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Conservation laws

Hyperbolic system of conservation law
Ou+V-f(u)=0
u(x,0) = up(x)
Conserved variables u = u(x,t): RY x R — RN

Initial data ug : R — RN
Flux function f: RN — RNxd

U. S. Fjordholm

Statistical solutions of hyperbolic conservation laws

6 June 2019

(1)

3/

37



Introduction
[e]e] lele]ele)

Conservation laws

Hyperbolic system of conservation law

Oru+V - -f(u)=0
u(x,0) = uo(x) )

Example (Euler equations for compressible, isentropic gases)

9 (p pv _
6t<pv)+v' (pv®v+pl> =

Here, p = mass density, v = velocity, p = pressure, for instance

P(p) = kp.
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Conservation laws

Hyperbolic system of conservation law

Oru+V - -f(u)=0
u(x,0) = uo(x) )

Example (Euler equations for compressible, polytropic ideal gases)

o [P pv
T pv|+V-|pvev+pl| =0.
E (E+p)v

The density p, velocity field v, pressure p and total energy E are related by the equation of state

p_ plvP
E=—2_
’y—l+ 2
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Weak (entropy) solutions

Oru+V-f(u)=0

u(x,0) = wp(x) )

Definition

A weak solution satisfies (1) in the sense of distributions:

/ / udrp + f(u) - Vo dxdt +/ up(x)e(x,0) dx =0 Ve CHRI x Ry).
RY JR, RY

® Weak solutions are generally non-unique

® Entropy conditions (hopefully!) single out the “physical” solution
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Weak (entropy) solutions

Oru+V-f(u)=0
- (1)
u(x,0) = wp(x)
Definition
An entropy solution satisfies for all entropy pairs (7, q)
om(u) +V-q(u) <0 inD'(RY xRy)
(n: RN — R is convex, ¢'(u) = n'(u)f'(u))

® Weak solutions are generally non-unique

® Entropy conditions (hopefully!) single out the “physical” solution
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Well-posedness of conservation laws

Ou+V-f(u)=0
u(x,0) = wp(x) (1)

Theorem (P. Lax 1957, J. Glimm 1965, N. H. Risebro 1993, A. Bressan et al. 2000)

For systems of equations in one dimension d = 1, there exists a unique entropy solution of (1)
whenever the initial data is sufficiently small (i.e., sufficiently close to a constant solution).
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Well-posedness of conservation laws

Theorem (C. De Lellis, L. Székelyhidi Jr. 2009)

The multi-D incompressible Euler equations

Ov+V-(veVv)+Vp=0
V-v=0

are ill-posed in the space of continuous solutions. (There exists “wild” initial data with infinitely many
“entropy solutions”.)
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Well-posedness of conservation laws

Theorem (C. De Lellis, L. Székelyhidi Jr. 2010)

The multi-D isentropic Euler equations

Op+V-(pv)=0 @
A(pv)+ V- (pv@Vv)+ Vp(p) =0

are ill-posed in the sense of entropy solutions. (There exists “wild” initial data with infinitely many
entropy solutions.)

Theorem (E. Chiodaroli, C. De Lellis, O. Kreml 2013-)

There exists Lipschitz continuous initial data for which (2) has infinitely many entropy solutions.
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Well-posedness of conservation laws

Theorem (C. De Lellis, L. Székelyhidi Jr. 2010)

The multi-D isentropic Euler equations
Oip+V - (pv) =0 (2)
A(pv) + V- (pv®@ v)+ Vp(p) =0

are ill-posed in the sense of entropy solutions. (There exists “wild” initial data with infinitely many
entropy solutions.)

Theorem (E. Chiodaroli, C. De Lellis, O. Kreml 2013-)

There exists Lipschitz continuous initial data for which (2) has infinitely many entropy solutions.

Question

® How should we think of these infinitely many solutions?
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Section 2

Turbulence theory
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Turbulence

Quasi definition
Turbulence is a sudden chaotic, unpredictable behavior of fluids at a multitude of spatial scales.
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Turbulence, real and simulated

l
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Turbulence, real and simulated
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Figure: The Navier—Stokes equations in real life
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Turbulence, real and simulated

Figure: Numerical simulation of the compressible Euler equations
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Approximate solutions and compactness

® A viscous regularization or numerical method for (1) might look like
Ot + V- f(uf) =eQ° where Q¢ is (numerical) diffusion.

