Coherence enhancing variational image restoration

Markus Grasmair

Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway

Trondheim, June 2019

Joint work with Peter Elbau (Vienna)

Outline

- Variational Image Restoration
- Nonlocal Functionals
- Numerical Results
- 4 Conclusion and Outlook

Variational Image Denoising

Given a distorted image

$$f \approx Ku_0 + \delta$$

(standard) variational image denosing methods try to approximate the noise-free image u_0 by solving

$$\frac{1}{2}\|Ku-f\|_{L^2}^2+\alpha\mathcal{R}(u)\to\min,$$

where:

- K ... imaging operator, e.g.
 - $ightharpoonup K = Id \dots denoising.$
 - $K = k* \dots deblurring$.
- ullet δ noise, e.g. realisation of Gaussian i.i.d. random variable.
- $\mathcal{R}(u)$... regularisation term, encodes structural assumptions on the true image u_0 .
- ullet $\alpha>0$... regularisation parameter balancing fidelity and regularity.

Local Regularisation Terms

Typically, structural assumptions on u_0 are concerned with purely local regularity properties:

• Smoothness:

$$\mathcal{R}(u) := \|\nabla u\|_{L^2}^2 = \int_{\Omega} |\nabla u(x)|^2 dx.$$

Piecewise smooth with strong edges: Total variation and variants,

$$\mathcal{R}(u) := |Du|(\Omega) \approx \int_{\Omega} |\nabla u(x)| dx.$$

• Projections of uniform objects: Mumford-Shah regulariser,

$$\mathcal{R}(u) := \int_{\Omega \setminus S_u} |\nabla u(x)|^2 dx + \beta \operatorname{len}(S_u)$$

with S_u ... jump set of u.

True image u_0 is assumed to include several *coherent* regions, where the gradients of u_0 are almost parallel.

Examples:

True image u_0 is assumed to include several *coherent* regions, where the gradients of u_0 are almost parallel.

Examples:

True image u_0 is assumed to include several *coherent* regions, where the gradients of u_0 are almost parallel.

Mathematical characterisation possible via the structure tensor

$$S_{\rho,\sigma}(u) := \eta_{\rho} * (\nabla u_{\sigma} \otimes \nabla u_{\sigma}).$$

- Eigenvectors of $S_{\rho,\sigma}(u)$ indicate the main directions around a given point.
- Eigenvalues $\lambda_1 > \lambda_2 \ge 0$ of S(u) indicate the strengths of the different directions.
- If $\lambda_1 \gg \lambda_2$, then u is locally highly coherent.

True image u_0 is assumed to include several *coherent* regions, where the gradients of u_0 are almost parallel.

Examples:

Weickert's Anisotropic Diffusion

Original PDE setting (only for denoising):

$$\frac{\partial}{\partial t}u=\operatorname{div}g(S_{\rho,\sigma}(u))\nabla u, \qquad u(\cdot,0)=f,$$

where

$$g\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \left(1 + \frac{(\lambda_1 - \lambda_2)^2}{\gamma}\right)^{-1} & 0 \\ 0 & 1 \end{pmatrix}$$

and $g(U\Lambda U^T) = Ug(\Lambda)U^T$, leading to strong diffusion along edges and weak diffusion across edges.

Related variational setting (for general image restoration):

$$\min_{u} \frac{1}{2} \| Ku - f \|_{L^{2}}^{2} + \alpha \int_{\Omega} \langle \nabla u, g(S_{\rho,\sigma}(u)) \nabla u \rangle dx.$$

Outline

- Variational Image Restoration
- Nonlocal Functionals
- Numerical Results
- 4 Conclusion and Outlook

Alternative Characterisation of Coherence

Local parallelity of the gradients of u around a point $x \in \Omega$ can be measured by assessing the integral

$$\int_{\Omega} w(|x-y|) \langle \nabla u(x), \nabla u(y)^{\perp} \rangle^{2} dy$$

for some decreasing weight function $w \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ defining the size of local neighbourhoods.

- If ∇u is parallel in a neighbourhood of x, this term becomes zero.
- The term becomes large, if there are many gradients $\nabla u(y)$ orthogonal to $\nabla u(x)$ in a neighbourhood of x.

