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Conservation laws

Hyperbolic system of conservation law

∂tu +∇ · f (u) = 0

u(x , 0) = u0(x)
(1)

Conserved variables u = u(x , t) : Rd × R+ → RN

Initial data u0 : Rd → RN

Flux function f : RN → RN×d
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Conservation laws

Hyperbolic system of conservation law

∂tu +∇ · f (u) = 0

u(x , 0) = u0(x)
(1)

Example (Euler equations for compressible, isentropic gases)

∂

∂t

(
ρ
ρv

)
+∇ ·

(
ρv

ρv ⊗ v + pI

)
= 0.

Here, ρ = mass density, v = velocity, p = pressure, for instance

p(ρ) = κργ .
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Conservation laws

Hyperbolic system of conservation law

∂tu +∇ · f (u) = 0

u(x , 0) = u0(x)
(1)

Example (Euler equations for compressible, polytropic ideal gases)

∂

∂t

 ρ
ρv
E

+∇ ·

 ρv
ρv ⊗ v + pI

(E + p)v

 = 0.

The density ρ, velocity field v , pressure p and total energy E are related by the equation of state

E =
p

γ − 1
+
ρ|v |2

2
.
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Weak (entropy) solutions

∂tu +∇ · f (u) = 0

u(x , 0) = u0(x)
(1)

Definition

A weak solution satisfies (1) in the sense of distributions:

ˆ
Rd

ˆ
R+

u∂tϕ+ f (u) · ∇ϕ dxdt +

ˆ
Rd

u0(x)ϕ(x , 0) dx = 0 ∀ ϕ ∈ C 1
c (Rd × R+).

• Weak solutions are generally non-unique

• Entropy conditions (hopefully!) single out the “physical” solution
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Weak (entropy) solutions

∂tu +∇ · f (u) = 0

u(x , 0) = u0(x)
(1)

Definition

An entropy solution satisfies for all entropy pairs (η, q)

∂tη(u) +∇ · q(u) 6 0 in D′(Rd × R+)

(η : RN → R is convex, q′(u) = η′(u)f ′(u))

• Weak solutions are generally non-unique

• Entropy conditions (hopefully!) single out the “physical” solution
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Well-posedness of conservation laws

∂tu +∇ · f (u) = 0

u(x , 0) = u0(x)
(1)

Theorem (P. Lax 1957, J. Glimm 1965, N. H. Risebro 1993, A. Bressan et al. 2000)

For systems of equations in one dimension d = 1, there exists a unique entropy solution of (1)
whenever the initial data is sufficiently small (i.e., sufficiently close to a constant solution).
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Well-posedness of conservation laws

Theorem (C. De Lellis, L. Székelyhidi Jr. 2009)

The multi-D incompressible Euler equations

∂tv +∇ · (v ⊗ v) +∇p = 0

∇ · v = 0

are ill-posed in the space of continuous solutions. (There exists “wild” initial data with infinitely many
“entropy solutions”.)
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Well-posedness of conservation laws

Theorem (C. De Lellis, L. Székelyhidi Jr. 2010)

The multi-D isentropic Euler equations

∂tρ+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρv ⊗ v) +∇p(ρ) = 0
(2)

are ill-posed in the sense of entropy solutions. (There exists “wild” initial data with infinitely many
entropy solutions.)

Theorem (E. Chiodaroli, C. De Lellis, O. Kreml 2013–)

There exists Lipschitz continuous initial data for which (2) has infinitely many entropy solutions.

Question
• How should we think of these infinitely many solutions?
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Section 2

Turbulence theory
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Turbulence

Quasi definition
Turbulence is a sudden chaotic, unpredictable behavior of fluids at a multitude of spatial scales.
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Turbulence, real and simulated

Figure: Osborne Reynolds’ turbulence experiment (1880s)
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Turbulence, real and simulated

Figure: The Navier–Stokes equations in real life
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Turbulence, real and simulated
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Figure: Numerical simulation of the compressible Euler equations
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Approximate solutions and compactness

• A viscous regularization or numerical method for (1) might look like

∂tu
ε +∇ · f (uε) = εQε where Qε is (numerical) diffusion.

