Existence and uniqueness of solutions for a conservation law arising in magnetohydrodynamics

Henrik Kalisch

University of Bergen Norway

Thursday, July 6th, 2019

Joint work with Darko Mitrovic and Vincent Teyekpiti

Work supported by Research Council of Norway

Study conservation law

$$\begin{cases}
\partial_t u + \partial_x f(u, v) &= 0 \\
\partial_t v + \partial_x g(u, v) &= 0
\end{cases}$$
(*)

Riemann problem:

$$u(x,0) = u_0(x) = \begin{cases} u_I, & x < 0 \\ u_r, & x > 0 \end{cases}$$
$$v(x,0) = v_0(x) = \begin{cases} v_I, & x < 0 \\ v_r, & x > 0 \end{cases}$$

Weak solutions:

$$\begin{split} &\int_{\mathbb{R}_+}\!\!\int_{\mathbb{R}}\left(u\partial_t\phi+f(u,v)\partial_x\phi\right)\ dxdt+\int_{\mathbb{R}}u_0(x)\phi(x,0)\ dx=0\\ &\int_{\mathbb{R}_+}\!\!\int_{\mathbb{R}}\left(v\partial_t\phi+g(u,v)\partial_x\phi\right)\ dxdt+\int_{\mathbb{R}}v_0(x)\phi(x,0)\ dx=0 \end{split}$$

For some initial data, the Riemann problem may not have a solution.

• Korchinski (PhD thesis, Adelphi University, 1978)

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0$$

$$v_t + \left(\frac{1}{2}uv\right)_x = 0$$

• Keyfitz & Kranzer (JDE, 1995)

$$u_t + (u^2 - v)_x = 0$$

$$v_t + (\frac{1}{3}u^3 - u)_x = 0$$

• Hayes & Le Floch (Nonlinearity, 1996)

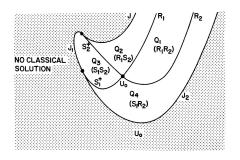
$$u_t + \frac{1}{2}(u^2 + v^2)_x = 0$$

 $v_t + (uv - u)_x = 0$

Keyfitz & Kranzer (JDE, 1995)

$$u_t + (u^2 - v)_x = 0$$

 $v_t + (\frac{1}{3}u^3 - u)_x = 0$



Introduce Rankine-Hugoniot deficit

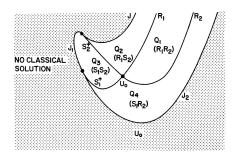
$$c[u] - [u^2 - v] = 0,$$

$$c[v] + \left[\frac{1}{3}u^3 - u\right] = \alpha'(t)$$

Keyfitz & Kranzer (JDE, 1995)

$$u_t + (u^2 - v)_x = 0$$

 $v_t + (\frac{1}{3}u^3 - u)_x = 0$



Introduce Rankine-Hugoniot deficit:

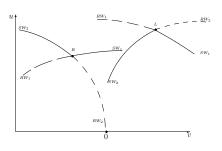
$$\begin{split} c[u] - [u^2 - v] &= 0, \\ c[v] + \left[\frac{1}{3}u^3 - u\right] &= \alpha'(t), \end{split}$$

• Hayes & Le Floch (Nonlinearity, 1996): Brio system

$$u_t + \frac{1}{2}(u^2 + v^2)_x = 0$$

 $v_t + (uv - u)_x = 0$

Not genuinly nonlinear at v = 0.



• Hayes & Le Floch (Nonlinearity, 1996): Brio system

$$u_t + \frac{1}{2}(u^2 + v^2)_x = 0$$

 $v_t + (uv - u)_x = 0$

• Hayes & Le Floch (Nonlinearity, 1996): Brio system

$$u_t + \frac{1}{2}(u^2 + v^2)_x = 0$$

 $v_t + (uv - u)_x = 0$

Similar system:

$$u_t + (\frac{1}{2}u^2)_x = 0$$

$$v_t + (uv - u)_x = 0$$

If $u_{\rm I}>u_{\rm r}+2$, the solutions contains singular shocks with Dirac delta distributions:

$$u(x,t) = u_l + (u_r - u_l)H(x - ct)$$

$$v(x,t) = v_l + (v_r - v_l)H(x - ct) + \alpha(t)\delta(x - ct)$$

• Hayes & Le Floch (Nonlinearity, 1996): Brio system

$$u_t + \frac{1}{2}(u^2 + v^2)_x = 0$$

 $v_t + (uv - u)_x = 0$

Similar system:

