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Convolution type operators

We consider a zero order convolution type non-local operator A in
L2(Rd), d ≥ 1, with periodic or random statistically homogeneous
coefficients. This operator is defined by

Au(x) =

∫
Rd

Λ(x , y)a(x − y)
(
u(y)− u(x)

)
dy ,

where the convolution kernel a = a(z) is a (deterministic)
non-negative integrable function, a : Rd 7→ R+, and Λ(x , y) is a
periodic function or a stationary random field that satisfies the
uniform ellipticity conditions. This function Λ represents the local
characteristics of the environment.

Under the above assumptions A is a bounded linear operator in
L2(Rd). The corresponding evolution equation describes the
dynamics of a continuous time jump Markov process in a periodic
or random stationary medium.
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Homogenization problem

When studying the large time behaviour of the said Markov
evolution it is natural to make the diffusive scaling of spatial and
temporal variables:

x −→ εx , t −→ ε2t,

where ε is a small positive parameter. The generator of the scaled
dynamics takes the form

(Aεu)(x) =
1

εd+2

∫
Rd

a
(x − y

ε

)
Λ
(x
ε
,
y

ε

)(
u(y)− u(x)

)
dy . (1)

The talk focuses on the homogenization problem for this family of
operators, as ε→ 0.
Our goal is to obtain the homogenization results and to study the
properties of the limit problem.
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Homogenization

Given a function f ∈ L2(Rd) and λ > 0, consider a problem

− Aεu(x) + λu(x) = f (x) in Rd . (2)

We will show that for each ε > 0 this problem has a unique
solution uε ∈ L2(Rd).

Definition

We say that the family Aε admits homogenization, as ε→ 0, if
there exists an operator A0 in L2(Rd) such that the problem

− A0u(x) + λu(x) = f (x) in Rd .

has a unique solution u0 for any f ∈ L2(Rd), and

uε −→ u0 in L2(Rd), as ε→ 0.

A0 is called the effective operator.
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Motivations and possible applications.

Zero order convolution type operators appear in many applications,
such as models of population dynamics and the continuous contact
model, where they describe the evolution of the density of a
population. Several models of porous media are also described in
terms of convolution type operators with integrable kernels.

Studying the large time behaviour of such systems in periodic and
stationary random media naturally leads to homogenization
problems for the corresponding non-local operators.

Homogenization of convolution type operators A. Piatnitski 6 / 37



Motivations and possible applications.

Zero order convolution type operators appear in many applications,
such as models of population dynamics and the continuous contact
model, where they describe the evolution of the density of a
population. Several models of porous media are also described in
terms of convolution type operators with integrable kernels.

Studying the large time behaviour of such systems in periodic and
stationary random media naturally leads to homogenization
problems for the corresponding non-local operators.

Homogenization of convolution type operators A. Piatnitski 6 / 37



Existing results for differential and difference operators

Periodic coefficients • For periodic operators first
homogenization results were obtained by E. De Giorgi (’67) and
S.Spagnolo (’70). It was shown that for divergence form second
order elliptic operators of the form

Lεu(x) = div
(
a
(
x
ε

)
∇u(x)

)
with periodic coefficients and the corresponding parabolic
operators the homogenization result holds, and the limit elliptic
(parabolic) operator has constant coefficients.

• Homogenization of spectral problems - S. Kesavan (’79).

• Homogenization in periodically perforated domains (including
eigenvalue problems) - M. Vanninathan (’81),.

• Two-scale asymptotic expansion method - N.Bakhvalov (’74), A.
Bensoussan, J-L. Lions, G.Papanicolaou (’78).

• Div-curl method - F.Murat, L.Tartar (’78–’79),
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Existing results for differential and difference operators

• Γ-convergencve methods - G. Dal Maso (’95), A. Braides, A.
Defranceschi (’98).

• Two-scale convergence method - G.Nguetseng (’89), G.Allaire
(’90).

