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Summary

(A) Binormal Flow (BF') a dispersive (geometric) PDE

e (ritical regularity: Polygonal lines
e Selfsimilar solutions have finite energy (Z/Laper)

e Talbot effect

e Continuation beyond the singularity time

(B) BF as a toy model in Fluid Mechanics: Vortex filament
equation (VFE)

e Coherent structures are the self similar solutions

e Interaction: A weakly non—linear Talbot effect (NLTe)

Conjecture: NLTe can explain the turbulent dynamics of non
circular jets

Q: BF for regular Polygons and regular polygonal helices
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ABSTRACT

Noncircular jets have been the topic of extensive research in the last fifteen years.
These jets were identified as an efficient technique of passive flow control that
allows significant improvements of performance in various practical systems at
a relatively low cost because noncircular jets rely solely on changes in the ge-
ometry of the nozzle. The applications of noncircular jets discussed in this re-
view include improved large- and small-scale mixing in low- and high-speed
flows, and enhanced combustor performance, by improving combustion effi-
ciency, reducing combustion instabilities and undesired emissions. Additional
applications include noise suppression, heat transfer, and thrust vector control
(TVC).

The flow patterns associated with noncircular jets involve mechanisms of vor-
tex evolution and interaction, flow instabilities, and fine-scale turbulence aug-
mentation. Stability theory identified the effects of initial momentum thickness
distribution, aspect ratio, and radius of curvature on the initial flow evolution.
Experiments revealed complex vortex evolution and interaction related to self-
induction and interaction between azimuthal and axial vortices, which lead to
axis switching in the mean flow field. Numerical simulations described the de-
tails and clarified mechanisms of vorticity dynamics and effects of heat release
and reaction on noncircular jet behavior.



I, IT1I, V : hairpin (braid) vortices
II, IV : deformed vortex rings

square vortex
sheet




experiments (OU1) simulations (SQ1)
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FIG. 10. Axis switching of the jet cross section in terms of isocontours of
time-averaged streamwise velocity scaled with its local centerline value
(1/uy) for experimental (OU1) and simulated (SQ1) jets. Contour levels are
0.2, 0.4, 0.6, and 0.8. The geometry of the experimental nozzle is superim-
posed on each slice on the left; the initial half-width velocity cross section of
the simulated jets is superimposed on each slice on the right. The stream-
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Figure 6 Variation of momentum thickness with axial distance at the vertex and flat sides of the
triangular jet: (a) orifice jet, (b) pipe jet. Corresponding evolution of the jet cross-sections along
the axis: (c) orifice jet, (d) pipe jet. (Koshigoe et al 1989)









Euler equations

u:  velocity field

w=-curlu =V A u: vorticity
w=17Tds T = X,

X = X(s,t) curvein R3 support of w
divu =0

w(P) = L/Z pf((j))__;g A T(s)ds

Examples: straight lines, vortex rings, helical vortices
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(A) Binormal Flow

(BF) e xt=xs A Xss =c¢b c:curvature b : binormal

(SM) o Xxs= T' Schrodinger map T, =T N T,

(NLS) ® ¢ Hashimoto wave function 1d NLS (cubic focusing)
x(0,s) :  skew polygonal line

T(0,s) : sequence of points T; such that lim T; = AT
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SCHRODINGER EQUATION

Hasimoto transformation:
(5. 1) = (s, )i J3 7 s

c = c(s,t) curvature

T =17(s,t) torsion

o (s,0) = (B S0P+ A(0))

[ ts.opas= [ s opas= [~ o0

— 0

In our case



PN E IS TORY
What is the Talbot effect?

Optical effect discovered by Talbot in
1836

+ Describes the behaviour of light after
passing through a grating
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* Tight gratings: 6800 slits per
centimetre! (Lord Rayleigh in 1879)

THE

LONDON anp EDINBURGH
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AND
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[THIRD SERIES.]

DECEMBER 1836.

LXXVI. Facts relating to Optical Science. No. IV.
. By H. F. TaLsor, Esq., F.R.S.*

§ 1. Ezxperiments on the Inteyference of Lz.'ght.

