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@ Thirring model:
(_i'Y“@u +m)y = @7"@0)7#1#-
@ Maxwell-Dirac equations:

(=iv" O + m)y = Auytab,
DA,u = _J’Y/ﬂ/}a
9hA, = 0.
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Thirring model

Cauchy problem

(—"’7“6;1 +m)p = (@’Y“lﬂ)%ﬂf),
Yli—0 = o € Xop.

@ Well posed or ill posed?
o The space Xy = L%(R) turns out to play a special role:
o Scaling invariance of the egs. (when m = 0)

oo t) = W) = e () (> 0)

o Conservation of charge (0,/* =0, j* = PyHap)

2 2 gy
/R (. D) dx = / (0, )2 d
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Global well-posedness

o First global result due to Delgado (1978) in Xo = H}(R) = W12(R).
e Candy (2011) proved global well-posedness in the critical space
Xo = L2(R).
e What happens below the L? regularity? For example, for
e Xp=LP(R),1<p<20r
e Xp = H(R), s <0.
@ Both have supercritical scaling: A — 0 means that

e data norm tends to zero, and
e existence time tends to zero,

so heuristically one expects local well-posedness to fail.
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What do we mean by local well-posedness

By local well-posedness in a Banach space Xj of initial data, containing

Lgomp(R) as a dense subspace, we mean here the following: For any data

o € Xo

there exist
© a neighborhood Q of g in Xp,
@ atime T >0, and
© a continuous map
5:Q — C([0, T]; Xo)

which on QN L2 (R) agrees with the L2 data-to-solution map

comp

obtained by Candy.
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Our main result

Theorem (S. and Tesfahun, 2019)
The Cauchy problem

(—iv*8y + m)y = (P )b,
Yli=0 = Yo € Xo

fails to be locally well posed in
Xo = LP(R), 1<p<2
Moreover, if m = 0, local well-posedness fails also in

Xo = H*(R), s<0O.
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Choice of initial data

Consider X
1
009 = X100, ()
and approximations
1 1
> — —
wO(X) - X(,l,l)(X) (5 + |X|)1/2 (1> N
Then
@ 9o € LP(R) for 1 < p < 2, but not for p = 2.
e Yy € H*(R) for s < 0.
@ 15 — 1o in the above spaces, as ¢ — 0.
e 95 € L2(R), so has a global evolution ¢ € C(R; L?).

e To disprove local well-posedness we show that 1°(-, t) cannot have a
limit in LP for 1 < p < 2, no matter how small t > 0 is.
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Plan the proof

© Preliminaries

@ Massless case (m = 0). Explicit calculation.
© Massless case alternative approach.

Q Massive case (m > 0).

@ Further remarks on the massless case.
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Preliminaries

Adopting the particular representation
01 0 -1
0__ 1_
*=(G o) =0 )
for the Dirac matrices, and writing ¢ = (u, v)T, the problem takes the form

(O + O )u = —imv +2i|v]>u,  u(x,0) = f(x),
(0 — Ox)v = —imu+2i[u*v,  v(x,0) = g(x).

Key fact: local form of conservation of charge,

t t
/ 2|u(x + t —0,0)|? d0+/ 2|v(x — t+0,0) do
0 0

= [ ()R + e 0R) o

—t
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Massless case: m =0

System reads
(0 +0)u=2i|vPu,  u(x,0)=Ff(x),
(0 — D )v = 2i [u? v, v(x,0) = g(x).
Multiply by integrating factors e ="+ and e~/¢~, where
(0 + 0x)o = 2|V, 64(x,0) =0
(0 — 0)p— =2|ul?,  ¢_(x,0) =0,
that is,

t
2|v(x — t+0,0))? do,

2|u(x +t —0,0)|? do.
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Massless case: m =0

Then

u(x, t) = f(x — t)el®+(x),
v(x,t) = g(x + t)ei¢—(t’x).

