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Study conservation law
dtu—+0xf(u,v) = 0 } ()

|
o

d¢v + 0xg(u, v)

Riemann problem:
u, x<0
u, x>0

u(x,0) = up(x) = {

vi, x<0
Ve, x>0

v(x,0) = w(x) = {
Weak solutions:

/]R+/IR (udrp 4 f(u, v)oxep) dxdt + '/]R uo(x)p(x,0) dx =0
/th/ﬂ; (vorp + g(u, v)oxp) dxdt + /]R vo(x)@(x,0) dx =0

For some initial data, the Riemann problem may not have a solution.
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Singular shocks: early work

o Korchinski (PhD thesis, Adelphi University, 1978)
us + (%uz)x =0
ve + (%uv)x =0

o Keyfitz & Kranzer (JDE, 1995)

o Hayes & Le Floch (Nonlinearity, 1996)

w30 +12), =0
vi+(uv—u)x =0

Henrik Kalisch Existence and uniqueness



Singular shocks: early work

o Keyfitz & Kranzer (JDE, 1995)
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Singular shocks: early work

o Keyfitz & Kranzer (JDE, 1995)

ut+(u27v))<:0

vt+(%u3—u)x =0

Introduce Rankine-Hugoniot deficit:
clu] = [v*=v]=0,

c[v] + [%u3 - u] =a/(t),
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Singular shocks: early work

o Hayes & Le Floch (Nonlinearity, 1996): Brio system

ut—|—%(u2—|—v2)X:0
vi+(uv—u)x=0

Not genuinly nonlinear at v = 0.

RW1
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Singular shocks: early work

o Hayes & Le Floch (Nonlinearity, 1996): Brio system
u + %(u2—i—v2)X =0
ve+ (uv —u)x =0
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Singular shocks: early work

o Hayes & Le Floch (Nonlinearity, 1996): Brio system
u + %(u2—i—v2)X =0
ve+ (uv —u)x =0
Similar system:
u+ (3u?)x =0
ve+ (uv —u)x =0

If u; > u, + 2, the solutions contains singular shocks with Dirac delta
distributions:

u(x,t) = u + (ur — u))H(x — ct)
vix,t) = v+ (v, — vj)H(x — ct) + a(t)6(x — ct)
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Singular shocks: early work

o Hayes & Le Floch (Nonlinearity, 1996): Brio system
u + %(u2—i—v2)X =0
ve+ (uv —u)x =0
Similar system:
u+ (3u?)x =0
ve+ (uv —u)x =0

If u; > u, + 2, the solutions contains singular shocks with Dirac delta
distributions:

u(x,t) = u + (ur — u))H(x — ct)
vix,t) = v+ (v, — vj)H(x — ct) + a(t)6(x — ct)
To understand the singular solutions, use Vi = v, and solve the system

Ut+(%u2)x =0
Vt+(U*1)VX=O
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Physical explanation of singular shocks

Mazzotti, Tarafder, Cornel, Gritti, Guiochon
Journal of Chromatography A (2010)

Experiments: “unbounded” concentration

Hilden, Nilsen, Raynaud
Transport in Porous Media (2016)

Numerics: accumulation of mass

Kalisch, Mitrovic, Teyekpiti
Physics Letters A (2017)

Modelling: Conservation of momentum vs. conservation of energy

Henrik Kalisch Existence and uniqueness



Example: shallow-water equations

i g nexo

Shallow-water equations:

7t + houx + (qu)x =0
Ut + gNx +uux =0

Assumptions:

o p=ypg(n—2z) ( hydrostatic)
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Example: shallow-water equations

i g nexo

Shallow-water equations:

7t + houx + (qu)x =0
ur + g1x + uux =0
Assumptions:
o p=ypg(n—2z) ( hydrostatic)
o u=u(xt) ( no vertical acceleration)

Momentum conservation:

[(ho +m)u], + [(h°+’7)“2+%g(ho+11)2]x=o

Energy conservation:

%[(ho+ﬂ)u2+(ho+ﬂ)2]t + [%(ho+?})u3+gu(ho+ﬂ)2]x =0
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Shallow-water equations:

Mass conservation:

[A); + [uh], =0

X

Conservation of total head:

ul, + lan+ ], =0

Momentum balance:

[hu], + [hu2 + %ghz}x =0

Energy conservation:

(3?4 302] + [Fu? + gur?]

