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Pseudo H-type Lie algebras

A Lie algebra nr,s =
(

n, [. , .]
)

is called pseudo H-type

Lie algebra if

• it is 2-step nilpotent: [n, [n,n]] = 0;

• n = v⊕⊥ z, where z is the centre and the direct sum
is orthogonal with respect to non-degenerate
scalar product

〈. , .〉 = 〈. , .〉v + 〈. , .〉r,s

〈z, w〉r,s =
∑r

i=1
ziwi −

∑s
j+1

zr+jws+j and

〈x, y〉v =

{

∑n
i=1

xiyi −
∑n

j+1
xn+jyn+j , if s > 0

∑2n
i=1

xiyi, if s = 0
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Pseudo H-type Lie algebras

• The map Jz : v → v is defined by

〈Jzx, y〉v = 〈z, [x, y]〉r,s, z ∈ z, x, y ∈ v,

and satisfies one of the equivalent conditions

〈Jzx, Jzy〉v = 〈z, z〉r,s〈x, y〉v, composition of q.forms

J2
z = −〈z, z〉vIdv Clifford algebra property.

Directly from the definition:
• 〈Jz•, y〉 = 〈z,−ad•y〉;
• 〈Jzx, y〉v = −〈x, Jzy〉v

The fundamental solution of a class of ultra-hyperbolic operators on pseudo-H-type Lie groups – p. 4/18



Pseudo H-type Lie algebras

n1,0
∼= n0,1 is the Heisenberg algebra:

z ∼= R, v = span{Xi, Yj ; i, j = 1, . . . n}, [Xi, Yj ] = δij

nr,0 are the H(eisenberg)-type algebras introduced by
A.Kaplan (1980) to study properties and solutions

∆subu =

2n
∑

i=1

X2
i u = −

2n
∑

i=1

X∗

iXiu = f

nr,s, s > 0 are the pseudo H(eisenberg)-type algebras
introduced by P.Ciatti (2000), Godoy, Korolko, M.
(2013)
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Pseudo H-type Lie groups

Let nr,s be a pseudo-H-type algebra. The exponential
map

exp: nr,s → Nr,s

is the global diffeomeorphism: nr,s ↔ Nr,s. The product

is given by Baker-Campbell-Hausdorff formula

exp(X) exp(Y ) = exp(X + Y +
1

2
[X,Y ]).

Left translation of the scalar product defines a
non-degenerate indefinite metric.

Thus Nr,s is a pseudo-Riemannian manifold.
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Ultra-hyperbolic operator on Nr,s

Take orthonormal bases

X = {Xj : j = 1, . . . , 2n} for v, Z = {Zk : k = 1, . . . , r+s} for z

Identify X and Z with left-invariant v.f-ds on Nr,s by

Xj :=
∂

∂xj
+

2n
∑

m=1

r+s
∑

k=1

akmjxm
∂

∂zk
, j = 1, . . . , 2n,

Zk :=
∂

∂zk
, k = 1, . . . , r + s.

Here [Xm, Xj ] = 2
∑r+s

k=1
akmjZk are the structure

constants of nr,s.
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Ultra-hyperbolic operator on Nr,s

Let r, s ∈ Z+ ∪ {0} and s > 0. We call

∆r,s :=

n
∑

i=1

X2
i −

n
∑

i=1

X2
i+n = −

n
∑

i=1

X∗

i Xi +

n
∑

i=1

X∗

i+nXi+n

an ultra-hyperbolic operator on Nr,s. (notice the similarity with the

classical ultra-hyperbolic operator L =
∑n

i=1
∂2

∂x2
j

−
∑n

i=1
∂2

∂x2
j+n

Example: Let N0,1 be the 3-dimensional Heisenberg
group. A corresponding uh-operator is:

∆0,1 =
(

∂

∂x1
−
x2

2

∂

∂z

)2

−
(

∂

∂x2
+
x1

2

∂

∂z

)2
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Aim of the project

(a) Characterize the pairs (r, s) for which the u-h.
operator ∆r,s admits an inverse (= fundamental
solution).

(b) Derive a class of fundamental solutions of ∆r,s in
the space of tempered distributions, (whenever the existence is

guaranteed): determine K ∈ S′(R2n+r+s) explicitly such that
∆r,sK = δ0.

(c) Characterize (r, s) for which the u-h operator ∆r,s is
locally solvable. (a left-invariant differential operator L on Nr,s is called locally

solvable at p0 ∈ Nr,s if there is an open neighborhood U of p0 with

L(C∞)(U) ⊃ C∞
0

(U).)
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Strategy to find the inverse of ∆r,s

1. Perform a formal change of variables in the symbol
of the u.h. operator to obtain the symbol of a
sub-Laplacian ∆sub on an H-type group.