• Periodic unfolding method - D. Cioranescu, A. Damlamian, G.
Griso (’08).
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Existing results in the stochastic case

Random coefficients • For elliptic operators of the form

Lεu(x) = div
(
a
(
x
ε

)
∇u(x)

)
with random statistically homogeneous coefficients first
homogenization results were obtained in S. Kozlov (’79) and G.
Papanicolaou, S.R.S. Varadhan (’80) . It was shown that the
effective operator

Leff = div
(
aeff∇u(x)

)
has constant and, in the ergodic case, deterministic coefficients.

• Homogenization of elliptic difference operators with random
stationary coefficients - S. Kozlov (’85-’86) ,

• Variational approach in stochastic homogenization - G. Dal
Maso, L. Modica (’86) ,
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Existing results in the stochastic case

• Central Limit Theorem for a symmetric elliptic random walk in
random environment - A. De Masi, P. Ferrari, S. Goldstein and W.
D. Wick (’89), A.-S. Sznitman (’85 – ’04) and many others

• Estimates for the rate of convergence - V. Yurinskii (’81) .
Sharp estimates - A. Gloria, F. Otto (’11 – ’17) .
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Existing results for nonlocal operators

• Homogenization a class of integro-differential equations with
Levy operators - M. Arisawa (’09).

• Scaling limits for symmetric Ito–Lévy processes in random
medium – R. Rhodes and V. Vargas (’09).

• Homogenization of Periodic Diffusion with Small Jumps. – N.
Sandric (’16).

• Periodic homogenization for nonlinear integro-differential
equations. – R. Schwab (’10).
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Assumptions

For presentation simplicity we suppose that Λ(x , y) = µ(x)µ(y).

We assume that the convolution kernel a(·) possesses the following
properties

Boundedness

C1

a(x) ≥ 0; a(x) ∈ L2(Rd) ∩ L1(Rd).

Symmetry

C2

a(x) = a(−x) for all x ∈ Rd .

Normalization and second moments

C3 ∫
Rd

a(x)dx = 1,

∫
Rd

|x |2a(x)dx <∞.
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Periodic coefficients

Periodicity.

P1

µ(y) is periodic function with a period (0, 1]d .

Uniform ellipticity.

P2

0 < Λ− ≤ µ(y) ≤ Λ+
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ε-problem

Let m be a positive number. We consider a family of problems

− Aεu + mu = f , f ∈ L2(Rd) (3)

with

(Aεu)(x) =
1

εd+2

∫
Rd

a
(x − y

ε

)
µ
(x
ε

)
µ
(y
ε

)(
u(y)− u(x)

)
dy .

Lemma

For any m > 0 and any f ∈ L2(Rd) equation (3) has a unique
solution uε ∈ L2(Rd). Moreover,

‖uε‖L2(Rd ) ≤
1

m
‖f ‖L2(Rd ).
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Periodic symmetric case. Results

Theorem

There exists a positive definite symmetric d × d matrix ahom such
that for any f ∈ L2(Rd) the solution uε converges in L2(Rd), as
ε→ 0, to a solution u0 of the following homogenized problem

−div
(
ahom∇u0

)
+ mu0 = f in Rd .

By the Hille-Yosida theorem for any ε > 0 the operator Aε is the
generator of a contraction semigroup Sεt = eA

εt in L2(Rd). The
semigroup with the generator div

(
ahom∇ ·

)
is denoted by S0

t .

Theorem

The semigroup Sεt strongly converges to S0
t . The convergence is

uniform on any finite time interval.
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Framework of continuous functions

Here we suppose that two additional conditions are fulfilled:

Continuity.

C4

Both a(·) and µ(·) are continuous functions.

Uniform decay.

C5

a(z) ≤ C

(1 + |z |)d+2+κ

for some κ > 0.
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Invariance principle

Under the above conditions there exists a jump Markov process ξεt
with the generator Aε. Its trajectories belong to the Skorokhod
space D([0,∞),Rd .

