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Abstract. We study nonlinear degenerate parabolic equations where the flux function f(x, t, u)

does not depend Lipschitz continuously on the spatial location x. By properly adapting the
“doubling of variables” device due to Kružkov [24] and Carrillo [12], we prove a uniqueness

result within the class of entropy solutions for the initial value problem. We also prove a result

concerning the continuous dependence on the initial data and the flux function for degenerate
parabolic equations with flux function of the form k(x)f(u), where k(x) is a vector-valued

function and f(u) is a scalar function.

1. Introduction

The main subject of this paper is uniqueness and stability properties of entropy solutions of
nonlinear degenerate parabolic equations where the flux function depends explicitly on the spatial
location. In particular, this paper is concerned with the case where the flux function does not de-
pend Lipschitz continuously on the spatial variable. Our study is motivated by applications where
one frequently encounters flux functions possessing minimal smoothness in the spatial variable.

The problems that we study are initial value problems of the form

ut + divf(x, t, u) = ∆A(u) + q(x, t, u), (x, t) ∈ ΠT = Rd × (0, T ),

u(x, 0) = u0(x), x ∈ Rd,
(1.1)

where T > 0 is fixed, u(x, t) is the scalar unknown function that is sought, f = f(x, t, u) is called
the flux function, A = A(u) is the diffusion function, and q = (x, t, u) is the source term. The
coefficients f,A, q of problem (1.1) are given functions satisfying certain regularity assumptions.
The regularity assumptions on f, q will be given later.

For the initial value problem (1.1) to be well-posed, we must require that A : R → R satisfies

A ∈ Liploc(R) and A(·) is nondecreasing with A(0) = 0.(1.2)

The second part of (1.2) implies that the nonlinear operator u 7→ ∆A(u) is of degenerate elliptic
type, and hence many well known nonlinear and linear partial differential equations are special
cases of (1.1). In particular, the scalar conservation law (A′ ≡ 0) is a “simple” special case.
Included is also the heat equation, porous medium type equations characterized by one-point de-
generacy, two-phase reservoir flow equations characterized by the two-point degeneracy, as well as
strongly degenerate convection-diffusion equations where A′(s) ≡ 0 for all s in some interval [α, β].
Consequently, partial differential equations of the type (1.1) model a wide variety of phenomena,
ranging from porous media flow [32], via flow of glaciers [19] and sedimentation processes [9], to
traffic flow [35].

We recall that if the problem (1.1) is non-degenerate (uniformly parabolic), it is well known
that it admits a unique classical solution. This contrasts with the case where (1.1) is allowed
to degenerate at certain points, that is, A′(s) = 0 for some values of s. Then solutions are not
necessarily smooth (but typically continuous) and weak solutions must be sought. On the other
hand, if A′(s) is zero on an interval [α, β], (weak) solutions may be discontinuous and are not
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uniquely determined by their initial data. Consequently, an entropy condition must be imposed
to single out the physically correct solution.

Roughly speaking, we call a function u ∈ L1 ∩ L∞ an entropy solution of the initial value
problem (1.1) if

(i) |u− c|t + div
[
sign (u− c)

(
f(x, t, u)− f(x, t, c)

)]
−∆ |A(u)−A(c)|

+sign (u− c) (divf(x, t, c)− q(x, t, u)) ≤ 0 in D′ ∀c ∈ R,
(ii) ∇A(u) belongs to L2.

(1.3)

In addition, we require that the initial function u0 is assumed in the strong L1 sense. We refer to
§2 for a precise definition of an entropy solution.

The mathematical (L1/BV ) theory of parabolic equations was initiated by Olĕınik [27]. She
proved well-posedness of the initial value problem in the non-degenerate case with A(u) = u, and
showed that weak solutions are in this case classical.

In the hyperbolic case (A′ ≡ 0) with the flux f = f(x, t, u) depending (smoothly) on x and
t, the notion of entropy solution was introduced independently by Kružkov [24] and Vol’pert [33]
(the latter author considered the smaller BV class). These authors also proved general existence,
uniqueness, and stability results for the entropy solution, see also Olĕınik [27] for similar results
in the convex case fuu ≥ 0.