$$u_t + (\frac{1}{2}u^2)_x = 0$$

 $v_t + (uv - u)_x = 0$

If $u_l > u_r + 2$, the solutions contains singular shocks with Dirac delta distributions:

$$u(x,t) = u_I + (u_r - u_I)H(x - ct)$$

$$v(x,t) = v_I + (v_r - v_I)H(x - ct) + \alpha(t)\delta(x - ct)$$

To understand the singular solutions, use $V_x = v$, and solve the system

$$u_t + (\frac{1}{2}u^2)_x = 0$$

 $V_t + (u - 1)V_x = 0$

Physical explanation of singular shocks

Mazzotti, Tarafder, Cornel, Gritti, Guiochon Journal of Chromatography A (2010)

Experiments: "unbounded" concentration

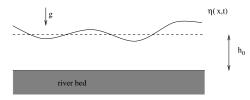
Hilden, Nilsen, Raynaud Transport in Porous Media (2016)

Numerics: accumulation of mass

Kalisch, Mitrovic, Teyekpiti Physics Letters A (2017)

Modelling: Conservation of momentum vs. conservation of energy

Example: shallow-water equations



Shallow-water equations:

$$\eta_t + h_0 u_x + (\eta u)_x = 0$$

$$u_t + g \eta_x + u u_x = 0$$

Assumptions:

$$\bullet \ \ p = \rho g(\eta - z) \qquad \big(\ \ \mathsf{hydrostatic} \big)$$

Example: shallow-water equations

Shallow-water equations:

$$\eta_t + h_0 u_x + (\eta u)_x = 0$$

$$u_t + g \eta_x + u u_x = 0$$

Assumptions:

- $p = \rho g(\eta z)$ (hydrostatic)
- u = u(x, t) (no vertical acceleration)

Momentum conservation:

$$[(h_0 + \eta)u]_t + [(h_0 + \eta)u^2 + \frac{1}{2}g(h_0 + \eta)^2]_x = 0$$

Energy conservation:

$$\frac{1}{2}\Big[(h_0+\eta)u^2+(h_0+\eta)^2\Big]_t\ +\ \Big[\frac{1}{2}(h_0+\eta)u^3+gu(h_0+\eta)^2\Big]_x=0$$

Shallow-water equations:

Mass conservation:

Conservation of total head:

$$[u]_t + [gh + \frac{u^2}{2}]_x = 0$$
 (2)

Momentum balance:

$$[hu]_{t} + [hu^{2} + \frac{1}{2}gh^{2}]_{x} = 0$$
 (3)

Energy conservation:

$$\left[\frac{1}{2}hu^{2} + \frac{1}{2}h^{2}\right]_{t} + \left[\frac{1}{2}u^{3} + guh^{2}\right]_{x} = 0$$
 (4)

Traveling hydraulic jump

A traveling hydraulic jump must respect conservation of mass and momentum.

In shallow-water theory, we consider the jump as a discontinuity.

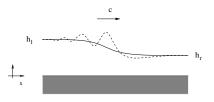
Rankine-Hugoniot conditions:

$$c[h] = [uh]$$

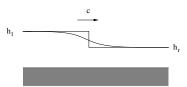
$$c[uh] = \left[u^2h + \frac{1}{2}gh^2\right]$$

The velocity can be expressed as

$$c = \frac{u_r h_r - u_l h_l}{h_r - h_l}$$



Surface profile of a traveling hydraulic jump



Shallow-water approximation

Traveling hydraulic jump: induced Rankine-Hugoniot deficit

Relative velocity:

$$m = h_r(u_r - c) = h_l(u_l - c) = \mp h_r h_l \sqrt{\frac{g}{2} \left(\frac{1}{h_r} + \frac{1}{h_l}\right)}$$

Energy loss:

$$\frac{1}{\rho Y} \Delta E = -\frac{mg(h_r - h_l)^3}{4h_r h_l}$$

Head loss:

$$g\Delta H = \frac{g(h_l - h_r)^3}{4h_l h_r}$$

Traveling hydraulic jump

Mass conservation:

$$c[h] - [uh] = 0$$

Head loss:

$$c[u] - [g(h+b) + \frac{u^2}{2}] = g\Delta H$$

Momentum balance:

$$c\big[hu\big] \ - \ \Big[hu^2 + \tfrac{1}{2}gh^2\Big] = 0$$

Energy loss:

$$c\left[\tfrac{1}{2}\mathit{hu}^2+\tfrac{1}{2}\mathit{h}^2+\mathit{bh}\right]\ -\ \left[\tfrac{1}{2}\mathit{u}^3+\mathit{guh}(\mathit{h}+\mathit{b})\right]=\frac{1}{\rho \mathsf{Y}}\Delta \mathit{E}$$

Link between RH-deficit and δ solutions?