) ALTHOUGH so much has been explained in optical sci-

ence by the aid of the undulatory hypothesis, yet when
any well-marked phenomena occur which present unexpected
peculiarities, it may be of importance to describe them, for the
sake of comparison with the theory.

Such appears to me to be the case with those which I am
about to mention, in which, by means of a remarkable
compensation of some kind of other, common solar light ap-
pears to play the part of homogeneous light, and o ackroma-
tize itself, if I may use such an expression, in a very high de-
gree of perfection.

Sir William Herschel was, I believe, the first who took
notice of the very beautiful coloured bands which are seen
by looking through two prisms placed in contact. Thus, let
A B C, AD C be two equal right-angled glass prisms in con-
tact. We will suppose the siﬁes A%, B C to be equal, and
the thickness of the prisms to be equal to A B, in which case
the combination of tﬁe two will form a cube. Let the two
prisms be gently pressed together by their face A C, which
must be previously well cleaned from any adhering dust, and

* Communicated by the Author.

Third Series. Yol.9. No, 56. Dec. 1836. sB
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Talbot effect and linear Schrodinger equation
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tpg = (QW/MQ)(]?/C])

00
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THE TALBOT EFFECT

0(s,0)= 7 S 8(s — %)
k=—o0
oo g—1
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The generalized quadratic Gauf3 sums are defined by

e[ -1

Z 2mi(al®+bl)/c
€ Y
1=0

for given integers a, b, ¢, with ¢ # 0.

( \/Qewm, if ¢ is odd,

G(—p,m,q) =& +/2qe’?™, if q is even and ¢/2=m mod 2,

0, if ¢ is even and ¢/2 #m mod 2,

\

for a certain angle 6,,, that depends on m (and, of course, on p and
q, t00).
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Riemann’s non-differentiable function
Integrating the Fourier series in time and evaluating at x = 0 we get

2.2
e—47r /kt_l

¢(t):i/0 (0,7 dr =3

keZ

which is essentially Riemann’s non-differentiable function.
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Figure: De la Hoz, Vega: Vortex filament equation for a regular polygon,
Nonlinearity 27 (2014), 3031-3057
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e Jaffard

e Multifractal (Frisch—Parisi conjecture)
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Berry and Goldberg, Talbot Effect 88,

Duistermaat 91,

Oskolkov 92,

Jaffard, multifractal "96,

Kapitanski, Rodnianski 99,

Olver 10

Chen-Olver ’12 ’14; Olver-Sheils '17 Olver-Tsatis "18
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Erdogan—Tzirakis ’13,

De la Hoz—Vega 13, ’17 critical regularity,
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A REGULAR POLYGON (w/ F. de la Hoz, NLTe)

2 S (em k),

k:——oo

e Galilean Transformations
D(s,t) = PRty (s — 2kt, 1), Vk,t€R.
MM (5,0) = (s5,0) Vj €L

Ve =1 VEkeZ.

bk, t) = e (MRt 1)
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THE TALBOT EFFECT

0(s,0)= 7 S 8(s — %)
k=—o0
oo g—1
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X(s.tpg) : tpg = 27.0/(M?q), M = 3.q = 1260. 2(t) = —||(X1(0,2), X2(0,0))]| + i X5(0.2),t € [0,27/A1?)
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M =3, q=1048576
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Theorem.— (with V. Banica) The self-similar solutions are stable.
In particular, the creation/annilihation of a corner is stable.
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Energy transfer

Theorem.— For ¢ > 0 we have the following conservation law:

IOl =473 losf
but
(+) T, —42 (1= eIl
where
k41
T3, = tm [ [Tt Pde
sc — 00 k
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max(| kT3 (k)|
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Energy Transfer, NLTe

M =3; ¢=120000; 1920000 freq.

T

W

|

T

W

0.05

0.1

0.15

0.2

p/q, wherdeed(p, q) = 1

0.25



1 I 1 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
q x10°

10712
0

Figure 10: |v2max,, [|T1(tpe)llec — aln(q) — b|, for a = 0.258039752572419, b = 0.152992510344641.
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