X
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Traveling hydraulic jump

A traveling hydraulic jump must respect conservation of mass and momentum.
In shallow-water theory, we consider the jump as a discontinuity.
Rankine-Hugoniot conditions:
c[h] = [uh]
cluh] = [u*h+ Lgh?]
The velocity can be expressed as
U,hr — U/h/
hy — hy

Cc =

Surface profile of a traveling hydraulic jump Shallow-water approximation
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Traveling hydraulic jump: induced Rankine-Hugoniot deficit

Relative velocity:

m = hy(uy — ¢) = hj(uy — ¢) = Fhehy, % (hir + h%)
Energy loss: ,
piyAE _ mg(:[:rhlh/)
Head loss:
gAH = g(h hr)3
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Traveling hydraulic jump

Mass conservation:
c[h} — [uh] =0
Head loss:
clu] — [glh+b)+ ”;J = gAH

Momentum balance:

c[hu] — [hu2 + %gh2] =0
Energy loss:

c[%hu2+%h2+bh} - [%u3+guh(h+b)] = piYAE
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Link between RH-deficit and ¢ solutions?

Weak asymptotic method

Henrik Kalisch Existence and uniqueness



Link between RH-deficit and ¢ solutions?

Weak asymptotic method

Definition 1

Let f.(x) € D'(R) be a family of distributions depending on ¢ € (0,1), We say that
f, = op/ (1) if for any test function ¢(x) € D(R), we have

(fe¢) = 0(1), as € =0
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Link between RH-deficit and ¢ solutions?

Weak asymptotic method

Definition 1

Let f.(x) € D'(R) be a family of distributions depending on ¢ € (0,1), We say that
f, = op/ (1) if for any test function ¢(x) € D(R), we have

(fe¢) = 0(1), as € =0

Definition 2

| A

The collection of smooth complex-valued distributions (ug) and (ve) represent a
weak asymptotic solution to (x) if there exist real-valued distributions
u,v € C(Ry; D'(R)), such that for every fixed t € Ry

U —u, ve—v as ¢ —0,
in the sense of distributions in D’(R), and

atu€+axf(U5ng) = OD/(I)
OtVe +0xg(ue, ve) = opr(1).

N,

In addition, we need
ug(x,0) = u(x,0) and v(x,0) = v(x,0).
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Weak asymptotics for traveling hydraulic jump

Let p € CP(R) be non-negative, smooth, compactly supported even function with
suppp C (—1,1) and [ p(z)dz =1
Define C = [ p?(z)dz, and

Rx.t) = 5 p (%’-‘—ﬂ i <%t+2s> |
Se(x,t) = %%P (x—gct)
u;, x < ct—20¢,

Ue(x,t) =40, ct—10e < x < ct+ 10g,
u,, x > ct+ 20¢,

h;, x < ct—20e,
He(x,t) =<0, ct—10e < x < ct+ 10¢,
h,, x> ct+20e.

Now make the ansatz
he(x,t) = He(x — ct),

ug(x, t) = Ug(x — ct) + a(t)(de(x — ct) + Re(x — ct)) + 1/ ca(t)Se(x — ct)
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We can show that

1
0t Ue + 50 U? + 9y He + ' (£)0 —ca (1)’ + cady S? = op/ (1)
~—_—
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We can show that

1
0t Ue + 50 U? + 9y He + ' (£)0 —ca (1)’ + cady S? = op/ (1)
~—_—
1
9 Ue + Eaxuf + 0xHe + o/ (t)6e = opr (1)
Choosing

W(6) = (ur — w)e+ 5 (7 — ) + gy — )

he and u, are solutions of shallow water (1), (2) in the sense of Definition 2.

Note that the Rankine-Hugoniot deficit is nonzero:

o (t)=gAN#0
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Existence and uniqueness of singular solutions for the Brio system

Define an energy

2 2
uc+v
q(uv) = —
Then the system can be rewritten as
dtu+0xqg=0

atq+ax((2u71)q+“§—¥) =0

Flux function of the transformed system:

F:( I u? 2u3)
(Qu-1)g+%5 — =
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Flux Jacobian:

0 1
DF = (2q-i—u—2u2 2u—1)

Characteristic velocities: A_ | =

2u—1F+/8q—4u2+1
2

Eigenvectors:
1 1
= u—3%—/2g—u2+; A u—3+4/2g—u2+3

Genuinely nonlinear characteristic fields:

1 1
/W S S W S S
8q —4u? +1 8qg—4u?2+1
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If up < uy:

Shock wave of the first family (SW1):

1
Gr = qL— E(UL_UR)(QUR_l)‘i‘

Nl

| up — ug | (2‘7L + 3(u, — ug) — 3 (2uf + 2u ug — uR) + %)

Shock wave of the second family (SW2):

1
CIRZQ‘L—E(UL—UR)@UR—l)—

(S

| up — ug | (QQH- 3(uL — ug) — 3 (2u] + 2upug — uR) + %)
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If ug > uyp:
Rarefaction wave of the first family (RW1):

dg _ 2u—1-+/8qg—4u®+1
du 2

=A-(u,q), q(u)=ar

Rarefaction wave of the second family (RW2):

dg _ 2u—1+./8q—4u*+1
B 2

du

=A(uq), qlu)=qc

Critical curve: qerie = u?/2 so that
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Theorem: Given a left state (uy, q;) and a right state (ug, ggr), so that both are

2
above the critical curve gcrit(u) = 4%, these states can be connected by Lax
admissible shocks and rarefaction waves via a middle state also in the domain
2
q > u</2.

