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The Hunter—Saxton equation

1
(ur + vuy)x = EU’%

has been introduced as model of the director field of a nematic
liquid crystal by Hunter and Saxton in 1991.

» Weak solutions are not unique [Hunter, Zheng, 1995].

» Hunter and Zheng introduced conservative and dissipative
solutions.

» The HS equation can be integrated in various ways.



Wave breaking for the HS equation

1 X 1 [e.9]
ue(t, x) + vue(t, x) = 4/ u?(t,z)dz — 4/ u?(t, z)dz

—0o0

The HS equation enjoys wave breaking in finite time for a wide
class of solutions, that means,

v

the solution v remains bounded and continuous,

v

the spatial derivative u, becomes unbounded pointwise,

v

the L?(R) norm of u, remains bounded,

v

u?dx tends to a positive, finite Radon measure.



Non-uniqueness example
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At collision time the solution vanishes but can be continued to a
weak solution.

At collision time all the energy concentrates at the origin and can
be described by a finite, positive Radon measure.



The solution u(t, x)
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The energy u(t, (—o0, x))




Non-uniqueness example
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By manipulating the concentrated energy at breaking time various
weak solutions can be constructed.

[Bressan, Constantin, 2005], [Dafermos, 2011], [Bressan, Holden,
Raynaud, 2010], [Grunert, Nordli, 2016], . ..



Conservative solutions of the HS equation

1 [~ 1 [
ue(t, x) + uux(t,x) = 4/ u?(t,z)dz — 4/ u?(t, z)dz

At any time t, the solution (u(t,-), u(t,-)) € D, i.e.
> u(t,-) € L*(R)
> uy(t,-) € LA(R)
> u(t,-) a finite positive Radon measure such that

2
IU’QC = UXdX

The total energy, given by p(t,R), is independent of time.



Conservative solutions can be computed via a generalized method
of characteristics.

(Id, u, ff; du)

e
T (uo)
x -\ T (1d, uo, fio dpo)

[Xo]

Lagrangian coordinates (F) Eulerian coordinates (D)



Motivation w(t, (—oo, x)) = y(t,&) ... characteristic




Motivation w(t, (—oo, x)) = y(t,&) ... characteristic
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Motivation wu(t, (—oo, x)) = y(t,&). ... characteristic




Motivation y(t, &) = He(t, &) ... energy distribution
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Motivation y(t, &) = He(t, &) ... energy distribution
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Motivation y(t, &) = He(t, &) ... energy distribution
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Motivation

Advantage:
» Linear system of ODEs

» The spreading of the concentrated energy is linked to the
characteristics separating.

Disadvantage:

» One solution in Eulerian coordinates corresponds to an
equivalence class of solutions in Lagrangian coordinates.

» Difficult to compute the distance between equivalence classes
[Bressan, Holden, Raynaud, 2010].



Conservative solutions of the HS equation

1 [~ 1 [
ue(t, x) + uux(t,x) = 4/ u?(t,z)dz — 4/ u?(t, z)dz

At any time t, the solution (u(t,-), u(t,-)) € D, i.e.
> u(t,-) € L*(R)
> uy(t,-) € LA(R)
> u(t,-) a finite positive Radon measure such that

2
IU’QC = UXdX

The total energy, given by p(t,R), is independent of time.



Main idea

» Any measure ;(-) with @(R) =1 can be seen as a curve in the
space of probability measures.

» Given two probability measures u;(x), i = 1,2, their distance
can be measured by Wasserstein metrics, i.e.

dp(pia, pi2) = |F7H = Fy Moy P € [1,00],

where Fi(x) = pi((—o0, x)).




New system

» Any measure p(t,-) with p(t,R) =1 can be seen as a curve in

the space of probability measures.

then

Let x(t,n) =sup{x | F(t,x) < n}, where F(t,x) = pu(t,(—o0,x)),

» x(t,-) : [0,1] — R is non-decreasing.
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> (x(t,n), u(t,x(t,n))) describes the solution and has compact

support.



New system

xt(t,n) =U(t,n

Ue(t,m) = =1 —

N =
DR~

Thus x(t,n) can be seen as characteristic, which takes care of the
rarefaction behavior.

» Jumps in x(t,n) might change in height, but remain always at
the same position.

» Intervals where x(t,7n) is constant disappear immediately
again.



Example
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Example

Xt(t> 77) - U(t7 77)

The function .
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Lipschitz metric

Let
d((u1, pa), (u2, p2)) = lIx(-) = x2()ll 2,1y
+ lur(x1(+)) — w2(x2() [ o= (o,17)

then

d((un(t), pa(t)),(u2(t), p2(t)))
< (14 1)d((u1(0), 12(0)), (12(0), 112(0)))-



Lipschitz metric

Problems:

» The support depends on the total energy C, i.e.
X, U:[0,C] = R.

» If (u, ) = (0,0), then x is not well-defined and the same
applies to U.



Lipschitz metric

Solution:

» Introduce a rescaling

x(t,n) = Cx(t,Cn) and Z:{(t, n) = CU(t, Cn).

) Cx(C)



Lipschitz metric
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Lipschitz metric in the general case

Let p1(t,R) = G and pa(t,R) = G, and introduce

d((u1, p1), (2, u2)) = [[Gixa(CGr) = Coxa(Co)llx(o,ay)
+ 1Gui(xa(CGi)) — Gua(x2(Cor))ll Lo (jo,1))
+ |C12 - C22’7

then

d((un (), pa (1)), (u2(2), p2(t)))
<(I+t+ %tz)(d((M(O),m(O)), (12(0), 42(0))))-



Remarks

» To derive the time evolution in the new variables rigorously,
one has to go via Lagrangian coordinates.

» The system in the new variables offers the possibility to plot
solutions in Eulerian coordinates




Remark

In the case of equations with infinite speed of propagation, one
cannot expect the above approach to work without adaptations.
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Thanks for your attention!



