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Summary

(A) Binormal Flow (BF) a dispersive (geometric) PDE

• Critical regularity: Polygonal lines

• Selfsimilar solutions have finite energy

�cL2
per

�

• Talbot e↵ect

• Continuation beyond the singularity time

• Coherent structures are the self similar solutions

• Interaction: A weakly non–linear Talbot e↵ect (NLTe)

Q: BF for regular Polygons and regular polygonal helices

(B) BF as a toy model in Fluid Mechanics: Vortex filament

equation (VFE)

Conjecture: NLTe can explain the turbulent dynamics of non

circular jets
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ABSTRACT
Noncircular jets have been the topic of extensive research in the last fifteen years.
These jets were identified as an efficient technique of passive flow control that
allows significant improvements of performance in various practical systems at
a relatively low cost because noncircular jets rely solely on changes in the ge-
ometry of the nozzle. The applications of noncircular jets discussed in this re-
view include improved large- and small-scale mixing in low- and high-speed
flows, and enhanced combustor performance, by improving combustion effi-
ciency, reducing combustion instabilities and undesired emissions. Additional
applications include noise suppression, heat transfer, and thrust vector control
(TVC).
The flow patterns associated with noncircular jets involve mechanisms of vor-

tex evolution and interaction, flow instabilities, and fine-scale turbulence aug-
mentation. Stability theory identified the effects of initial momentum thickness
distribution, aspect ratio, and radius of curvature on the initial flow evolution.
Experiments revealed complex vortex evolution and interaction related to self-
induction and interaction between azimuthal and axial vortices, which lead to
axis switching in the mean flow field. Numerical simulations described the de-
tails and clarified mechanisms of vorticity dynamics and effects of heat release
and reaction on noncircular jet behavior.
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Euler equations

u: velocity field

� = curlu = r ^ u : vorticity

X = X(s, t) curve in R3
support of �

divu = 0

u(P ) =
�

4�

Z 1

�1

X(s)� P

|X(s)� P |3 ⇥ T (s)ds

� = �Tds T = Xs

Examples: straight lines, vortex rings, helical vortices
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(A) Binormal Flow

(BF)

(SM)

•  Hashimoto wave function 1d NLS (cubic focusing)(NLS)

• �t = �s ^ �ss = cb c : curvature b : binormal

• �s = T Schrödinger map Tt = T ^ Tss

�(0, s) : skew polygonal line

T (0, s) : sequence of points Tj such that lim

j!±1
Tj = A±
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j
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Hasimoto transformation:

�(s, t) = c(s, t)ei
R s
0 �(s0,t)ds0

⇥t�(s, t) = i

✓
⇥2
s� ± 1

2
(|�|2 +A(t)

�
�

◆

Z 1

�1
|�(s, t)|2ds =

Z 1

�1
|�(s, 0)|2ds =

Z 1

�1
c2(s, 0)ds

In our case

�(s, t) =
a⇥
t
ei

s2

4t ,

Z 1

�1
|�|2ds = +�.

SCHRÖDINGER EQUATION

c = c(s, t) curvature

� = �(s, t) torsion
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SOME HISTORY
What is the Talbot effect?

• Optical effect discovered by Talbot in 
1836

• Describes the behaviour of light after 
passing through a grating

• Tight gratings: 6800 slits per 
centimetre! (Lord Rayleigh in 1879)
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⇤(s, 0) =
2⇥

M

1X

k=�1
�

✓
s� 2⇥k

M

◆
.

Talbot effect and linear Schrödinger equation
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 t = i ss

b (k, t) = e�i(Mk)2t b (0, t)
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 (s, tpq) =
1X

k=�1
e�i(Mk)22⇡p/(M2q)+iMks

=
1X

k=�1
e�2⇡i(p/q)k2+iMks

tpq = (2⇡/M2)(p/q)

=
q�1X

l=0

1X

k=�1
e�2⇡i(p/q)(qk+l)2+iM(qk+l)s

=
q�1X

l=0

e�2⇡i(p/q)l2+iMls
1X

k=�1
eiMqks.



 (s, 0) =
2⇡

M

1X

k=�1
�(s� 2⇡k

M ).

 (s, tpq) =
2⇡

Mq

1X

k=�1

q�1X

m=0

G(�p,m, q)�(s� 2⇡k
M � 2⇡m

Mq )

20

tpq = (2⇡/M2)(p/q)

THE TALBOT EFFECT



The generalized quadratic Gauß sums are defined by

|c|�1X

l=0

e2�i(al
2+bl)/c,

for given integers a, b, c, with c 6= 0.

G(�p,m, q) =

8
>>>><

>>>>:

p
qei�m, if q is odd,

p
2qei�m, if q is even and q/2 ⌘ m mod2,

0, if q is even and q/2 6⌘ m mod2,

for a certain angle �m that depends on m (and, of course, on p and

q, too).
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Riemann’s non-di↵erentiable function

Integrating the Fourier series in time and evaluating at x = 0 we get

�(t) = i

Z
t

0

u(0, ⌧) d⌧ =
X

k2Z

e�4⇡2

ik

2

t � 1

�4⇡2k2

,

which is essentially Riemann’s non-di↵erentiable function.

Figure: De la Hoz, Vega: Vortex filament equation for a regular polygon,
Nonlinearity 27 (2014), 3031-3057



24



• Multifractal (Frisch–Parisi conjecture) 25

• Ja↵ard

�(t) =
X

k 6=0

e⇡ik
2t

i⇡k2
, t 2 [0, 2]



• Oskolkov ’92,

• Ja�ard, multifractal ’96,

26

• Berry and Goldberg, Talbot E�ect ’88,

• Duistermaat ’91,

• Kapitanski, Rodnianski ’99,

• Erdogan–Tzirakis ’13,

• De la Hoz–Vega ’13, ’17 critical regularity,

• Banica–Vega ’18 critical regularity.

• Jerrard–Smets ’15,

• Chen-Olver ’12 ’14; Olver-Sheils ’17 Olver-Tsatis ’18

• Olver ’10



• Galilean Transformations

⇤(s, 0) =
2⇥

M

1X

k=�1
�

✓
s� 2⇥k

M

◆
.

�̃(s, t) ⌘ eiks�ik2t�(s� 2kt, t), 8 k, t 2 R.

e2�ijMs�(s, 0) = �(s, 0) 8 j 2 Z.

�̃k = � 8 k 2 Z.

A REGULAR POLYGON (w/ F. de la Hoz, NLTe)
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b (k, t) = e�i(Mk)2t b (0, t)
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tpq = (2⇡/M2)(p/q)

THE TALBOT EFFECT
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Tnum versus Talg, for M = 3, at T1,3 =

2�

27

. T1 appears in blue,

T2 in green, T3 in red. In Tnum, the Gibbs phenomenon is clearly

visible. The black circles denote the points chosen for the compar-

isons.
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Theorem.– (with V. Banica) The self-similar solutions are stable.

In particular, the creation/annilihation of a corner is stable.
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Energy transfer

(⇤)

Theorem.– For t > 0 we have the following conservation law:

kT (t)k2L2
sc

= 4⇡
X

j

|aj |2,

but

kT (0)k2L2
sc

= 4

X

j

(1� e�⇡|aj |2
),

where

kT (t)k2L2
sc

:= lim

k!1

Z k+1

k
|cTs(t, ⇠)|2d⇠.
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Energy Transfer, NLTe 
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