Weak asymptotic method

Link between RH-deficit and δ solutions?

Weak asymptotic method

Definition 1

Let $f_{\epsilon}(x) \in \mathcal{D}'(\mathbb{R})$ be a family of distributions depending on $\epsilon \in (0,1)$, We say that $f_{\epsilon} = o_{\mathcal{D}'}(1)$ if for any test function $\phi(x) \in \mathcal{D}(\mathbb{R})$, we have

$$\langle f_{\varepsilon}, \phi \rangle = o(1)$$
, as $\varepsilon \to 0$

13 / 32 Henrik Kalisch Existence and uniqueness

Link between RH-deficit and δ solutions?

Weak asymptotic method

Definition 1

Let $f_{\epsilon}(x) \in \mathcal{D}'(\mathbb{R})$ be a family of distributions depending on $\epsilon \in (0,1)$, We say that $f_{\epsilon} = o_{\mathcal{D}'}(1)$ if for any test function $\phi(x) \in \mathcal{D}(\mathbb{R})$, we have

$$\langle f_{\varepsilon}, \phi \rangle = o(1)$$
, as $\varepsilon \to 0$

Definition 2

The collection of smooth **complex-valued** distributions (u_{ϵ}) and (v_{ϵ}) represent a weak asymptotic solution to (\star) if there exist real-valued distributions $u, v \in C(\mathbb{R}_+; \mathcal{D}'(\mathbb{R}))$, such that for every fixed $t \in \mathbb{R}_+$

$$u_{\varepsilon} \rightharpoonup u$$
, $v_{\varepsilon} \rightharpoonup v$ as $\varepsilon \to 0$,

in the sense of distributions in $\mathcal{D}'(\mathbb{R})$, and

$$\begin{array}{lcl} \partial_t u_{\varepsilon} + \partial_x f(u_{\varepsilon}, v_{\varepsilon}) & = & o_{\mathcal{D}'}(1), \\ \partial_t v_{\varepsilon} + \partial_x g(u_{\varepsilon}, v_{\varepsilon}) & = & o_{\mathcal{D}'}(1). \end{array}$$

In addition, we need

$$u_{\varepsilon}(x,0) \rightharpoonup u(x,0)$$
 and $v_{\varepsilon}(x,0) \rightharpoonup v(x,0)$.

13 / 32

Weak asymptotics for traveling hydraulic jump

Let $\rho\in C_c^\infty(\mathbb{R})$ be non-negative, smooth, compactly supported even function with $\operatorname{supp}\rho\subset (-1,1)$ and $\int_{\mathbb{R}}\rho(z)dz=1$ Define $C=\int_{\mathbb{R}}\rho^2(z)dz$, and

$$\begin{split} \delta_{\varepsilon}(x,t) &= \frac{1}{2\varepsilon} \rho \left(\frac{x-ct-4\varepsilon}{\varepsilon} \right) + \frac{1}{2\varepsilon} \rho \left(\frac{x-ct+4\varepsilon}{\varepsilon} \right), \\ R_{\varepsilon}(x,t) &= \frac{i}{2\varepsilon} \rho \left(\frac{x-ct-2\varepsilon}{\varepsilon} \right) - \frac{i}{2\varepsilon} \rho \left(\frac{x-ct+2\varepsilon}{\varepsilon} \right), \\ S_{\varepsilon}(x,t) &= \frac{1}{\sqrt{\varepsilon}} \frac{1}{\sqrt{C}} \rho \left(\frac{x-ct}{\varepsilon} \right) \\ U_{\varepsilon}(x,t) &= \begin{cases} u_{I}, & x < ct-20\varepsilon, \\ 0, & ct-10\varepsilon \leq x \leq ct+10\varepsilon, \\ u_{r}, & x \geq ct+20\varepsilon, \\ 0, & ct-10\varepsilon \leq x \leq ct+10\varepsilon, \\ h_{r}, & x \leq ct+20\varepsilon. \end{cases} \end{split}$$