In the mixed hyperbolic-parabolic case (A′ ≥ 0), the notion of entropy solution goes back to
Vol’pert and Hudjaev [34], who were the first to study strongly degenerate parabolic equations.
These authors showed existence of a BV entropy solution using the viscosity method and obtained
some partial uniqueness results in the BV class (i.e., when the first order partial derivatives of
u are finite measures). In the one-dimensional case, Wu and Yin [36] later provided a complete
uniqueness proof in the BV class. Further results in the one-dimensional case were obtained by
Bénilan and Touré [3, 4] using nonlinear semigroup theory.

As for the uniqueness issue in the multi-dimensional case, Brézis and Crandall [6] established
uniqueness of weak solutions when f ≡ 0. Later, under the assumption that A(s) is strictly
increasing, Yin [37] showed uniqueness of weak solutions in the BV class. Bénilan and Gariepy [2]
showed that the BV weak solution studied in [37] is actually a strong solution. The assumption
that ut should be a finite measure was removed in [38, 39].

An important step forward in the general case of A(·) being merely nondecreasing was made
recently by Carrillo [12], who showed uniqueness of the entropy solution for a particular boundary
value problem with the boundary condition “A(u) = 0”. His method of proof is an elegant
extension of the by now famous “doubling of variables” device introduced by Kružkov [24]. In
[12], the author also showed existence of an entropy solution using the semigroup method.

In [7] (see also [29]), the uniqueness proof of Carrillo was adopted to several initial-boundary
value problems arising the theory of sedimentation-consolidation processes [9], which in some cases
call for the notion of an entropy boundary condition (see also [8] for the BV approach).

In the present paper we generalize Carrillo’s uniqueness result [12] by showing that it holds
for the Cauchy problem with a flux function f = f(x, t, u) where the spatial dependence is non-
smooth (non-Lipschitz). Only the case f = f(u) was studied in [12]. Moreover, we also establish
continuous dependence on the flux function in the case f(x, t, u) = k(x)f(u).

With the assumptions on the diffusion function A already given (see (1.2)), we now present the
(regularity) assumptions that are needed on the flux function f and the source term q, with the
those on f being the most important ones. Concerning the source term q : Rd × (0, T )×R → R,
we assume that q(x, t, 0) = 0 ∀x, t and

q(·, ·, u) ∈ L1(0, T ;L∞(Rd)) ∀u; q(x, t, ·) ∈ Liploc(R) uniformly in x, t.(1.4)

With the phrase “uniformly in x, t” in (1.4), we mean

|q(x, t, v)− q(x, t, u)| ≤ C|v − u|, ∀x, t, v, u,

for some constant C > 0 (independently of x, t, v, u).
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Concerning the flux function f : Rd × [0, T ] ×R → Rd, we assume without loss of generality
that f(x, t, 0) = fx(x, t, 0) = 0. Moreover, we assume that

f(·, ·, u) ∈ L1(0, T ;W 1,1(Rd)) ∀u; f(x, t, ·) ∈ Liploc(R) uniformly in x, t;(1.5)

fx(·, ·, u) ∈ L1(0, T ;L∞(Rd)) ∀u; fx(x, t, ·) ∈ Liploc(R) uniformly in x, t,(1.6)

where fx = fx(x, t, u) in (1.6) denotes the function obtained by taking the divergence of the flux
f = f(x, t, u) with respect to the first variable. With the phrase “uniformly in x, t” in (1.5) and
(1.6), we mean

|f(x, t, v)− f(x, t, u)|, |fx(x, t, v)− fx(x, t, u)| ≤ C|v − u|, ∀x, t, v, u,
for some constant C > 0 (independently of x, t, v, u).