In particular, |u(x,t)| = |f(x — t)] and |v(x, t)| = |g(x + t)], so

x+t

o(x.0) = [ 2letx—e+2m)Pdo = [ el o

—t
t x+t
6. (x, ) :/ 2F(x+t — 20)2 do :/ £(s)P ds.
0 x—t
For data f.(x) = g.(x) = W we get

X+t

d
Silet) =0 (o) = [P
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Massless case: m =0

In particular, in the region t > |x|,

. 1 .
o2 Iogz-:ua(x7 t) — (6 — X)1/2 el[log(s+tfx)+log(€+t+x)]

Implies that u.(+, t) cannot converge in LP or in H® as ¢ — 0, no matter
how small t > 0 is taken.

On the other hand, the initial data do converge in those spaces if p < 2
(respectively s < 0), so we have the proof of ill-posedness.
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Massless case, alternative approach

o : R R ..
Motivation: In massive case, cannot calculate ¢S and ¢ explicitly.

@ But by conservation of charge (also in massive case)

X+t d
O et

To make use of this, it is desirable to work with the product wu.v..
[llustrate on the massless case:

g2ilog(e+x+t)  o2ilog(s+t—x)

e4i|ogs .
(e+x+t)l/2(e+t—x)1/2

usve(x, t) =

.. H H !
Choose positive €,, " — 0 such that e*'°8n = 1 and e*/logen = 1.
Assuming well-posedness in LP implies convergence a.e. of a
subsequence, hence

e2i log(x+1) e2i log(t—x)
(x + t)1/2 (t — x)1/2
for almost every x € (—t, t), for any fixed t > 0.

+uv(x,t) = —uv(x,t) =
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Massive case

Defining ¢ and ¢_ as before, one obtains
. t .
e ru(x,t) = f(x — t) — im/ (e_"i’+ v) (x —t+o0,0)do,
0

. t .
e -v(x,t) = g(x+t) — im/ (ef’gb— u) (x+t—o0,0)do.
0

Thus,

3
e OO uy(x, 1) = F(x — )g(x + 1) + > Ri(x, t),
j=1
where
Ri(x, t) = f(x — t) (ﬂm/ot (e7=u) (x+t—00) df’) ,

Ro(x,t) = g(x + t) (—im/ot (eﬂw+ v) (x—t+o, U)do‘) s

R3(x,t) = [ —im ‘ e iP—y (x+t—o0,0)do —im ! e+ (x—t+o,0)do ).
, (77 0) L (e77)
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Massive case

Now take f2(x) = g-(x) = W so by conservation of charge,
x+t d
Y
o5+ 9% )(x,t) = / .
( + )( ) e e+ |y|

Then for t > |x|,

g2ilog(e+x+t)  o2ilog(e+t—x)

4iloge _
y eve(x, 1) = (e + x4+ t)1/2 (e 4+ t — x)1/2 +Re(x 1),
where s
RE(X, t) — o2 log(e+x+t) e?i log(e+t—x) Z Rj,é:(xv t).
j=1

We then show that this remainder is negligible compared to the first term
on right hand side, in the ball B centered at (x, t) = (0, ) with radius
0/4, for § > 0 sufficiently small and ¢ < 6.
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Massive case

Define, for t > 0

t)—sup/ lu(y — 0, 0)| da+sup/ .y + 0,0)| do.

For y e R and o > 0,
1 o
lue(y —0,0)] < 2 + m/ |ve(y — 20 + s,s)| ds,
ly — 20 0

1 (e
|Ve()/+070)\§1/2+m/ |us(y + 20 — s, 5)| ds,
ly + 20| 0

and integrating this with respect to o € (0, t) we get
t
A(t) < 8tY/% + 2m/ A(o) do,
0

so by Gronwall we get
At) < ct?/?
for t < 1. The rest is easy.
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Further remarks on the massless case

Although the solution (u., v.) does not have a limit as ¢ — 0, one can
nevertheless observe that by restricting € to any sequence £, — 0 such
that e/'°8€" has a limit, then the solution does converge in C([0, T]; LP),
1 < p < 2, to a valid solution in that space. In this way, one obtains a
continuum of possible limiting solutions, depending on the limit of e'og8%n,
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Thank you for your attention!
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