2. Integrate the time-variable in the well-know

expression of the heat kernel of ∂
∂t +∆sub to obtain a

fundamental solution of the sub-Laplace operator ∆sub.

3. Formally reverse the change of variables in the
fundamental solution of ∆sub.

Note: The operator ∆r,s does not have constant
coefficients. Therefore the existence of a fundamental
solution is not guaranteed (e.g. by the theorem of Malgrange and

Ehrenpreis.)
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Form of fundamental solution to ∆r,s

This recipe led to a meaningful distribution, which then
rigorously was shown to be the fundamental solution
of ∆r,s for r = 0. For ϑ 6= 0 write the kernel

q(ξ, ϑ) :=
i

(2π)n+
s
2

∫

∞

0

1

|ϑ| coshn t
exp

{

i
tanh t

|ϑ|
P (ξ)

}

dt.

With the Fourier transform F on S(R2n+s) put:

K0,s(ϕ) :=

∫

R2n+s

q(ξ, ϑ)
[

Fϕ
]

(ξ, ϑ) dξ dϑ, ϕ ∈ S(R2n+s)

Then K0,s is a tempered distribution and it defines a
fundamental solution to ∆0,s: ∆0,sK0,s(ϕ) = ϕ(0)
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Solution is not unique

Let µ(ϑ), λ(ϑ) : Rs → C be measurable functions and

q
λ,µ
0,s (ξ, ϑ) =

i

(2π)n+
s
2 |ϑ|

∫ 1

0

(1−ρ2)
n−2

2

{

λe
i‖ξ‖2r,s

|ϑ|
ρ−µe

−i‖ξ‖2r,s
|ϑ|

ρ
}

dρ

Then

K
λ,µ
0,s (ϕ) :=

∫

R2n+s

q
λ,µ
0,s (ξ, ϑ)

[

Fϕ
]

(ξ, ϑ)dξdϑ

is the fundamental solution of ∆0,s whenever λ+µ = 1.

For some parameters λ and µ we recovered known
solutions on the Heisenberg groups.
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Solution is not unique

The result follows from the observation that any
fundamental solution has to satisfy the ODE

(2π)−
2n+s

2 = −vf(v)− n|ϑ|2f ′(v)− |ϑ|vf ′′(v),

if we set q0,s(ξ, ϑ) = f(‖ξ‖2r,s, ϑ) = f(v, ϑ).

Then it was shown that

q
λ,µ
0,s (ξ, ϑ) =

i

(2π)n+
s
2 |ϑ|

∫ 1

0

(1−ρ2)
n−2

2

{

λe
i‖ξ‖2r,s

|ϑ|
ρ−µe

−i‖ξ‖2r,s
|ϑ|

ρ
}

dρ

indeed the kernel for fundamental solution.
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No fundamental solutions of ∆r,s for

r > 0

Encouraging observation: For r > 0 the formal change
of variables still transforms ∆r,s to ∆sub defined on an
pseudo H-type group.

Problem: The corresponding change of variables in
the integral expression of a fundamental solution of
∆sub produces an expression which cannot be
interpreted as a distribution in an obvious way.

THEOREM. Let r > 0, then the u.h. operator ∆r,s does

not have a fundamental solution in S ′(R2n+r+s).

Proof made by a counterexample.
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Question!

Is it possible that ∆r,s has a fundamental solution in the

larger space D′(R2n+r+s) of Schwartz distributions?

Our counterexample does not work in this case but we
found general theorem (F. Battesti):

Let L be a left-invariant and homogenous differential
operator on Nr,s. Then the following are equivalent:

(a) L is locally solvable,

(b) L has a fundamental solution in D′(Nr,s).
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∆r,s is not locally solvable

Theorem (D. Müller, 1991)

Let L be a left-invariant homogeneous differential
operator on a homogeneous, simply connected
nilpotent Lie group G.

Assume there exists a Schwartz functions on G

satisfying
(i) ψ(0) = 1
(ii) For every continuous semi-norm ‖ · ‖ on the

Schwartz space D(G) it holds: ‖ψ‖ · ‖LTψ‖ = 0

Then L is not locally solvable.

The fundamental solution of a class of ultra-hyperbolic operators on pseudo-H-type Lie groups – p. 16/18



∆r,s has not fundamental solution

By constructing the function ψ we proved

(1) If r > 0 then ∆r,s is not locally solvable. In particular,
∆r,s does not even admit a fundamental solution in the
space of Schwartz distributions D(Nr,s) and

∆r,s

(

C∞(R2n+r+s)
)

( C∞(R2n+r+s).

(2) If r = 0, then we have a positive result. The
operators ∆r,s, s > 0, are locally solvable and

∆r,s

(

C∞(R2n+s)
)

= C∞(R2n+s).
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The end

Thank you for the attention
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