• The diffusion provides (ε-dependent) regularity of uε, but not enough for compactness in the limit
ε→ 0.

Observations from turbulence theory

1 Turbulent flows are only predictable in a statistical sense (e.g., over long times or over many
realizations)

2 Ensembles of turbulent flows might have higher regularity than individual realizations of the flow
(anomalous dissipation)

Questions
1 How do we represent an uncertain solution? What equations does it satisfy?

2 Can we utilize the anomalous dissipation to get compactness of ensembles of approximate
solutions?
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Section 3

Measure-valued and statistical solutions
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Young measures

Definition

A Young measure is a map ν : x 7→ νx ∈ P(RN). We denote

〈νx , f 〉 =

ˆ
RN

f (u) dνx(u).

(Here, P(X ) = {probability measures on X}.)

Example
• νx = δu(x) for some function u = u(x) (“atomic measure”)

• νx = 1
M

∑M
i=1 δui (x) for functions u1, . . . , uM (“empirical measure”)
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Measure-valued solutions

∂tu(x , t) +∇ · f (u(x , t)) = 0

u(x , 0) = u0(x)
(1)

• The Young measure ν = νx,t should satisfy (1) in an averaged sense.
• Consider u = u(x , t) as a free variable and integrate over u ∈ RN w.r.t. νx,t to get:

Definition

ν is a measure-valued (MV) solution of (1) if

∂t〈νx,t , u〉+∇ · 〈νx,t , f (u)〉 = 0 in D′(Rd × R+). (3)

Here,

〈νx,t , u〉 =

ˆ
RN

u dνx,t(u), 〈νx,t , f (u)〉 =

ˆ
RN

f (u) dνx,t(u).

R. J. DiPerna. “Measure-valued solutions to conservation laws”. In: Arch. Rational Mech. Anal. 88 (3 1985),
223–270.
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Deficiencies of MV solutions

Definition (Measure-valued solution)

∂t〈νx,t , u〉+∇ · 〈νx,t , f (u)〉 = 0 in D′(Rd × R+) (3)

However, measure-valued solutions are generically non-unique: Enforcing a condition on only two
moments (〈νx,t , u〉 and 〈νx,t , f (u)〉) does not uniquely determine the measure νx,t .

We add instead information about spatial correlations

U. S. Fjordholm Statistical solutions of hyperbolic conservation laws 6 June 2019 18 / 37



Introduction Turbulence theory Measure-valued and statistical solutions Statistical solutions and turbulence Uniqueness, regularity and numerical approximation

Correlation measures

Definition (USF, S. Lanthaler, S. Mishra 2017)

A correlation measure is a hierarchy of Young measures (ν1, ν2, . . . ) where

• ν1
x (A) = probability that u(x) ∈ A

• ν2
x,y (A× B) = probability that u(x) ∈ A and u(y) ∈ B

• ν3
x1,x2,x3

(A1 × A2 × Ak) = . . .

(a) ν1
x1

(A) (b) ν2
x1,x2

(A× B) (c) ν3
x1,x2,x3

(A× B × C)
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Correlation measures

Definition (USF, S. Lanthaler, S. Mishra 2017)

A correlation measure is a hierarchy of Young measures (ν1, ν2, . . . ) where

• ν1
x (A) = probability that u(x) ∈ A

• ν2
x,y (A× B) = probability that u(x) ∈ A and u(y) ∈ B

• ν3
x1,x2,x3

(A1 × A2 × Ak) = . . .

• Each νk is a map (x1, . . . , xk) 7→ νkx1,...,xk ∈ P((RN)k)

• The hierarchy (ν1, ν2, . . . ) must satisfy conditions on

1 measurability
2 consistency
3 symmetry
4 integrability (i.e.