The space of continuous functions in Rd that vanish at infinity is
denoted by C0(Rd). One can check that for f ∈ C0(Rd) the
solution uε is an element of C0(Rd).

Theorem

Let f ∈ C0(Rd). Then uε converges to u0 in the uniform
convergence norm. Furthermore, the process ξε· converges in law,
as ε→ 0, in the Skorokhod topology to a Brownian motion with
the covariance matrix 2ahom.
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Auxiliary cell problem. Corrector.

Cell periodic problem

∫
Rd

a(ξ − η)µ(ξ)µ(η)
(
χ(η)− χ(ξ)

)
dη =

= −
∫
Rd

a(ξ − η)µ(ξ)µ(η)
(
η − ξ

)
dη.

Lemma

There exists a unique up to an additive constant periodic solution
χ ∈ L2([0, 1]d ,Rd) of the above cell problem.

Observe that χ is a vector-function.
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Observe that χ is a vector-function.
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Homogenized operator

The formula for the homogenized matrix ahom reads

Effective matrix

ahom =

∫
Td

∫
Rd

a(ξ−η)µ(ξ)µ(η)
(1

2
(ξ−η)⊗(ξ−η)−(ξ−η)⊗χ(η)

)
dηdξ.

In order to make our technique work we should show that the
effective matrix is positive definite.

Lemma

The matrix ahom is positive definite.
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Some ideas of the proof

We use the asymptotic expansion technique. Assuming that the
limit function u0 is smooth enough we write down the asymptotic
expansion for uε of the form

Asymptotic expansion

uε = u0(x) + εχ
(x
ε

)
· ∇u0(x) + ε2κ

(x
ε

)
· ∇∇u0(x) + r ε,

the functions χ(ξ) and κ(ξ) are periodic.

We also introduce a new variable z = x−y
ε and expand

u0(y) = u0(x − εz) in Taylor series about x :

u0(y) = u0(x)− εz · ∇u0(x) +
1

2
z ⊗ z · ∇∇u0(x) + . . .

Homogenization of convolution type operators A. Piatnitski 20 / 37



Some ideas of the proof

Then we substitute the above expansion for uε in the equation and
collect power-like terms in the resulting relation.

Collecting the terms of order ε−1 results in the equation for the
corrector χ.

The terms of order ε0 give the equation for κ. The compatibility
condition for this equation allows us to determine the effective
coefficients.
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Non-symmetric operators

We turn to the case of non-symmetric operators. We still assume
that conditions C1, C3 and P1, P2 are fulfilled.
Here we consider the parabolic Cauchy problem

∂tu = Aεu, u(x , 0) = u0(x).

For each u0 ∈ L2(Rd) this problem has a unique solution
uε ∈ L∞(0,T , L2(Rd)).

Theorem

There exist a constant vector b ∈ Rd and a positive definite
d × d constant matrix ahom such that∫ T

0

∫
Rd

(
uε(x , t)− u0

(
x − b

ε
t, t
))2

dxdt −→ 0,

as ε→ 0, where u0 is a solution of the following Cauchy problem

∂tu
0 = div

(
ahom∇u0(·, t)

)
, u0(x , 0) = u0(x).
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Non-symmetric operators

Observe that in the non-symmetric case the homogenization result
holds in moving coordinates (moving frame). This reflects the law
of large numbers for the corresponding process, b being the
effective velocity.

The above theorem was formulated in a vague form. We did not
specify so far the construction of b and ahom.
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Kernel of the adjoint periodic operator

We consider in L2(Td) the bounded operator

A#v(ξ) =

∫
Rd

a(ξ − η)Λ(ξ, η)
(
v(η)− v(ξ)

)
dη

and its adjoint

A?#p(ξ) =

∫
Rd

[
a(η − ξ)Λ(η, ξ)p(η)− a(ξ − η)Λ(ξ, η)p(ξ)

]
dη.