The conditions in (1.4)-(1.6) are sufficient to make sense to the notion of entropy solution
(see §2). In the general case, however, we need one additional regularity assumption on the x
dependency of f to get uniqueness of the entropy solution. Inspired by Capuzzo-Dolcetta and
Perthame [10], we assume that(

F (x, t, v, u)− F (y, s, v, u)
)
· (x− y) ≥ −γ |v − u| |x− y|2, ∀x, y, t, v, u,(1.7)

for some constant γ > 0 (independent of x, t, v, u), where

F (x, t, v, u) := sign (v − u)
[
f(x, t, v)− f(x, t, u)

]
.(1.8)

Note that condition (1.7) does not imply that f is Lipschitz continuous in the spatial variable x.
We remark that if f = f(x, u) is of the form

f = k(x)h(u),

for some vector valued function k : Rd → Rd, and a Lipschitz continuous function h, then (1.7)
reduces to

(k(x)− k(y)) · (x− y) ≥ −γ |x− y|2, ∀x, y, t, v, u,(1.9)

for some constant γ > 0 (depending also on the Lipschitz constant of h). As pointed out in [10],
this condition requires a bound only on the matrix ∇xk + (∇xk)T (the symmetric part of the
Jacobian ∇xk) and k itself need not belong to any Sobolev space. To see this, let z = x− y and
rewrite the left-hand side of (1.9) as follows

(k(x)− k(y)) · (x− y) =
∫ 1

0

d

dξ
[(k(y + ξz)− k(y)) · z] dξ

=
∫ 1

0

∇xk(y + ξz)z · z dξ

=
1
2

∫ 1

0

(
∇xk + (∇xk)T

)
(y + ξz)z · z dξ,

since 1
2

(
∇xk − (∇xk)T

)
(y + ξz)z · z ≡ 0.

In [10], the authors showed the universality of (1.7) by proving that under this condition,
uniqueness holds for the Kružkov-Vol’pert entropy solution of hyperbolic equations, the Crandall-
Lions viscosity solution of Hamilton-Jacobi equations, and the DiPerna-Lions regularized solution
of transport equations. With the present paper, we add to that list uniqueness of the entropy
solution of degenerate parabolic equations. More precisely, we prove the following theorem:

Theorem 1.1 (Uniqueness). Assume that (1.2) and (1.4)-(1.7) hold. Let v, u be two entropy
solutions of (1.1) with initial data u0 ∈ L1(Rd)∩L∞(Rd). Then v = u a.e. in ΠT = Rd× (0, T ).

By combining the arguments used in the present paper by those used in [17], Theorem 1.1 can
be proved even for a large class of weakly coupled systems of degenerate parabolic equations.

We next restrict our attention to problems of the form

ut + div
(
k(x)f(u)

)
= ∆A(u), (x, t) ∈ ΠT ,

u(x, 0) = u0(x), x ∈ Rd,
(1.10)
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where k : Rd → Rd, f : R → R, and f(0) = 0. Problems of the form (1.10) occur in several
important applications. Our first result for (1.10) states that in the L∞(0, T ;BV (Rd)) class of
entropy solutions, an L1 contraction principle actually holds provided

f ∈ Liploc(R); k ∈W 1,1
loc (Rd)

⋂
C
(
Rd
)
; k,divk ∈ L∞(Rd).(1.11)

More precisely, we prove the following theorem:

Theorem 1.2 (L1 contraction). Assume that (1.2) and (1.11) hold. Let v, u ∈ L∞(0, T ;BV (Rd))
be entropy solutions of (1.10) with initial data v0, u0 ∈ L1(Rd)∩L∞(Rd)∩BV (Rd), respectively.
Then for almost all t ∈ (0, T ),

‖v(·, t)− u(·, t)‖L1(Rd) ≤ ‖v0 − u0‖L1(Rd).

In particular, there exists at most one entropy solution of the initial value problem (1.10).

We remark that the existence of an L∞(0, T ;BV (Rd)) entropy solution of (1.10) is guaranteed
if divk ∈ BV (Rd). This follows from the results obtained by Karlsen and Risebro [20], who prove
convergence (within the entropy solution framework) of finite difference schemes for degenerate
parabolic equations with rough coefficients. For an overview of the literature on numerical methods
for approximating entropy solutions of degenerate parabolic equations, we refer to the first section
of [20] and the lecture notes [14] (see also the references given therein).

