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Ciarlet’s definition of a finite element space

A finite element space is defined by specifying

I the mesh

I the shape functions

I the degrees of freedom (DOFs)

Reference: P. Ciarlet, The finite element method for elliptic
problems, 1978
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Example: C 0 spaces with respect to a simplicial
triangulation

I T simplicial triangulation of Ω ⊂ Rn

I Pr , r ≥ 1

I DOFs ∫
f
u · η dxf , η ∈ Pr−1−dim f (f ),

where f runs over all subsimplexes of T .

This defines a space Vh of piecewise polynomials of total degree
≤ r , which are globally continuous, and therefore

Vh ⊂ H1(Ω).

The DOFs leads to a basis for Vh, referred to as the dual basis.

Furthermore, the DOFs implicitly defines a canonical projection
onto Vh.
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The de Rham complex in three dimensions

R ↪→H1(Ω)
grad−−→ H(curl,Ω)

curl−−→ H(div,Ω)
div−−→ L2(Ω) −→ 0

Finite element discretizations will typically utilize a corresponding
subcomplex of the form:

R ↪→H1(Ω)
grad−−→ H(curl,Ω)

curl−−→ H(div,Ω)
div−−→ L2(Ω) −→ 0y∪ y∪ y∪ y∪

R ↪→ H1
h

grad−−→ Hh(curl)
curl−−→ Hh(div)

div−−→ L2
h −→ 0.
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Lowest order spaces, simplicial mesh

H1
h : P1, DOFs = vertex values

Hh(curl) : rigid motions, DOFs = tangential components on edges

Hh(div) : ~a + bx , DOFs = normal components on faces

L2
h : constants, DOFs = values on each simplex

Furthermore, the following diagram commutes

R ↪→H1(Ω)
grad−−→ H(curl,Ω)

curl−−→ H(div,Ω)
div−−→ L2(Ω) −→ 0yIh yIh yIh yIh

R ↪→ H1
h

grad−−→ Hh(curl)
curl−−→ Hh(div)

div−−→ L2
h −→ 0,

where the operators Ih are the corresponding canonical projections.
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Differential forms, Ω ⊂ Rn

0→ HΛ0 d−→ HΛ1 d−→ · · · d−→ HΛn → 0

where

HΛk = HΛk(Ω) = {ω ∈ L2Λk(Ω) | dω ∈ L2Λk+1(Ω) }.

For approximations we consider the set up:

HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ · · · d−→ HΛn(Ω)yI0
h

yI1
h

yInh
Λ0
h

d−→ Λ1
h

d−→ · · · d−→ Λn
h

where Λk
h ⊂ HΛk(Ω).

6



The spaces PrΛ
k(Th) and P−r Λk(Th)

The space PrΛk(Th) consists of all k forms u such that

u|T ∈ PrΛk(T ), T ∈ Th, and [tr u]f = 0 ∀f ∈ ∆n−1(Th).

The spaces P−r Λk(Th) are defined similarly with u|T ∈ PrΛk(T )
replaced by u|T ∈ P−r Λk(T ). Here P−r Λk consists of all

u ∈ PrΛk such that uyx ∈ PrΛk−1.
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Degrees of freedom

All the spaces Λk
h above have DOFs defined with respect to the

subsimplexes of of Th of the form∫
f

trf u ∧ η, η ∈ P ′(f , k , r), f ∈ ∆(Th), dim f ≥ k ,

where P ′(f , k , r) ⊂ Λdimf−k(f ).

If

Λk
h = P−r Λk(Th) then P ′(f , k , r) = Pr+k−dim f−1Λdim f−k(f ),

while if

Λk
h = PrΛk(Th) then P ′(f , k , r) = P−r+k−dim f Λdim f−k(f ).

Furthermore, the corresponding canonical projections commute
with the exterior derivative.
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Approximation of Hilbert complexes

Framework:

V 0 d0−→ V 1 d1−→ · · · dn−1−−−→ V nyπh yπh yπh
V 0
h

d0−→ V 1
h

d1−→ · · · dn−1−−−→ V n
h

Stability of discrete problems iff πkh : V k → V k
h are uniformly

bounded in L(V k ,V k), and commutes with d , i.e.,

dk ◦ πkh = πk+1
h ◦ dk

Furthermore,
cp,h ≤ cp‖π‖L(V k ,V k ).

A problem: The canonical projections are in general not bounded.
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Construction of bounded cochain projections by smoothing

Consider operators of the form

Qk
ε,h = Ikh ◦ Rk

ε,h,

where Rk
h = Rk

ε,h is a proper smoothing operator which commutes
with the exterior derivative d .
An operator of the form Qk

h can be made bounded on L2Λk(Ω),
and will commute with d . However, in general it is not a
projection onto the finite element space Λk

h .

The so called smoothed projections are of the form

πkh = (Qk
ε,h|Λh

)−1 ◦ Qk
ε,h,

for ε sufficiently small, but not too small. (cf. Schöberl 2007,
Christiansen 2007, Arnold–Falk–W 2006).