Homogenization of convolution type operators A. Piatnitski 24 / 37



Kernel of the adjoint periodic operator

Lemma

The kernel of the operator A?# has dimension one. There exist
c− > 0 and c+ > 0 such that under proper normalization the
function p0 satisfies the relation

0 < c− ≤ p0(ξ) ≤ c+.

The equation A#v(ξ) = g(ξ) is solvable in the space of periodic
functions if and only if g is orthogonal to p0 in L2(Td).

The proof relies on the Fredholm and Krein-Rutman theorems.

In what follow
∫
Rd p0(ξ) dξ = 1.
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Cell problem in the non-symmetric case

Asymptotic expansion

uε = u0(x − b

ε
t, t) + εχ

(x
ε

)
· ∇u0(x − b

ε
t, t) + . . .

Playing the same game as in the symmetric case and collecting
power-like terms we arrive at the following equation for the
corrector χ:

Cell problem

∫
Rd

a(ξ−η)Λ(ξ, η)
(
χ(η)−χ(ξ)

)
dη =−

∫
Rd

a(ξ−η)Λ(ξ, η)
(
η−ξ−b

)
dη.

Clearly, there is a unique b such that the compatibility condition
holds and the equation has a periodic solution.
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Effective velocity and diffusion

For b we obtain the following expression:

Effective drift

b =

∫
Rd

a(ξ − η)Λ(ξ, η)
(
η − ξ

)
dηdξ.

Collection the terms of order ε0 we obtain an equation for the
second corrector κ(·). The compatibility condition for this equation
allows us to determine the effective matrix ahom.

One can show that ahom is positive definite.
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Random coefficients

Let (Ω,F ,P) be a standard probability space, and assume that Tx

is an ergodic dynamical system on this probability space that is an
ergodic group of measurable transformations of Ω such that

. Tx+y = Tx ◦ Ty for all x , y ∈ Rd , T0 = Id,

. P(S) = P(TxS) for any S ∈ F and any x ∈ Rd ,

. T· is a measurable map from Rd × Ω to Ω, where Rd is
equipped with the Borel σ-algebra.

Ergodicity of T· means that for any set S ∈ F such that TxS = S
for all x ∈ Rd , we have either P(S) = 0 or P(S) = 1.
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Random coefficients

In the random case our condition on µ reads

Stationarity and ellipticity.

R1

µ(x , ω) = µ(Txω),

where a random variable µ satisfies the estimate

0 < α1 ≤ µ(ω) ≤ α2 <∞.

Then
Λ(x , y) = µ(x , ω)µ(y , ω) = µ(Txω)µ(Tyω).

and

(Aεωu)(x) =
1

εd+2

∫
Rd

a
(x − y

ε

)
µ
(x
ε
, ω
)
µ
(y
ε
, ω
)(

u(y)−u(x)
)
dy .
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Main result

For a constant d × d matrix Θ denote

A0,Θu(x) = Θij
∂2

∂xi∂xj
u(x).

Theorem (Homogenization theorem)

Let conditions C1–C3 and R1 be fulfilled. Then there exists a
constant deterministic symmetric positive definite matrix Θ such
that almost surely for any f ∈ L2(Rd) and any m > 0 the solution
uε of the problem −Aεωu + mu = f converges in L2(Rd), as ε→ 0,
to the solution of the effective problem

−A0,Θu(x) + mu(x) = f (x).

that is

‖(Aεω −m)−1f − (A0,Θ −m)−1f ‖L2(Rd ) → 0 as ε→ 0.
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Asymptotic expansion

We first assume that f ∈ C∞0 (Rd) and that

u0 = (A0,Θ − λ)−1f ∈ C∞0 (Rd).

We denote this set by S0(Rd). Observe that this set is dense in
L2(Rd).