Let us mention that Theorem 1.2 includes the L1 contraction property proved by Klausen
and Risebro [21] for the one-dimensional scalar conservation law with a discontinuous coefficient
k(x). Throughout this paper the coefficient k(x) is not allowed to be discontinuous. In the one-
dimensional hyperbolic case (A′ ≡ 0) with k(x) depending discontinuously on x, the equation (1.1)
is often written as the following 2× 2 system:

ut + f(k, u)x = 0, kt = 0.(1.12)

If ∂f/∂u changes sign, then this system is non-strictly hyperbolic. This complicates the analysis,
and in order to prove compactness of approximated solutions a singular transformation Ψ(k, u)
has been used by several authors [30, 16, 23, 22]. In these works convergence of the Glimm scheme
and of front tracking was established in the case where k may be discontinuous. If k ∈ C2

(
Rd
)
,

then convergence of the Lax-Friedrichs scheme and the upwind scheme was proved in [27]. Under
weaker conditions on k (k′ ∈ BV ) and for f convex in u, convergence of the one-dimensional
Godunov method for (1.12) (not for (1.1)) was shown by Isaacson and Temple in [18]. Recently,
convergence of the one-dimensional Godunov method for (1.1) was shown by Towers [31] in the
case where k is piecewise continuous. In this case, the Kružkov entropy condition (1.3) no longer
applies, and in [23] a wave entropy condition analogous to the Olĕınik entropy condition introduced
in [27] was used to obtain uniqueness, see also [22]. Klausen and Risebro [21] analyzed the case
of discontinuous k by ”smoothing out” the coefficient k and then passing to the limit as the
smoothing parameter tends to zero. In particular, they showed that the limit ”entropy” solution
satisfied the L1 contraction property. We intend to study the degenerate parabolic problem (1.10)
when k(x) is discontinuous in future work.

Theorem 1.2 gives the desired continuous dependence on the initial data in degenerate parabolic
problems of the type (1.10). Next we will establish continuous dependence also on the flux function.
To this end, let us also introduce the problem

vt + div
(
l(x)g(v)

)
= ∆A(v), (x, t) ∈ ΠT ,

v(x, 0) = v0(x), x ∈ Rd,
(1.13)

where l : Rd → Rd, g : R → R, and g(0) = 0. We are interested in estimating the L1 difference
between the entropy solution v of (1.13) and the entropy solution u of (1.10). Now we assume
that

f, g ∈ Liploc(R); k, l ∈W 1,1(Rd)
⋂
C
(
Rd
)
; k, l,divk,divl ∈ L∞(Rd).(1.14)

Under these assumptions, we prove the following continuous dependence result:
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Theorem 1.3 (Continuous dependence). Assume that the regularity conditions (1.2) and (1.14)
hold. Let v, u ∈ L∞(0, T ;BV (Rd)) be entropy solutions of (1.13), (1.10) with initial data v0, u0 ∈
L1(Rd)∩L∞(Rd)∩BV (Rd), respectively. For definiteness, let us assume that v, u take values in
the closed interval I ⊂ R and that there are constants Vv, Vu > 0 such that

|v(·, t)|BV (Rd) ≤ Vv ∀t ∈ (0, T ), |u(·, t)|BV (Rd) ≤ Vu ∀t ∈ (0, T ).

Then for almost all t ∈ (0, T ),

‖v(·, t)− u(·, t)‖L1(Rd) ≤ ‖v0 − u0‖L1(Rd)

+ t

[(
Cg,v1 ‖l − k‖L∞(Rd) + Cg2 |l − k|BV (Rd) + Ck3 ‖g − f‖L∞(I) + Ck,v4 ‖g − f‖Lip(I)

)
∧
(
Cf,u1 ‖l − k‖L∞(Rd) + Cf2 |l − k|BV (Rd) + Cl3‖g − f‖L∞(I) + Cl,u4 ‖g − f‖Lip(I)

)]
,

where Cg,v1 = ‖g‖Lip(I)Vv, C
f,u
1 = ‖f‖Lip(I)Vu, C

g
2 = ‖g‖L∞(I), C

f
2 = ‖f‖L∞(I), Ck3 = |k|BV (Rd),

Cl3 = |l|BV (Rd), C
k,v
4 = ‖k‖L∞(Rd)Vv, C

l,u
4 = ‖l‖L∞(Rd)Vu, and a ∧ b = min(a, b).