´
Rd 〈ν1

x , |u|p〉 dx <∞)
5 diagonal continuity (ν must satisfy the “Lebesgue Differentiation Theorem”)
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Correlation measures

Definition (USF, S. Lanthaler, S. Mishra 2017)

A correlation measure is a hierarchy of Young measures (ν1, ν2, . . . ) where

• ν1
x (A) = probability that u(x) ∈ A

• ν2
x,y (A× B) = probability that u(x) ∈ A and u(y) ∈ B

• ν3
x1,x2,x3

(A1 × A2 × Ak) = . . .

Example (Empirical measure)

For some u1, . . . , uM : Rd → RN , let ν1
x = 1

M

∑M
i=1 δui (x),

νkx1,...,xk =
1

M

M∑
i=1

δui (x1) ⊗ · · · ⊗ δui (xk )

for all k ∈ N, xj ∈ Rd .
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Equivalence between correlation measures and P(Lp)

Theorem (USF, S. Lanthaler, S. Mishra 2017)

• Fix p ∈ [1,∞). For every p-integrable correlation measure ν = (ν1, ν2, . . . ) there exists a unique
probability measure µ ∈ P(Lp(Rd ,RN)) satisfying the duality formula

ˆ
(Rd )k

ˆ
(RN )k

g(x , u) dνkx (u)dx =

ˆ
Lp

ˆ
(Rd )k

g(x , u(x)) dxdµ(u) ∀ g ∈ Ck .

• Conversely, for every probability measure µ ∈ P(Lp(Rd ,RN)) there exists a unique correlation
measure ν satisfying the above.
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Equivalence between correlation measures and P(Lp)

Theorem (USF, S. Lanthaler, S. Mishra 2017)

• Fix p ∈ [1,∞). For every p-integrable correlation measure ν = (ν1, ν2, . . . ) there exists a unique
probability measure µ ∈ P(Lp(Rd ,RN)) satisfying the duality formula

ˆ
(Rd )k

ˆ
(RN )k

g(x , u) dνkx (u)dx =

ˆ
Lp

ˆ
(Rd )k

g(x , u(x)) dxdµ(u) ∀ g ∈ Ck .

• Conversely, for every probability measure µ ∈ P(Lp(Rd ,RN)) there exists a unique correlation
measure ν satisfying the above.

Example

The empirical correlation measure νkx1,...,xk = 1
M

∑M
i=1 δui (x1) ⊗ · · · ⊗ δui (xk ) corresponds to

µ =
1

M

M∑
i=1

δui (δu = Dirac measure on u ∈ Lp).
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Statistical solutions

• Each correlation measure ν = (ν1, ν2, . . . ) can be viewed as a probability measure
µ ∈ P(Lp(Rd ,RN))

• Corr. meas./prob. meas. are uniquely determined by the correlation functions

〈νkx1,...,xk , u1 · · · uk〉 =

ˆ
Lp

u(x1) · · · u(xk) dµ(u)

What evolution equations do correlation functions satisfy?
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Evolution equation for correlation functions

Correlation function: 〈νkx1,...,xk , u1 · · · uk〉 =
´
L1 u(x1) · · · u(xk) dµ(u)

k = 1:

Deterministic solution:
∂tu(x) + ∂x f (u(x)) = 0

Statistical solution:

∂t〈ν1
x , u〉+ ∂x〈ν1

x , f (u)〉 = 0

U. S. Fjordholm Statistical solutions of hyperbolic conservation laws 6 June 2019 23 / 37



Introduction Turbulence theory Measure-valued and statistical solutions Statistical solutions and turbulence Uniqueness, regularity and numerical approximation

Evolution equation for correlation functions

Correlation function: 〈νkx1,...,xk , u1 · · · uk〉 =
´
L1 u(x1) · · · u(xk) dµ(u)

k = 2:

Deterministic solution:

∂t
(
u(x1)u(x2)

)
+ ∂x1

(
f (u(x1))u(x2)

)
+ ∂x2

(
u(x1)f (u(x2))

)
= 0

Statistical solution:

∂t〈ν2
x1,x2

, u1u2〉+ ∂x1〈ν2
x1,x2

, f (u1)u2〉+ ∂x2〈ν2
x1,x2

, u1f (u2)〉 = 0
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Evolution equation for correlation functions

Correlation function: 〈νkx1,...,xk , u1 · · · uk〉 =
´
L1 u(x1) · · · u(xk) dµ(u)

General k ∈ N:

Deterministic solution:

∂t
(
u(x1) · · · u(xk)

)
+

k∑
i=1

∂xi
(
u(x1) · · · f (u(xi )) · · · u(xk)

)
= 0

Statistical solution:

∂t〈νkt,x1,...,xk , u1 · · · uk〉+
k∑

i=1

∂xi 〈νkt,x1,...,xk , u1 · · · f (ui ) · · · uk〉 = 0.

Note: These equations are in divergence form, so they can be interpreted weakly!
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Evolution equation for statistical solutions
(multi-D systems)

Let µ0 ∈ P(L1(Rd ,RN)) be given initial data.

Definition (USF, S. Lanthaler, S. Mishra 2017)

A map t 7→ µt ∈ P(L1(Rd ,RN)) is a statistical solution of (1) if

• limt→0 µt = µ0

• the corresponding correlation measure (ν1
t , ν

2
t , . . . ) satisfies

∂t〈νkt,x1,...,xk , u1 ⊗ · · · ⊗ uk〉+
k∑

i=1

∇xi · 〈νkt,x1,...,xk , u1 ⊗ · · · ⊗ f (ui )⊗ · · · ⊗ uk〉 = 0 ∀ k ∈ N

in D′(Rdk × [0,∞),RN), for all k ∈ N.
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Section 4

Statistical solutions and turbulence
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Inviscid limit of Navier–Stokes

Incompressible Navier–Stokes equation

∂tu +∇ · (u ⊗ u) +∇p = ε∆u, ∇ · u = 0. (4a)

• Solutions satisfy
d

dt

ˆ
T3

|u(t)|2

2
dx + ε

ˆ
T3

|∇u|2 dx = 0. (4b)

What happens in the limit ε→ 0?

• The dissipation term

E = ε

ˆ T

0

ˆ
T3

|∇u|2 dxdt

might not vanish as ε→ 0 (anomalous dissipation)
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Inviscid limit of Navier–Stokes

d

dt

ˆ
T3

|u(t)|2

2
dx + ε

ˆ
T3

|∇u|2 dx = 0. (4b)

Kolmogorov (1941) proved, under “reasonable assumptions”, that

S2(r) ' r1/3E1/3

in the limit ε→ 0 for homogeneous, isotropic 3D turbulence. The structure function is defined as4

S2(r) := E

[ˆ
T3

 
Br (0)

|u(x + z)− u(x)|2 dzdx

]1/2

4E[. . . ] is expected value w.r.t. a statistical solution.
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Inviscid limit of Navier–Stokes

Theorem (USF, S. Mishra, F. Weber 2019)

Let µε be statistical solutions of incompressible Navier–Stokes such that

ˆ
T3

〈νε,1t,x , |u|2〉 dx 6 C (L2 bound)

εSε2(ε)2 . ε ∀ ε > 0 (weak H1 bound)

Sε2(λr) . λαSε2(r) ∀ λ, r > 0 (scaling law)

for some α > 0 and Sε2(r) :=
[´

T3

ffl
Br (0)
〈νε,2t,x,x+z , |u1 − u2|2〉 dzdx

]1/2

. Then ∃ a statistical solution µ of

incompressible Euler, anda

µε ⇀ µ as ε→ 0 (along a subsequence).

aµε ⇀ µ denotes weak (“narrow”) convergence in the sense of measures
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Inviscid limit of Navier–Stokes

Idea of proof.