® The diffusion provides (e-dependent) regularity of u®, but not enough for compactness in the limit
e —0.
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Approximate solutions and compactness

® A viscous regularization or numerical method for (1) might look like
Ot + V- f(uf) =eQ° where Q¢ is (numerical) diffusion.
® The diffusion provides (e-dependent) regularity of u®, but not enough for compactness in the limit
e —0.
Observations from turbulence theory

@ Turbulent flows are only predictable in a statistical sense (e.g., over long times or over many
realizations)

® Ensembles of turbulent flows might have higher regularity than individual realizations of the flow
(anomalous dissipation)
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Approximate solutions and compactness

® A viscous regularization or numerical method for (1) might look like
Ot + V- f(uf) =eQ° where Q¢ is (numerical) diffusion.
® The diffusion provides (e-dependent) regularity of u®, but not enough for compactness in the limit
e —0.
Observations from turbulence theory

@ Turbulent flows are only predictable in a statistical sense (e.g., over long times or over many
realizations)

® Ensembles of turbulent flows might have higher regularity than individual realizations of the flow
(anomalous dissipation)

Questions
® How do we represent an uncertain solution? What equations does it satisfy?

® Can we utilize the anomalous dissipation to get compactness of ensembles of approximate
solutions?
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Section 3

Measure-valued and statistical solutions
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Young measures

Definition

A Young measure is a map v : x — v, € P(RV). We denote

(vx, / f(u) dvg(u).
]RN

(Here, P(X) = {probability measures on X}.)

Example
® Uy = y(x) for some function u = u(x) ( “atomic measure”)
°u =1 Zf‘il 8,i(x) for functions u*, ..., uM  (“empirical measure”)
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Measure-valued solutions

Oru(x,t) + V- f(u(x, t)l)J 1)

0
u(x,0) = up(x)

® The Young measure v = v, ; should satisfy (1) in an averaged sense.
e Consider u = u(x, t) as a free variable and integrate over u € RN w.r.t. Uyt to get:

R. J. DiPerna. “Measure-valued solutions to conservation laws”. In: Arch. Rational Mech. Anal. 88 (3 1985),
223-270.

U. S. Fjordholm Statistical solutions of hyperbolic conservation laws 6 June 2019 17 /37



Measure-valued and statistical solutions
[e]e] le]e]ee]ele]e)

Measure-valued solutions

Oru(x,t) + V- f(u(x,t)) =0

u(x,0) = wp(x) )

® The Young measure v = v, ; should satisfy (1) in an averaged sense.

e Consider u = u(x, t) as a free variable and integrate over u € RN w.r.t. Uyt to get:

Definition

v is a measure-valued (MV) solution of (1) if

Or(Vnt, ) + V- (Uyr, F(1)) =0 in D'(R?Y x R,). (3)
Here,

(Ves ) = /]R u d (1), (Vees F(u) = /]R F() dvra(u).

R. J. DiPerna. “Measure-valued solutions to conservation laws”. In: Arch. Rational Mech. Anal. 88 (3 1985),
223-270.
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Deficiencies of MV solutions

Definition (Measure-valued solution)

Ot (Vt, U) + V- (1, (1)) =0 in D'(RY x Ry) (3)

However, measure-valued solutions are generically non-unique: Enforcing a condition on only two
moments ((vxt, u) and (vy ¢, f(u))) does not uniquely determine the measure vy ;.

We add instead information about spatial correlations

U. S. Fjordholm Statistical solutions of hyperbolic conservation laws 6 June 2019



Measure-valued and statistical solutions
O000@00000

Correlation measures

Definition (USF, S. Lanthaler, S. Mishra 2017)

A correlation measure is a hierarchy of Young measures (1,22, ...) where
® v1(A) = probability that u(x) € A
* 7 (A x B) = probability that u(x) € A and u(y) € B
® 1} (AL X Ay X A) = ...
(a) v, (A) (b) v3 ,(AX B)  (c) ¥ 4 (AX BxC)
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Correlation measures

Definition (USF, S. Lanthaler, S. Mishra 2017)

A correlation measure is a hierarchy of Young measures (v1,22,...) where
® v1(A) = probability that u(x) € A

X

* 7 (A x B) = probability that u(x) € A and u(y) € B

° Vil,xz.)@(Al X A2 X Ak) = ...

® Each v is a map (xi,...,x) — thn-m € P((RV)x)

® The hierarchy (v}, 22,...) must satisfy conditions on

@ measurability

@® consistency

© symmetry

O integrability (i.e. [oq(vx,|ul?) dx < o0)

@ diagonal continuity (v must satisfy the “Lebesgue Differentiation Theorem”)
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Correlation measures

Definition (USF, S. Lanthaler, S. Mishra 2017)

A correlation measure is a hierarchy of Young measures (11,22, ...) where
® v}(A) = probability that u(x) € A
* 7 (A x B) = probability that u(x) € A and u(y) € B

¢ V;:)laxz,)@(Al X A2 X Ak) = .00

Example (Empirical measure)

For some ur,...,upm : RS — RN, let v} = LSV, Sui(x):
LM
k — )
LSS ‘M Z 6”'(X1) ® ® 5“'(Xk)
i=1

for all k € N, xjeRd.
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Equivalence between correlation measures and P(LP)

Theorem (USF, S. Lanthaler, S. Mishra 2017)
1 2

® Fix p € [1,00). For every p-integrable correlation measure v = (v*,v?,...) there exists a unique
probability measure i € P(LP(R?, RN)) satisfying the duality formula

/(Rd)k /(RN)k g(x, u) dvf(u)dx = /Lp /(Rd)k g(x, u(x)) dxdu(u) vV geck

® Conversely, for every probability measure y € P(LP(RY, RN)) there exists a unique correlation
measure v satisfying the above.