We remark that Theorem 1.3 includes the continuous dependence result obtained in Klausen and
Risebro [21] for the one-dimensional scalar conservation law with a discontinuous coefficient k(x).
Results regarding continuous dependence on the flux function in scalar conservation laws with
k(x) ≡ 1 have been obtained by Lucier [26] and Bouchut and Perthame [5]. Finally, we mention
that Cockburn and Gripenberg [13] have obtained a result regarding continuous dependence on
both the flux function and the diffusion function in (1.10) when k(x) = 1. Their result does not,
however, imply uniqueness of the entropy solution since their “doubling of variables” argument
requires that one works with (smooth) approximate solutions. By properly combining the ideas in
the present paper with those in [13], one can prove a version of Theorem 1.3 which also includes
continuous dependence on the diffusion function A, see [15]. We will present the details elsewhere.

The rest of this paper is organized as follows: In the next section we introduce (precisely) the
notion of entropy solution as well as stating and proving a version of an important lemma due
to Carrillo [12]. Equipped with our version of Carrillo’s lemma, Theorems 1.1, 1.2, and 1.3 are
proved in §3, §4, and §5, respectively. Finally, in §6 (an appendix) we provide a proof of the weak
chain rule needed in the proof of Carrillo’s lemma.

Acknowledgement. We thank an anonymous referee for detecting two errors in the first version
of this paper.

2. Preliminaries

We shall use the following definition of an entropy solution of (1.1):

Definition 2.1. An entropy solution of (1.1) is a measurable function u = u(x, t) satisfying:

D.1 u ∈ L1(ΠT ) ∩ L∞(ΠT ) ∩ C(0, T ;L1(Rd)).
D.2 For all c ∈ R and all non-negative test functions in C∞

0 (ΠT ), the following entropy inequality
holds:∫∫

ΠT

(
|u− c|φt + sign (u− c)

(
f(x, t, u)− f(x, t, c)

)
· ∇φ+ |A(u)−A(c)|∆φ

− sign (u− c)
(
divf(x, t, c)− q(x, t, u)

)
φ
)
dt dx ≥ 0.

(2.1)

D.3 A(u) ∈ L2(0, T ;H1(Rd)).
D.4 Essentially as t ↓ 0, ∫

Rd

∣∣u(x, t)− u0(x)
∣∣ dx→ 0.
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Remark 2.1. (i) Observe that when A′ ≡ 0, (2.1) reduces to the well known entropy inequality
for scalar conservation laws introduced by Kružkov [24] and Vol’pert [33].

(ii) Condition (D.4), i.e., that the initial datum u0 should be taken by continuity, motivates
the requirement of continuity with respect to t in condition (D.1).

Let u be an entropy solution. Then, since A(u) ∈ H1(Rd) for a.e. t ∈ (0, T ), it follows from
general theory of Sobolev spaces that ∇|A(u) − A(c)| = sign (A(u)−A(c))∇A(u) a.e. in ΠT .
Also, sign (A(u)−A(c)) = sign (u− c) provided A(u) 6= A(c). Again since A(u) ∈ H1(Rd) for
a.e. t ∈ (0, T ), it follows that ∇A(u) = 0 a.e. (w.r.t. dt dx) in

{
(x, t) ∈ ΠT : A(u(x, t)) = A(c)

}
.

We therefore conclude that

∇|A(u)−A(c)| = sign (u− c)∇A(u) a.e. in ΠT

and the entropy inequality (2.1) can be written equivalently as∫∫
ΠT

(
|u− c|φt + sign (u− c)

[
f(x, t, u)− f(x, t, c)−∇A(u)

]
· ∇φ

− sign (u− c)
(
divf(x, c)− q(x, t, u)

)
φ
)
dt dx ≥ 0, ∀φ ∈ C∞

0 (ΠT ).