1 The domain T3 is bounded

2 (weak H1 bound)+(scaling law) yield bounds on oscillations

3 A “Kolmogorov compactness theorem”a yields compactness.

aU. S. Fjordholm, S. Mishra, K. Lye, and F. Weber. “Statistical solutions of hyperbolic systems of
conservation laws: numerical approximation”. In preparation. 2019.
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Numerical approximation of hyperbolic conservation law

Theorem (USF, K. Lye, S. Mishra, F. Weber 2019)

Let µ∆x be numerically computed approximate statistical solutions of a hyperbolic conservation law (1)
such that, for some p > 1,

∆xd
∑
i∈Zd

∣∣u∆x
i (t)

∣∣p 6 C (Lp bound)

∆xd
ˆ T

0

d∑
m=1

∑
i∈Zd

∣∣u∆x
i+em

(t)− u∆x
i (t)

∣∣s dt 6 C∆x for s > p (weak W 1,s bound)

Sεp(λr) . λαSεp(r) ∀ λ, r > 0 (scaling law)

for some α > 0. Then ∃ a statistical solution µ of (1), and

µε ⇀ µ as ε→ 0 (along a subsequence).
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Section 5

Uniqueness, regularity and numerical approximation
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1. Weak-strong uniqueness

Weak-strong uniqueness

“If there exists a classical solution w , then any other solution u coincides with w .”

Technique: Uses the method of relative energy: Compute

d

dt
‖u(t)− w(t)‖2

L2 .

∂tw exists strongly, and ∂tu exists weakly.

Result: Entropy condition on u + Gronwall estimate yields

‖u(t)− w(t)‖2
L2 6 eCt‖u(0)− w(0)‖2

L2 .
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1. Weak-strong uniqueness

Theorem (USF, K. Lye, S. Mishra, F. Weber 2019)

Consider a hyperbolic system of conservation laws (1).

• Let ρ be a strong statistical solution (concentrated on strong solutions of (1))

• Let µ be a dissipative statistical solution (satisfies an additional entropy condition)

Then
Wp(µt , ρt) 6 eCtWp(µ0, ρ0) (Wp is Wasserstein distance).
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2. Energy conservation for incompressible Euler

Incompressible Euler equations

∂tu +∇ · (u ⊗ u) +∇p = 0, ∇ · u = 0 (5)

Onsager’s conjecture

Let u be an α-Hölder continuous solution of (5). Lars Onsager conjectured (1949) that if

α > 1/3 then u preserves the energy
´
|u|2 dx ,

α 6 1/3 then u might dissipate energy.

Energy preservation: Proved by Eyink 1994; Constantin, E, Titi in 1994

Energy dissipation: Proved by Ph. Isett 2016
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2. Energy conservation for incompressible Euler

Incompressible Euler equations

∂tu +∇ · (u ⊗ u) +∇p = 0, ∇ · u = 0 (5)

Theorem (USF, E. Wiedemann 2017)

Let µ be a statistical solution of (5) satisfying

S3(h) . C |h|α, S3(h) :=

[ˆ
L2(T3)

ˆ
T3

|u(x + h)− u(x)|3 dx dµt(u)

]1/3

for some α > 1/3. Then µ preserves energy:

ˆ
L2(T3)

ˆ
T3

|u|2

2
dxdµt(u) =

ˆ
L2(T3)

ˆ
T3

|u|2

2
dxdµ0(u) ∀ t > 0.
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3. Numerical methods for stat. soln.

Approximate stat. soln. can be generated by numerical methods:

Monte Carlo algorithm

1 Generate i.i.d. random variables u1
0 , u

2
0 , . . . u

M
0 according to µ0 ∈ P(L1)

2 Propagate with a numerical method: ui (t) = S∆x
t ui0

3 Compose into the empirical measure

µ∆x
t =

1

M

M∑
i=1

δui (t)

Theorem (USF, K. Lye, S. Mishra 2018)

For scalar conservation laws the above MC and MLMC methods converge to a statistical solution as
∆x → 0, M →∞.

Proof: Standard Monte Carlo technique + convergence of S∆x .
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Thank you for your attention!
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