S
o

0 02 04 06 08 1

x
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Equivalence between correlation measures and P(LP)

Theorem (USF, S. Lanthaler, S. Mishra 2017)

® Fix p € [1,00). For every p-integrable correlation measure v = (v',12,...) there exists a unique
probability measure i € P(LP(RY,RN)) satisfying the duality formula

® Conversely, for every probability measure y € P(LP(RY, RN)) there exists a unique correlation
measure v satisfying the above.

Example

o o 0 k 1 M ) .
The empirical correlation measure vy . = 37 D i1 Oui(x) ® -+ ® dui(x,) COrresponds to

M
1
_ X _ 2 P
b= E_l Oy (6, = Dirac measure on u € LP).
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Statistical solutions

® Each correlation measure v = (v},1%,...) can be viewed as a probability measure
i € P(LP(R, V)
® Corr. meas./prob. meas. are uniquely determined by the correlation functions

(ufl,ka, Uy Ug) = /Lp u(x) - u(xk) dp(u)

What evolution equations do correlation functions satisfy?

U. S. Fjordholm Statistical solutions of hyperbolic conservation laws 6 June 2019
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Evolution equation for correlation functions

Correlation function: (¥ . = [i2 u( u(xx) du(u)

X1>~~7Xk’

Deterministic solution:

Statistical solution:

at<7/§a u> + 8X<Vi’ f(u)> =

U. S. Fjordholm
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Evolution equation for correlation functions

Correlation function: (¥ . = [i2 u( u(xx) du(u)

X1>~~7Xk’

Deterministic solution:

8t(u(x1)u(X2)) + 0y (f(u(xl))u(xz)) + 3X2(u(x1)f(u(X2))) =0

Statistical solution:

at<1/>2<1,x23 U1U2> + aX1 <V>2<1,x2a f(ul)u2> + 8X2< Vi xa0 U1f(U2)> =0

U. S. Fjordholm
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Evolution equation for correlation functions

Correlation function: (v¥ = [i1u( u(xx) du(u)

X1,...,Xk’

General kK € N:

Deterministic solution:

B (u(x1) - u(xw)) + Z B (u(x1) - F(u(x)) - u(xx)) =0

Statistical solution:

8f<yé(,x1,...,xk7 ugp--- uk> + Zaxi<yil&(,x1,...,xk’ ugp--- f(ui) o uk> =0.

i=1

Note: These equations are in divergence form, so they can be interpreted weakly!
U. S. Fjordholm
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Evolution equation for statistical solutions

(multi-D systems)

Let o € P(LY(RY,RV)) be given initial data.

Definition (USF, S. Lanthaler, S. Mishra 2017)

A map t — p, € P(LL(RY,RN)) is a statistical solution of (1) if
® lim; o pt = po

® the corresponding correlation measure (v},v2,...) satisfies

k
OV g a1 @ QU+ > Vi (U o ® ®Ff(U)® - @u)=0 VkeN

i=1

in D'(R% x [0,00),RN), for all k € N.
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Section 4

Statistical solutions and turbulence
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Inviscid limit of Navier—Stokes

Incompressible Navier—Stokes equation

O+ V- (u®u)+ Vp=cAu, V-u=0. (4a)

® Solutions satisfy
a ‘“(t)‘z 2
— 4 Yul®dx = 0. 4
dt/Ts 5 x+5/TS| u| x =0 (b)

What happens in the limit ¢ — 07
® The dissipation term

_5/ /|vu\2dxdt
T3

might not vanish as ¢ — 0 (anomalous dissipation)
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Inviscid limit of Navier—Stokes

d |u(t)? / 2
— A 4 dx = 0. 4b
dt/Tg 5 dxte T3|Vu| x =0 (4b)

Kolmogorov (1941) proved, under “reasonable assumptions”, that
So(r) =~ r/3gt/3

in the limit ¢ — 0 for homogeneous, isotropic 3D turbulence. The structure function is defined as*

1/2
/ ][ u(x + z) — u(x)? dzdx]
T3

So(r):=E

4E[...] is expected value w.r.t. a statistical solution.
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Inviscid limit of Navier—Stokes

Theorem (USF, S. Mishra, F. Weber 2019)

Let u® be statistical solutions of incompressible Navier-Stokes such that

/ <I/f”)}, |ul?) dx < C (L2 bound)
T3

eS5(e)’<e Ve>0 (weak H! bound)
S5(Ar) S A¥S5(r) VAr>0 (scaling law)

1/2
for some o > 0 and S5(r) := [fT3 JCB,(O)<VtE§,X+zv |ug — ua|?) dzdx| . Then 3 a statistical solution j1 of

incompressible Euler, and?

ue—=p ase — 0 (along a subsequence).