(2.2)

If we take c > ess supu(x, t) and c < ess inf u(x, t) in (2.1), then we deduce that u satisfies∫∫
ΠT

(
uφt + f(x, t, u) · ∇φ+A(u)∆φ+ q(x, t, u)φ

)
dt dx = 0, ∀φ ∈ C∞

0 (ΠT )(2.3)

Note that (1.5) implies

‖f(x, t, u)‖2L2(ΠT ) ≤ Const ‖u‖L∞(ΠT ) ‖u‖L1(ΠT ) <∞,(2.4)

so that f(x, t, u) − ∇A(u) ∈ L2(ΠT ;Rd). Similarly, (1.4) implies q(x, t, u) belongs to L2(ΠT ).
An integration by parts in (2.3) followed by an approximation argument will then show that the
equality ∫∫

ΠT

(
uφt +

[
f(x, t, u)−∇A(u)

]
· ∇φ+ q(x, t, u)φ

)
dt dx = 0(2.5)

holds for all φ ∈ L2(0, T ;H1
0 (Rd)) ∩W 1,1(0, T ;L∞(Rd)).

We can even go one step further. To this end, let 〈·, ·〉 denote the usual pairing between
H−1(Rd) and H1

0 (Rd). From (2.5), we conclude that

∂tu ∈ L2(0, T ;H−1(Rd)),

so that the equality

−
∫ T

0

〈
∂tu, φ

〉
dt+

∫∫
ΠT

([
f(x, t, u)−∇A(u)

]
· ∇φ+ q(x, t, u)φ

)
dt dx = 0(2.6)

holds for all φ ∈ L2(0, T ;H1
0 (Rd)) ∩W 1,1(0, T ;L∞(Rd)). The fact that an entropy solution u

satisfies (2.6) will be important for the uniqueness proof.
We now set

Aψ(z) =
∫ z

z0

ψ
(
A(r)

)
dr,(2.7)

where ψ : R → R is a nondecreasing and Lipschitz continuous function and z0 ∈ R. Concerning
the function Aψ, we shall need the following associated “weak chain rule” :

Lemma 2.1. Let u : ΠT → R be a measurable function satisfying the following four conditions:
(a): u ∈ L1(ΠT ) ∩ L∞(ΠT ) ∩ C(0, T ;L1(Rd)).
(b): u(0, ·) = u0 ∈ L∞(Rd) ∩ L1(Rd).
(c): ∂tu ∈ L2

(
0, T ;H−1(Rd)

)
.

(d): A(u) ∈ L2
(
0, T ;H1(Rd)

)
.
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Then, for a.e. s ∈ (0, T ) and every nonnegative φ ∈ C∞
0 (Rd × [0, T ]), we have

−
∫ s

0

〈
∂tu,ψ

(
A(u)

)
φ
〉
dt

=
∫ s

0

∫
Rd

Aψ(u)φt dt dx+
∫
Rd

Aψ(u0)φ(x, 0) dx−
∫
Rd

Aψ(u(x, s))φ(x, s) dx.

Lemma 2.1 can proved more or less in the same way as the “weak chain rule” in Carrillo [12],
see also Alt and Luckhaus [1] and Otto [28]. For the sake of completeness, a proof of Lemma 2.1
is given in §6 (the appendix).

In what follows, we shall frequently need a continuous approximation of sign (·). For ε > 0, set

signε (τ) =


−1, τ < ε,

τ/ε, ε ≤ τ ≤ ε,

1 τ > ε.

Note that signε (−r) = −signε (r) and sign′ε (−r) = sign′ε (r) a.e.
We let A−1 : R → R denote the unique left-continuous function satisfying A−1(A(u)) = u for

all u ∈ R, and by E we denote the set

E =
{
r : A−1(·) discontinuous at r

}
.