Given u0 ∈ C∞0 (Rd), we write down the ansatz

uε(x) = u0(x) + εθ
(x
ε
, ω
)
∇u0(x) + uε,R(x , ω),

here u0 is the leading term of the expansion and θ
(
z , ω

)
is the

so-called corrector. Denote

v ε(x) = u0(x) + εθ
(x
ε
, ω
)
∇u0(x).
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Asymptotic analysis

We introduce a new variable z = x−y
ε and substitute for uε the

two leading terms of the asymptotic expansion. This yields

(Aεωv
ε)(x) =

1

ε2

∫
Rd

a(z)µ
(x
ε

)
µ
(x
ε
− z
)(
u0(x − εz)− u0(x)

)
dz+

1

ε2

∫
Rd

a(z)µ
(x
ε

)
µ
(x
ε
−z
)(
εθ
(x
ε
−z
)
∇u0(x−εz)−εθ

(x
ε

)
∇u0(x)

)
dz .

The Taylor expansion of a function u0(x − εz) reads

u0(x − εz)

= u0(x)−∇u0(x) · z +
∫ 1

0 ∇∇u
0(x − zt)z · z(1− t) dt

and is valid for any x , z ∈ Rd .
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Collecting power-like terms

Writing down a similar expansion for ∇u0(x − εz) we obtain

(Aεωv
ε)(x)

=
1

ε
µ
(x
ε

)
∇u0(x)·

∫
Rd

[
θ
(x
ε
− z
)
− θ
(x
ε

)
− z
]
a(z)µ

(x
ε
− z
)
dz

+µ
(x
ε

)
∇∇u0(x)·

∫
Rd

[1

2
z⊗z− z⊗θ

(x
ε
−z
)]

a(z)µ
(x
ε
−z
)
dz

+φε(x)

Our first goal is to choose θ(ζ, ω) in such a way that the sum of
the terms of order ε−1 vanishes. This leads to the following
equation for θ:
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The corrector

∫
Rd

(
− z + θ

(
ζ − z , ω

)
− θ
(
ζ, ω

))
a(z)µ

(
ζ − z , ω

)
dz = 0.

Also, we want the term εθ
(
x
ε

)
∇u0 to be asymptotically small as

ε→ 0. Thus, θ(ζ, ω) should be a.s. of sublinear growth.

Theorem

There exists a unique (up to an additive constant vector) solution
θ(·, ω) ∈ L2

loc(Rd) such that

the increments ζz(ξ, ω) = θ(z + ξ, ω)− θ(ξ, ω) are stationary
for any given z, i.e. ζz(ξ, ω) = ζz(0,Tξω);

εθ
(
x
ε , ω

)
is a function of sub-linear growth in L2

loc(Rd): for
any bounded Lipschitz domain Q ⊂ Rd∥∥∥ε θ(x

ε
, ω
)∥∥∥

L2(Q)
→ 0 a.s.
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Zero order terms

We turn to the terms of order zero:

I ε(x) = µ
(x
ε

)
∇∇u0(x)·

∫
Rd

[1

2
z⊗z− z⊗θ

(x
ε
−z
)]

a(z)µ
(x
ε
−z
)
dz

Proposition

For any ϕ ∈ C∞0 (Rd) we have a.s.

(I ε, ϕ)L2(Rd ) −→
∫
Rd

(Θ1 + Θ2)
ij

∂u0(x)

∂xi∂xj
ϕ(x)dx

where

Θ1 =

∫
Rd

1

2
z ⊗ z a(z)E{µ(0, ω)µ(−z , ω)}dz

and

Θ2 =
1

2

∫
Rd

a(z)z ⊗ E{ζ−z(0, ω)µ(0, ω)µ(−z , ω)}dz .
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Effective matrix

Proposition

The matrix Θ = 1
2 [(Θ1 + Θ2) + (Θ1 + Θ2)t ] is positive definite.
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Works in progress

Non-local operators in high contrast media.

Homogenization of convolution type operators in perforated
domains.

Non-symmetric operators with random coefficients (in the
case of finite range of dependence).
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