
On the physics of the Navier-Stokes equations

Magnus Svärd

Department of Mathematics, University of Bergen

6/6/2019



The compressible Navier-Stokes equations

∂tρ+ divx(ρv) = 0

∂t(ρv) + divx(ρv ⊗ v) +∇xp = divxS
∂t(E ) + divx(Ev + pv) = divxSv + divx(κ∇xT )

p = ρRT ideal gas law

v = (u, v ,w)

Total energy: E = 1
2ρ|v|

2 + ρcvT .



Basic assumptions

I Ideal gas
I Gas behaves as ”billiard balls” with no interparticle forces.
I Atoms have no rotational energy.

I Models macroscopic states in local thermodynamic
equilibrium. Diffusion dominates at small scales.

I Stresses modelled as Newtonian fluid.

I No external forces.



Physically problematic properties

I Positivity (not given by equations; essential for well-posedness)

I Adiabatic wall (non-zero diffusive entropy and energy)

I Far-field boundaries (inconsistent with Euler)
I Small-scale relaxation

I Short wave length thermodynamic perturbation of fluid at rest
should diffuse.

I Instead, high-frequency convective velocity is induced.

I Multi-component fluids



Multi-component fluids

(ρ1 + ρ2)t + ((ρ1 + ρ2)u)x = 0 (ρ = ρ1 + ρ2) (1)

(ρ1)t + (ρ1(u + j1))x = 0

(ρ2)t + (ρ2(u + j2))x = 0

j1,2 are mass-diffusion fluxes.

I Velocity has conflicting meanings.
I j1, j2 must not violate (1).

I If only one component, j1 = 0.
I If two, also: j1 + j2 = 0.

I Fick’s law has to be modified: j1 = ξ(ρ1)x to j1 = ξ(ρ1ρ )x etc.



Lack of mass diffusion is the cause of these problems

∂tρ+ divx(ρv) = 0

∂t(ρv) + divx(ρv ⊗ v) +∇xp = divxS
∂t(E ) + divx(Ev + pv) = divxSv + divx(κ∇xT )

p = ρRT ideal gas law

Why is there no mass diffusion?

The most direct answer: All mass transport is encoded in u.

To see why that is the case, we turn to the derivation of the flow
equations.



Derivation of flow equations

I Euler: Fixed volume in space. Main principle: Conservation.

I NS: As above+ smoothly deformable mass element; add stress
forces. Main principle: Force balance.

Navier-Stokes is Lagrangian.

I Requires mass element smoothness! True along e.g.
stagnation line?

I Viscosity appears due to molecular diffusion, and yet mass is
constant within an element.



Stress tensor in Eulerian frame (Newtonian fluid)

Figure: Viscous force: µuy

x-momentum

I x boundary: ux , vy
I y boundary: uy , vx
I Only ∂nu can affect ρu.



Local non-conservation of the NSE.

I In NS, velocity gradients acts as diffusion between fluid
volumes.

I Differences in velocity are evened out. Does not inherently
conserve momentum!

I Convective velocity is induced between fluid volumes to
conserve momentum.

Similarly for heat diffusion. Non-conservative w.r.t internal energy
induces micro-advection.

Scrap remaining stress tensor and heat conductive term!



Diffusion seems to be a more fundamental principle

Random molecular movements give rise to:

I Stresses: Diffusion ⇒ Viscosity ⇒ stress force

I Heat conduction.

I But somehow, the mass transfer is purely advective (through
v).



Eulerian view

Figure: Fluid volumes.

Particle system conserves mass, momentum, kinetic energy,
angular momentum and has uniform centre-of-mass movement (no
external forces).



How to regularise the Euler equations?

I Stay in an Eulerian frame.

I Define the meaning of continuum variables (from particle
system).

I Determine what properties a 5 eqn system should conserve.
(And what not...)

I Use conservation as fundamental principle.
I Model Convective and diffusive term.

I Convection: same as for the Euler equations.
I Diffusion: When a particle moves it transports (and conserves)

its mass, momentum and kinetic energy. (Globally, ρ, ρu, E .)



An Eulerian flow model

∂tρ+ divx(ρv) = ∇x · (ν∇xρ)

∂t(ρv) + divx(ρv ⊗ v) +∇xp = ∇x · (ν∇xρv))

∂t(E ) + divx(Ev + pv) = ∇x · (ν∇xE )

p = ρRT ideal gas law

ν ∼ µ
ρ since µ has been extensively measured.

Note the symmetry: All variables are transported by the true mean
velocity and random motions are modelled as diffusion.

I Galilean and rotationally invariant.
I The listed problems of NS are all resolved.
I (Yes, they can be derived from Boltzmann.)



Kelvin-Helmholtz instability

(a) Navier-Stokes (b) Eulerian

Figure: ρ at T = 2 with 2562 grid points. (ν = µ/ρ)



Blast wave bouncing on walls

(a) Eulerian (b) Navier-Stokes

Figure: ρ at t = 0.01. 200 grid points.



Conclusions

I I propose a modified NS system based on conservation and
diffusion.

I It has ”nicer” properties than NS.

I In many cases it produces solutions that are almost identical
to NS.



Thank you for your attention!