Now make the ansatz

$$h_{\varepsilon}(x,t) = H_{\varepsilon}(x-ct),$$

$$u_{\varepsilon}(x,t) = U_{\varepsilon}(x-ct) + \alpha(t)(\delta_{\varepsilon}(x-ct) + R_{\varepsilon}(x-ct)) + \sqrt{c\alpha(t)}S_{\varepsilon}(x-ct)$$

14 / 32

We can show that

$$\partial_t U_{\varepsilon} + \frac{1}{2} \partial_{x} U_{\varepsilon}^2 + \partial_{x} H_{\varepsilon} + \alpha'(t) \delta_{\varepsilon} \underbrace{-c\alpha(t)\delta' + c\alpha \partial_{x} S_{\varepsilon}^2}_{\varepsilon} = o_{\mathcal{D}'}(1)$$

$$\partial_t U_{\varepsilon} + \frac{1}{2} \partial_{\times} U_{\varepsilon}^2 + \partial_{\times} H_{\varepsilon} + \alpha'(t) \delta_{\varepsilon} = o_{\mathcal{D}'}(1)$$

Choosing

$$\alpha'(t) = (u_r - u_l)c + \frac{1}{2}(u_l^2 - u_r^2) + g(h_r - h_l)$$

 h_{ε} and u_{ε} are solutions of shallow water (1), (2) in the sense of Definition 2.

Note that the Rankine-Hugoniot deficit is nonzero:

$$\alpha'(t) = g\Delta \neq 0$$

We can show that

$$\partial_t U_{\varepsilon} + \frac{1}{2} \partial_{x} U_{\varepsilon}^2 + \partial_{x} H_{\varepsilon} + \alpha'(t) \delta_{\varepsilon} \underbrace{-c\alpha(t)\delta' + c\alpha \partial_{x} S_{\varepsilon}^2}_{\varepsilon} = o_{\mathcal{D}'}(1)$$

$$\partial_t U_{\varepsilon} + \frac{1}{2} \partial_{\mathsf{X}} U_{\varepsilon}^2 + \partial_{\mathsf{X}} H_{\varepsilon} + \alpha'(t) \delta_{\varepsilon} = o_{\mathcal{D}'}(1)$$

Choosing

$$\alpha'(t) = (u_r - u_I)c + \frac{1}{2}(u_I^2 - u_r^2) + g(h_r - h_I)$$

 h_{ε} and u_{ε} are solutions of shallow water (1), (2) in the sense of Definition 2.

Note that the Rankine-Hugoniot deficit is nonzero:

$$\alpha'(t) = g\Delta \neq 0$$

Existence and uniqueness of singular solutions for the Brio system

Define an energy

$$q(u,v)=\frac{u^2+v^2}{2}$$

Then the system can be rewritten as

$$\begin{split} \partial_t u + \partial_x q &= 0 \\ \partial_t q + \partial_x \left((2u-1)q + \frac{u^2}{2} - \frac{2u^3}{3} \right) &= 0 \end{split}$$

Flux function of the transformed system:

$$F = \begin{pmatrix} q \\ (2u - 1)q + \frac{u^2}{2} - \frac{2u^3}{3} \end{pmatrix}$$

Flux Jacobian:

$$DF = \begin{pmatrix} 0 & 1 \\ 2q + u - 2u^2 & 2u - 1 \end{pmatrix}$$

Characteristic velocities: $\lambda_{-,+}=rac{2u-1\mp\sqrt{8q-4u^2+1}}{2}$

Eigenvectors:

$$r_{-} = \begin{pmatrix} 1 \\ u - \frac{1}{2} - \sqrt{2q - u^2 + \frac{1}{4}} \end{pmatrix}, \ r_{+} = \begin{pmatrix} 1 \\ u - \frac{1}{2} + \sqrt{2q - u^2 + \frac{1}{4}} \end{pmatrix}$$

Genuinely nonlinear characteristic fields:

$$\nabla \lambda_- \cdot r_- = 2 + \frac{1}{\sqrt{8q - 4u^2 + 1}}$$
, $\nabla \lambda_+ \cdot r_+ = 2 - \frac{1}{\sqrt{8q - 4u^2 + 1}}$

If $u_R < u_L$:

Shock wave of the first family (SW1):

$$\begin{split} q_R &= q_L - \frac{1}{2} \big(u_L - u_R \big) \big(2u_R - 1 \big) + \\ & \quad | \ u_L - u_R \ | \ \Big(2q_L + \frac{1}{2} \big(u_L - u_R \big) - \frac{1}{3} \big(2u_L^2 + 2u_L u_R - u_R^2 \big) + \frac{1}{4} \Big)^{\frac{1}{2}} \end{split}$$

Shock wave of the second family (SW2):

$$\begin{split} q_R &= q_L - \frac{1}{2} \big(u_L - u_R \big) \big(2u_R - 1 \big) - \\ & \mid u_L - u_R \mid \Big(2q_L + \frac{1}{2} \big(u_L - u_R \big) - \frac{1}{3} \big(2u_L^2 + 2u_L u_R - u_R^2 \big) + \frac{1}{4} \Big)^{\frac{1}{2}} \end{split}$$

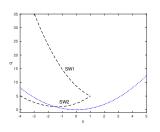
If $u_R > u_L$:

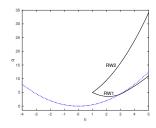
Rarefaction wave of the first family (RW1):

$$\frac{dq}{du} = \frac{2u - 1 - \sqrt{8q - 4u^2 + 1}}{2} = \lambda_{-}(u, q), \quad q(u_L) = q_L$$

Rarefaction wave of the second family (RW2):

$$\frac{dq}{du} = \frac{2u - 1 + \sqrt{8q - 4u^2 + 1}}{2} = \lambda_{+}(u, q), \quad q(u_L) = q_L$$



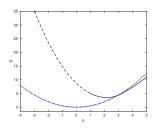


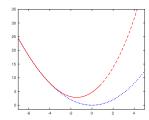
Critical curve: $q_{crit} = u^2/2$ so that

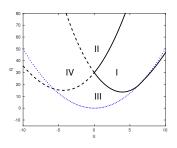
Theorem: Given a left state (u_L, q_L) and a right state (u_R, q_R) , so that both are above the critical curve $q_{crit}(u) = \frac{u^2}{2}$, these states can be connected by Lax admissible shocks and rarefaction waves via a middle state also in the domain $q > u^2/2$.

Proof

For a given (u_L, q_L) ...







- (u_R, q_R) in region *I*: RW1 followed by RW2
- (u_R, q_R) in region II: SW1 followed by RW2
- \bullet (u_R, q_R) in region III: RW1 followed by SW2
- (u_R, q_R) in region IV: SW1 followed by SW2

The Brio system:

$$egin{align} \partial_t u + \partial_x ig(rac{u^2 + v^2}{2}ig) &= 0, \ \partial_t v + \partial_x ig(v(u-1)ig) &= 0. \ \end{array}$$

Characteristic speeds:

$$\lambda_1(u, v) = u - 1/2 - \sqrt{v^2 + 1/4},$$

 $\lambda_2(u, v) = u - 1/2 + \sqrt{v^2 + 1/4}$

Definition: The pair of distributions

$$u = U + \alpha(x, t)\delta(\Gamma),$$

$$v = V + \beta(x, t)\delta(\Gamma),$$

with $f(u,v)=\frac{u^2+v^2}{2}$ and g(u,v)=v(u-1) is an admissible δ -type solution to the Brio System if

• The regular parts of the distributions u and v are such that the functions U and $q=(U^2+V^2)/2$ represent Lax-admissible solutions to the Transformed system with the initial data

$$u|_{t=0} = U_0$$
, $q|_{t=0} = q_0 = (U_0^2 + V_0^2)/2$

• For every $t \ge 0$, the support of the δ -distributions appearing in u and v is of minimal cardinality.

Theorem

There exists a unique admissible δ -type solution to the Brio System with Riemann initial data

$$u|_{t=0} = \begin{cases} U_L, & x \le 0 \\ U_R, & x > 0 \end{cases}, \quad v|_{t=0} = \begin{cases} V_L, & x \le 0 \\ V_R, & x > 0 \end{cases}.$$

Proof

- ullet Case I: both left and right states of the function V_0 have the same sign
- Case II: left and right states of the function V_0 have opposite signs

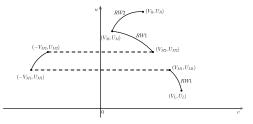
To compute α and β in the delta-solution, we compute the Rankine-Hugoniot deficit if it exists at all.