Thus we can define the coherence enhancing term

$$\mathcal{R}(u) := \frac{1}{2} \int_{\Omega} \int_{\Omega} w(|x-y|) \langle \nabla u(x), \nabla u(y)^{\perp} \rangle^{2} dy dx.$$

Reformulation with Structure Tensor

We can rewrite

$$\int_{\Omega} w(|x-y|) \langle \nabla u(x), \nabla u(y)^{\perp} \rangle^{2} dy$$

$$= \nabla u(x)^{T} \operatorname{adj} \left(\int_{\Omega} w(|x-y|) \nabla u(y) \otimes \nabla u(y) dy \right) \nabla u(x)$$

with

$$\operatorname{adj} A = (\det A) A^{-1}.$$

Specifically, we obtain for w . . . Gaussian kernel of variance ρ^2 the expression

$$\mathcal{R}(u) = rac{1}{2} \int_{\Omega} \langle
abla u, \operatorname{adj}(S_{
ho,0}(u))
abla u
angle \, dx.$$

Nonlocal Integrands

We consider

$$\mathcal{R}(u) := \int_{\Omega} \int_{\Omega} s(x, y; \nabla u(x), \nabla u(y)) dy dx$$

with

$$s(x, y; \zeta, \xi) := w(|x - y|)\langle \zeta, \xi^{\perp} \rangle^{2}.$$

- ullet The functional ${\cal R}$ is nonlocal, non-convex.
- The integrand s is non-convex, but separately convex.

Theorem (Boulanger et al (2011))

A nonlocal integral functional $\mathcal{R}\colon L^p(\Omega;\mathbb{R}^n) \to \mathbb{R} \cup \{+\infty\}$ of the form

$$\mathcal{R}(\xi) = \int_{\Omega} \int_{\Omega} s(x, y; \xi(x), \xi(y)) \, dx \, dy$$

is weakly sequentially lower semi-continuous if and only if s is separately convex.

Existence

Note that the functional R is not coercive:

- For the function $u(x,y) = \sin(kx)$ we have $\mathcal{R}(u) = 0$ for all k.
- If $f(x,y) = \operatorname{sgn}(x)$, no minimiser of $||u f||^2 + \mathcal{R}(u)$ exists in H^1 .

Lemma

Assume that $K1 \neq 0$. Then the functional

$$\frac{1}{2} \| Ku - f \|_{L^{2}}^{2} + \alpha \mathcal{R}(u) + \frac{\beta}{2} \| \nabla u \|_{L^{2}}^{2}$$

admits a minimiser in $H^1(\Omega)$ for all $\alpha > 0$ and $\beta > 0$.

Because of the non-convexity of \mathcal{R} , also this modified functional is non-convex for small β . Thus uniqueness of the minimiser is not guaranteed.

Differentiability and Gradient

Lemma

The functional \mathcal{R} is Gâteaux differentiable on $W^{1,4}(\Omega)$.

Additionally, the formal L^2 gradient of $\mathcal R$ can be computed as

$$abla \mathcal{R}(u) = -2\operatorname{div} ig(\operatorname{\mathsf{adj}}(\mathcal{S}_{
ho,0}(u))
abla uig).$$

Thus we have the formal optimality condition

$$K^*Ku - 2\alpha \operatorname{div}(\operatorname{adj}(S_{\rho,0}(u))\nabla u) - \beta\Delta u = K^*f.$$

Possible gradient flow for denoising:

$$\frac{\partial}{\partial t}u = \beta \Delta u + \operatorname{div}(\operatorname{adj}(S(u))\nabla u).$$

Outline

- Variational Image Restoration
- Nonlocal Functionals
- Numerical Results
- 4 Conclusion and Outlook

Numerical Approach

- Approximation of gradients by finite differences.
- Gradient descent method with exact line search
 - ▶ Note: We have a quartic functional.
- Convolution kernel w is Gaussian with several pixel sizes variance, that is,

$$w(|x - y|) = C \exp(-|x - y|^2/2\rho^2).$$

Size of ρ should correspond to size of regions where we expect u to be coherent.

- Computation of convolutions by FFT.
- Regularisation parameter $\beta \ll \alpha$ (only for some stabilisation).

Fingerprints

Fingerprints

Fingerprints

Barbara

Barbara

Barbara

Barbara — detail

Barbara — detail

Barbara — detail

Conclusion and Outlook

Summary:

- Coherence enhancing image denoising with a nonlocal functional.
- Existence result for the proposed nonlocal functional.
- Numerical implementation by gradient descent with exact line search.

Outlook:

 Generalisation of the idea to total variation based regularisation term of the form

$$\mathcal{R}(u) = \int_{\Omega} \int_{\Omega} |\langle \nabla u(x), \nabla u(y)^{\perp} \rangle| dy dx.$$

- Efficient numerical solution of more general linear inverse problems with coherent solutions.
- Adaptive choice of purely local/coherent enhancing regularisation term in order to avoid artifacts.