Proof
For a given (u, qr) ..
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(ugr, gr) in region I: RW1 followed by RW2

(ug. gr) in region II: SW1 followed by RW2

(ug. gr) in region Ill: RW1 followed by SW2

(ugr, gr) in region 1V: SW1 followed by SW2
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The Brio system:

deu+ 9, (L52)

0,
¢V + ax(v(u - 1)) =0

Characteristic speeds:

M(u,v)=u—1/2—+/v2+1/4,
Aa(u,v)=u—1/2+/v2+1/4

Henrik Kalisch Existence and uniqueness



Definition: The pair of distributions
u=U+a(x, t)é(T),
v=V+B(x, 1)),

with f(u,v) = # and g(u,v) = v(u—1) is an admissible J-type solution to the
Brio System if

@ The regular parts of the distributions u and v are such that the functions U
and g = (U? + V2)/2 represent Lax-admissible solutions to the Transformed
system with the initial data

ule—o = Vo, qle—o =qo = (U3 + V§)/2

o For every t > 0, the support of the d-distributions appearing in u and v is of
minimal cardinality.
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There exists a unique admissible 5-type solution to the Brio System with Riemann

initial data

U, x<0 Vi, x<0
u|t:0 = 9 V|t:0 = .
UR, x>0 VR, x>0

Proof
o Case I: both left and right states of the function Vg have the same sign

o Case lI: left and right states of the function V have opposite signs
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To compute « and B in the delta-solution, we compute the Rankine-Hugoniot deficit
if it exists at all.

Region I:
(U 1) 2% (Unam) 2% (Ug, gr)

No Rankine-Hugoniot deficit since (u, q)
is a continuous solution to the
transformed system. So

(u,v) = (u, /29 — u?) i
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@ u is unique since it is the Lax admissible solution to transformed system

@ v is determined by the unique functions v and q via v = =+

(Var. Uni)

(=Van. Usn)

2q — u?

(V. Un)

(Var, Usp)

______ (Van, Urn)

RWL

(V. Ur)

The shock connecting (Up1, V1) and (Up1, — V1) cannot be singular, (i.e. no
Rankine-Hugoniot deficit). No jump in d;u -+ 9x((u? + v?)/2) = 0 and therefore,
the speed c of the shock must satisfy the Rankine-Hugoniot condition

—c[v]+[v(u—-1)] =0.
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The shock speed is
Cc = UMI —1.

On the other hand, the characteristic speeds of (Up1, V1) and (Uy1, — V1) are
M(Umt, Vi) = A1 (Upn, —Vn) # ¢

A shock connection between (Up1, V1) and (Upr, — Vv ) is impossible with the
Rankine-Hugoniot condition satisfied.

Similarly,
c = UM2 -1
A2(Umz, Vmz) = A2(Unp2, —Vi2) # ¢

Conclusion: a d-shock connection between (Up, Vi) and (Upnz, — Vi) is
impossible with the Rankine-Hugoniot condition satisfied.
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The only possible connection of (U, V) and (Ug, VR) is

RW1 RW?2
(UL, qr) —= (Um. gu) — (Ur. gr)

RW1 and RW?2 corresponding to the transformed system are transformed via
(v, q) = (v, V29— u?)
into RW1 and RW2 corresponding to the Brio System.

This is possible since g is the entropy function for the Brio System and RW1
and RW?2 are smooth solutions to the transformed system
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Casell: V >0and Vg <0

To get an admissible d-type solution, we solve the transformed system with
(Uo, qo) as the initial data

The obtained solution connects (U, ;) with (Ug, gr) by Lax admissible
waves through a middle state (Uy, gu)

Solve the Brio System by connecting (U, V) with (U, /2qm — U%,) by an

elementary wave containing the Rankine-Hugoniot deficit and corresponding
6-shock wave

Connect (Uy, \/2qm — U,2V,) with (Un, —4/2qm — Ufﬂ) by the shock wave

whose speed is c = Uy — 1

Finally, connect (Upy, —1/2qm — U,%/,) with (Ug, Vg) by an elementary wave

containing the corresponding Rankine-Hugoniot deficit and d-shock wave
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Region I: The states (U;, q.) and (Ug, qgr) are connected by RW1 and RW2 via

the middle state (Up, qu)-

(Vi Uh)

RW2

(Vi Ug)

(Var, Un)

(Vi Uz)

RW1
dovoL

0

v

since there is no jump in u, and there is no jump in v2, the first equation of the
Brio System is satisfied in the classical sense and the shock speed is determined by
the Rankine-Hugoniot condition: —c[v]+ [v(u—1)] =0 = c= Uy —1

1 1 1 1
U,\,,fiﬂ/v,\2ﬂ+zgU,V,flguh/,—iﬂ/v,\24+Z
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