Region I:

$$(U_L, q_L) \xrightarrow{RW1} (U_M, q_M) \xrightarrow{RW2} (U_R, q_R)$$

No Rankine-Hugoniot deficit since (u, q) is a continuous solution to the transformed system. So $(u, v) = (u, \sqrt{2q - u^2})$

- *u* is unique since it is the Lax admissible solution to transformed system
- v is determined by the unique functions u and q via $v=\pm\sqrt{2q-u^2}$



The shock connecting (U_{M1},V_{M1}) and $(U_{M1},-V_{M1})$ cannot be singular, (i.e. no Rankine-Hugoniot deficit). No jump in $\partial_t u + \partial_x ((u^2+v^2)/2) = 0$ and therefore, the speed c of the shock must satisfy the Rankine-Hugoniot condition -c[v] + [v(u-1)] = 0.

The shock speed is

$$c=U_{M1}-1.$$

On the other hand, the characteristic speeds of (U_{M1}, V_{M1}) and $(U_{M1}, -V_{M1})$ are

$$\lambda_1(U_{M1}, V_{M1}) = \lambda_1(U_{M1}, -V_{M1}) \neq c$$

A shock connection between (U_{M1},V_{M1}) and $(U_{M1},-V_{M1})$ is impossible with the Rankine-Hugoniot condition satisfied.

Similarly,

$$c=U_{M2}-1.$$

$$\lambda_2(U_{M2}, V_{M2}) = \lambda_2(U_{M2}, -V_{M2}) \neq c$$

Conclusion: a δ -shock connection between (U_{M2},V_{M2}) and $(U_{M2},-V_{M2})$ is impossible with the Rankine-Hugoniot condition satisfied.

ullet The only possible connection of (U_L, V_L) and (U_R, V_R) is

$$(U_L, q_L) \xrightarrow{RW1} (U_M, q_M) \xrightarrow{RW2} (U_R, q_R)$$

RW1 and RW2 corresponding to the transformed system are transformed via

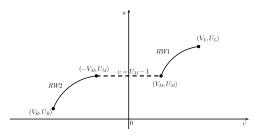
$$(u,q)\mapsto (u,\sqrt{2q-u^2})$$

into RW1 and RW2 corresponding to the Brio System.

 This is possible since q is the entropy function for the Brio System and RW1 and RW2 are smooth solutions to the transformed system Case II: $V_L > 0$ and $V_R < 0$

- To get an admissible δ -type solution, we solve the transformed system with (U_0,q_0) as the initial data
- The obtained solution connects (U_L,q_L) with (U_R,q_R) by Lax admissible waves through a middle state (U_M,q_M)
- Solve the Brio System by connecting (U_L, V_L) with $(U_M, \sqrt{2q_M U_M^2})$ by an elementary wave containing the Rankine-Hugoniot deficit and corresponding δ -shock wave
- Connect $(U_M, \sqrt{2q_M-U_M^2})$ with $(U_M, -\sqrt{2q_M-U_M^2})$ by the shock wave whose speed is $c=U_M-1$
- Finally, connect $(U_M, -\sqrt{2q_M-U_M^2})$ with (U_R, V_R) by an elementary wave containing the corresponding Rankine-Hugoniot deficit and δ -shock wave

Region /: The states (U_L, q_L) and (U_R, q_R) are connected by RW1 and RW2 via the middle state (U_M, q_M) .



since there is no jump in u, and there is no jump in v^2 , the first equation of the Brio System is satisfied in the classical sense and the shock speed is determined by the Rankine-Hugoniot condition: $-c[v] + [v(u-1)] = 0 \implies c = U_{M1} - 1$

$$U_M - \frac{1}{2} - \sqrt{V_M^2 + \frac{1}{4}} \le U_M - 1 \le U_M - \frac{1}{2} + \sqrt{V_M^2 + \frac{1}{4}}$$

M. Nedeljkov

Shadow Waves: Entropies and Interactions for Delta and Singular Shocks Arch. Ration. Mech. Anal. **197** (2010), 489–537.

B. Keyfitz and C. Tsikkou

Conserving the wrong variables in gas dynamics: a Riemann solution with singular shocks

Quart. Appl. Math. 70 (2012), 407-436.

H. Kalisch, D. Mitrovic and V. Teyekpiti

Existence and Uniqueness of Singular Solutions for a Conservation Law Arising in Magnetohydrodynamics

Nonlinearity 31 (2018), 5464.

G. B. Whitham Linear and Nonlinear Waves Wiley, New York, 1974.

H. Holden, N.H. Risebro Front Tracking for Hyperbolic Conservation Laws Springer, New York, 2002.