Note that E is associated with the set of points
{
u : A′(u) = 0

}
at which the operator u 7→ ∆A(u)

is degenerate elliptic.
We are now ready to state and prove the following version of an important observation made

by Carrillo [12]:

Lemma 2.2 (Entropy dissipation term). Let u be an entropy solution of (1.1). Then, for any
non-negative φ ∈ C∞

0 (ΠT ) and c ∈ R such that A(c) /∈ E, we have∫∫
ΠT

(
|u− c|φt + sign (u− c)

[
f(x, t, u)− f(x, t, c)−∇A(u)

]
· ∇φ

− sign (u− c)
(
divf(x, t, c)− q(x, t, u)

)
φ
)
dt dx

= lim
ε↓0

∫∫
ΠT

∣∣∇A(u)
∣∣2sign′ε (A(u)−A(c))φdt dx.

(2.8)

Proof. The proof is similar to the proof of the corresponding result in [12]. In (2.7), introduce the
function ψε(z) = signε (z −A(c)) and set z0 = c. Notice that the conditions of Lemma 2.1 are
satisfied and hence

−
∫ T

0

〈
∂tu, signε (A(u)−A(c))φ

〉
dt =

∫∫
ΠT

Aψε
(u)φt dt dx.

Since u satisfies (2.6) and [signε (A(u)−A(c))φ] ∈ L2(0, T ;H1
0 (R)) is a test function, we have

−
∫ T

0

〈
∂tu, signε (A(u)−A(c))φ

〉
dt

+
∫∫
ΠT

([
f(x, t, u)− f(x, t, c)−∇A(u)

]
· ∇(signε (A(u)−A(c))φ)

−
(
divf(x, t, c)− q(x, t, u)

)
(signε (A(u)−A(c))φ)

)
dt dx = 0,
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which implies that∫∫
ΠT

Aψε
(u)φt dt dx+

∫∫
ΠT

([
f(x, t, u)− f(x, t, c)−∇A(u)

]
· ∇(signε (A(u)−A(c))φ)

− signε (A(u)−A(c))
(
divf(x, t, c)− q(x, t, u)

)
φ
)
dt dx = 0.

(2.9)

Since A(r) > A(c) if and only if r > c, signε (A(r)−A(c)) → 1 as ε ↓ 0 for any r > c. Similarly,
signε (A(r)−A(c)) → −1 as ε ↓ 0 for any r < c. Consequently, whenever A(c) /∈ E,

Aψε
(u) → |u− c| a.e. in ΠT as ε ↓ 0.

Moreover, we have |Aψε
(u)| ≤ |u − c| ∈ L1(ΠT ), so by the Lebesgue dominated convergence

theorem

lim
ε↓0

∫∫
ΠT

Aψε
(u)φt dt dx =

∫∫
ΠT

|u− c|φt dt dx.

For c such that A(c) /∈ E, we have

lim
ε↓0

∫∫
ΠT

[
f(x, t, u)− f(x, t, c)−∇A(u)

]
· ∇ [signε (A(u)−A(c))φ] dt dx

= lim
ε↓0

∫∫
ΠT

[
f(x, t, u)− f(x, t, c)−∇A(u)

]
· ∇signε (A(u)−A(c))φdt dx

+ lim
ε↓0

∫∫
ΠT

signε (A(u)−A(c))
[
f(x, t, u)− f(x, t, c)−∇A(u)

]
· ∇φdt dx

= lim
ε↓0

∫∫
ΠT

sign′ε (A(u)−A(c))
(
f(x, t, u)− f(x, t, c)

)
· ∇A(u)φdt dx

︸ ︷︷ ︸
I1

− lim
ε↓0

∫∫
ΠT

∣∣∇A(u)
∣∣2sign′ε (A(u)−A(c))φdt dx

+ lim
ε↓0

∫∫
ΠT

signε (A(u)−A(c))
[
f(x, t, u)− f(x, t, c)−∇A(u)

]
· ∇φdt dx

︸ ︷︷ ︸
I2

.

One can check that

I1 = lim
ε↓0

∫∫
ΠT

divQε(A(u))φdt dx,

where Qε is defined as

Qε(z) =
∫ z

0

sign′ε (r −A(c))
(
f(x, t, A−1(r))− f(x, t, c)

)
dr

=
1
ε

∫ min(z,A(c)+ε)

min(z,A(c)−ε)

(
f(x, t, A−1(r))− f(x, t, A−1(A(c)))

)
dr.