2p® — p denotes weak (“narrow” ) convergence in the sense of measures

U. S. Fjordholm Statistical solutions of hyperbolic conservation laws 6 June 2019 28 /37
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Inviscid limit of Navier—Stokes

Idea of proof.

@ The domain T3 is bounded
® (weak H! bound)+(scaling law) yield bounds on oscillations
©® A "Kolmogorov compactness theorem”? yields compactness.

2U. S. Fjordholm, S. Mishra, K. Lye, and F. Weber. “Statistical solutions of hyperbolic systems of
conservation laws: numerical approximation”. In preparation. 2019.
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Numerical approximation of hyperbolic conservation law

Theorem (USF, K. Lye, S. Mishra, F. Weber 2019)

Let A% be numerically computed approximate statistical solutions of a hyperbolic conservation law (1)
such that, for some p > 1,

AxT " |uf(1)]” < (LP bound)
iezd
AXd/ Z Z |ul+em t)’ dt < CAx for s > P (weak wis bound)
m=1ijczd
So(Ar) S A“S5(r) VAr>0 (scaling law)

for some o > 0. Then 3 a statistical solution y of (1), and

us = ase — 0 (along a subsequence).
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Section 5

Uniqueness, regularity and numerical approximation
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1. Weak-strong uniqueness

Weak-strong uniqueness

“If there exists a classical solution w, then any other solution v coincides with w."

Technique: Uses the method of relative energy: Compute

d 2
S llu(®) = w(t)|[z=.

O:w exists strongly, and J;u exists weakly.
Result: Entropy condition on u + Gronwall estimate yields

lu(t) = w(B)[[£2 < e“[[u(0) — w(0)Z=.

U. S. Fjordholm Statistical solutions of hyperbolic conservation laws 6 June 2019



Uniqueness, regularity and numerical approximation

[e]e] le]e]e]e)

1. Weak-strong uniqueness

Theorem (USF, K. Lye, S. Mishra, F. Weber 2019)
Consider a hyperbolic system of conservation laws (1).
® [et p be a strong statistical solution (concentrated on strong solutions of (1))

® let v be a dissipative statistical solution (satisfies an additional entropy condition)
Then

Wo(pae, pr) < €< Wo( g0, po) (W, is Wasserstein distance).

U. S. Fjordholm
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2. Energy conservation for incompressible Euler

Incompressible Euler equations

Ou+V-(u®u)+Vp=0, V-u=0 (5)

Onsager's conjecture

Let u be an a-Hdlder continuous solution of (5). Lars Onsager conjectured (1949) that if
o > 1/3 then u preserves the energy [ |ul® dx,
a < 1/3 then u might dissipate energy.

Energy preservation: Proved by Eyink 1994; Constantin, E, Titi in 1994
Energy dissipation: Proved by Ph. Isett 2016

U. S. Fjordholm Statistical solutions of hyperbolic conservation laws 6 June 2019 34 /37



Uniqueness, regularity and numerical approximation
[e]e]e]e] Tele]

2. Energy conservation for incompressible Euler

Incompressible Euler equations

Oru+V - (u®u)+Vp=0, V-u

Il
o
—
o1
~—~

Theorem (USF, E. Wiedemann 2017)

Let u be a statistical solution of (5) satisfying

1/3
Ss(h) S Clh|%, Ss(h) == [/ lu(x + h) — u(x)]? dx dpe(u)
LZ(T3) T3
for some «« > 1/3. Then u preserves energy:
lul? |2
dxdp(u dxd o (u) Vt>0.
LZ(T3 T3 2 L2 T3) T3
U. S. Fjordholm Statistical solutions of hyperbolic conservation laws 6 June 2019
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3. Numerical methods for stat. soln.

Approximate stat. soln. can be generated by numerical methods:
Monte Carlo algorithm

@ Generate i.i.d. random variables u}, u3, ... u} according to o € P(L?)
@® Propagate with a numerical method: v/(t) = S&%u}

©® Compose into the empirical measure

1 M
Ax __ E i
Mt - M — 6u’(t)

Theorem (USF, K. Lye, S. Mishra 2018)

For scalar conservation laws the above MC and MLMC methods converge to a statistical solution as
Ax — 0, M — oo.

Proof: Standard Monte Carlo technique 4 convergence of S®*.

U. S. Fjordholm Statistical solutions of hyperbolic conservation laws 6 June 2019
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Thank you for your attention!
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