These constructions give bounded, but nonlocal projections.
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The Clément operator

The Clément operator Ih : L2 → PrΛ0(Th) is defined by∫
f
Ihu · η dxf =

∫
f
Pf u · η dxf , η ∈ P̊r (f ), f ∈ ∆(Th),

where Pf is the local L2(Ωf ) projection onto Pr .

This operator is bounded even in L2, and it has ”optimal”
approximation properties, but it is not a projection. Furthermore,
it is not obvious how to extend the construction into a cochain
projection.
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Macroelements

For each f ∈ ∆(Th) Ωf is given by

Ωf =
⋃
{T |T ∈ Th, f ∈ ∆(T ) }.

Vertex macroelement, n = 2. Edge macroelement, n = 2.
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The modified Clement operator onto PrΛ
0(Th) ⊂ H1

The operator πh is constructed by a recursive procedure. In
particular,

π0,hu =
∑

z∈∆0(Th)

Ez(Pzu)(z),

where Pz is the local H1 projection onto PrΛ0(Tz,h).

For 1 ≤ m ≤ n we define πm,h by

πm,hu = πm−1,hu +
∑

f ∈∆m(Th)

Ef trf Pf (u − πm−1,hu)

For dim f ≥ 1 the operators Pf are local H1 projections onto to
the space

P̆rΛ0(Tf ,h) = {u ∈ PrΛ0(Tf ,h) | trf u ∈ P̊r (f ) },

and Ef : P̊r (f )→ PrΛ0(Tf ,h) is the discrete harmonic extension.
This will lead a local projection πh = πn,h which is bounded in H1.
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The simplest example
Consider the (modified) Clement projection onto the piecewise
linear space P1Λ0(Th). The operator π0

h has the form

(π0
hu)(x) =

∑
z∈∆0(Th)

(Pzu)(z)λz(x)

Here the projections Pz are local H1 projections with respect to
macroelement Ωz .
More preciesely,

Pzu =

∫
Ω
u · volΩz dx + Qzu.

where Qzu ∈ P1Λ0(Tz,h) has mean value zero on Ωz , and satisfies

〈gradQzu, grad v〉Ωz = 〈grad u, grad v〉Ωz ,

for all v ∈ P1Λ0(Tz,h) with mean value zero. Here
volΩz = |Ωz |−1κΩz .
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Commuting projections

To obtain commuting projections we need to define π1
h into the

space P−1 Λ1(Th) such that

gradπ0
hu = π1

h grad u.

In particular, we have to express

gradπ0
hu = grad

∑
z∈∆0(Th)

(

∫
Ω
u · volΩz dx + (Qzu)(z))λz ,

in terms of grad u.
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The appearance of the δ operator

So consider the operator

(Mhu)(x) =
∑

z∈∆0(Th)

(

∫
Ω
u · volΩz dx)λz(x).

We need to express gradMhu in terms of grad u.

If f = [x0, x1] consider gradMh(u) · (x1 − x0) on f .

trf gradMh(u) · (x1 − x0) =

∫
Ω
u(volΩx1

− volΩx0
) dx

=

∫
Ω
u(δz0)f dx =

∫
Ω
u(div z1

f ) dx ,

where z1
f satisfies div z1

f = (δz0)f and have zero normal
components on the boundary of Ωe

f = Ωx0 ∪ Ωx1 .
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We can therefore conclude that

gradMhu =
∑

f ∈∆1(Th)

(

∫
Ωe

f

grad u · z1
f dx)φf ,

where

φf = λ0(gradλ1)− λ1(gradλ0), f = [x0, x1]

and λi = λxi .
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The extended macroelements

Ωe
f =

⋃
g∈∆0(f )

Ωg , f ∈ ∆(Th).

If g ∈ ∆(f ) then Ωf ⊂ Ωg and Ωe
f ⊃ Ωe

g .
In 2D we have:

18



A double complex

Commuting diagram:⊕
f ∈∆m(T )

H̊Λk(Ωe
f )

d−→
⊕

f ∈∆m(T )

H̊Λk+1(Ωe
f )yδ yδ⊕

f ∈∆m+1(T )

H̊Λk(Ωe
f )

d−→
⊕

f ∈∆m+1(T )

H̊Λk+1(Ωe
f )

If f = [x0, x1, . . . xm+1] ∈ ∆m+1(Th) then

(δu)f =
m+1∑
j=0

(−1)jufj ,

where fj = [x0, . . . , xj−1, x̂j , xj+1, . . . xm+1]. For more details see
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The modified Clement operator for k–forms

We recall that for k = 0 the operator π0 is constructed by a
recursive procedure of the form

π0
mu = π0

m−1u +
∑

f ∈∆m(Th)

E 0
f trf P

0
f (u − π0

m−1u), 0 ≤ m ≤ n,

where π0 = π0
n.

For k ≥ 1 we will utilize a similar construction The projection πk is
defined by the recursion

πkmu = πkm−1u+
∑

f ∈∆m(Th)

E k
f ◦ trf ◦Pk

f (u−πkm−1u), k ≤ m ≤ n,

where πk = πkn . To start the iteration we need to define πkk−1u
properly. Here the double complex construction is used.
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