\int_{L^2(\mathbb{T}^3)} \int_{\mathbb{T}^3} \frac{|u|^2}{2} \, d\mathsf{x} d\mu_t(u) = \int_{L^2(\mathbb{T}^3)} \int_{\mathbb{T}^3} \frac{|u|^2}{2} \, d\mathsf{x} d\mu_0(u) \qquad \forall \, t > 0.$$

(5)

Statistical solutions and turbulence OOOOOO

Uniqueness, regularity and numerical approximation 0000000

3. Numerical methods for stat. soln.

Approximate stat. soln. can be generated by numerical methods:

Monte Carlo algorithm

- **()** Generate i.i.d. random variables $u_0^1, u_0^2, \ldots u_0^M$ according to $\mu_0 \in \mathcal{P}(L^1)$
- 2 Propagate with a numerical method: $u^i(t) = S_t^{\Delta x} u_0^i$
- 3 Compose into the empirical measure

$$\mu_t^{\Delta x} = \frac{1}{M} \sum_{i=1}^M \delta_{u^i(t)}$$

Theorem (USF, K. Lye, S. Mishra 2018)

For scalar conservation laws the above MC and MLMC methods converge to a statistical solution as $\Delta x \rightarrow 0, M \rightarrow \infty$.

Proof: Standard Monte Carlo technique + convergence of $S^{\Delta x}$.

Thank you for your attention!

References

U. S. Fjordholm, R. Käppeli, S. Mishra, and E. Tadmor. "Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws". In: <u>Found. Comput. Math.</u> 17.3 (2017), 763–827

U. S. Fjordholm, S. Lanthaler, and S. Mishra. "Statistical solutions of hyperbolic conservation laws I: Foundations". In: Arch. Ration. Mech. An. 226.2 (2017), 809–849

U. S. Fjordholm, S. Mishra, and K. O. Lye. "Numerical approximation of statistical solutions of scalar conservation laws". In: SIAM J. Numer. Anal. 56.5 (2018). arXiv:1710.11173, 2989–3009

U. S. Fjordholm, S. Mishra, K. Lye, and F. Weber. "Statistical solutions of hyperbolic systems of conservation laws: numerical approximation". In preparation. 2019

U. S. Fjordholm and E. Wiedemann. "Statistical solutions and Onsager's conjecture". In: Physica D 376–377 (2018). arXiv:1706.04113, 259–265