Since f = f(x, t, u) is locally Lipschitz continuous with respect to u, Qε(z) tends to zero as ε ↓ 0
for all z in the image of A. Consequently, by the Lebesgue dominated convergence theorem,

I1 = − lim
ε↓0

∫∫
ΠT

Qε(A(u))∇φdt dx = 0.

Observe that for each c ∈ R such that A(c) /∈ E,

sign (u− c) = sign (A(u)−A(c)) a.e. in ΠT .
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Therefore, from the Lebesgue bounded convergence theorem, it follows that

I2 =
∫∫
ΠT

sign (u− c)
[
f(x, t, u)− f(x, t, c)−∇A(u)

]
· ∇φdt dx

and

lim
ε↓0

∫∫
ΠT

signε (A(u)−A(c))
(
divf(x, t, c)− q(x, t, u)

)
φdt dx

=
∫∫
ΠT

sign (u− c)
(
divf(x, t, c)− q(x, t, u)

)
φdt dx,

Therefore, letting ε ↓ 0 in (2.9), we obtain the desired equality (2.8).

3. Proof of Theorem 1.1

Equipped with the results derived in §2 (in particular Lemma 2.2), we now set out to prove
Theorem 1.1 using the “doubling of variables” device, which was introduced by Kružkov [24] as
a tool for proving the uniqueness (L1 contraction property) of the entropy solution of first order
hyperbolic equations. We refer to Carrillo [11, 12], Otto [28], and Cockburn and Gripenberg [13]
for applications of the ”doubling” device in the context of second order parabolic equations. The
presentation that follows below is inspired by Carrillo [12].

Let φ ∈ C∞(ΠT ×ΠT ), φ ≥ 0, φ = φ(x, t, y, s), v = v(x, t), and u = u(y, s). We shall also need
to introduce the ”hyperbolic” sets

Ev =
{

(x, t) ∈ ΠT : A(v(x, t)) ∈ E
}
, Eu =

{
(y, s) ∈ ΠT : A(u(y, s)) ∈ E

}
.

Observe that we have

sign (v − u) = sign (A(v)−A(u))(3.1)

a.e. (w.r.t. dt dx ds dy) in
[
ΠT × (ΠT \Ev)

]⋃[
(ΠT \Eu)×ΠT

]
and

∇xA(v) = 0 a.e. (w.r.t. dt dx) in Ev, ∇yA(u) = 0 a.e. (w.r.t. ds dy) in Eu.(3.2)

¿From the definition of entropy solution, Lemma 2.2, and the first part of (3.2), we have

−
∫∫∫∫
ΠT×ΠT

(
|v − u|φt + sign (v − u)

[
f(x, t, v)− f(x, t, u)−∇xA(v)

]
· ∇xφ

− sign (v − u)
(
divxf(x, t, u)− q(x, t, v)

)
φ
)
dt dx ds dy

≤ − lim
ε↓0

∫∫∫∫
(ΠT \Eu)×ΠT

∣∣∇xA(v)
∣∣2sign′ε (A(v)−A(u))φdt dx ds dy(3.3)

= − lim
ε↓0

∫∫∫∫
(ΠT \Eu)×(ΠT \Ev)

∣∣∇xA(v)
∣∣2sign′ε (A(v)−A(u))φdt dx ds dy.(3.4)

The inequality (3.3) is obtained by using Lemma 2.2 with v(x, t) where (x, t) is not in the hyperbolic
set Eu, noting that the integral over ΠT \Eu is less than the integral over ΠT . Finally, (3.4) follows
from (3.2).
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Similarly, using Lemma 2.2 for u = u(y, s), and the second part of (3.2), we find the inequality

−
∫∫∫∫
ΠT×ΠT

(
|u− v|φt + sign (u− v)

[
f(y, s, u)− f(y, s, v)−∇yA(u)

]
· ∇yφ

− sign (u− v)
(
divyf(y, s, v)− q(y, s, u)

)
φ
)
dt dx ds dy

≤ − lim
ε↓0

∫∫∫∫
(ΠT \Eu)×(ΠT \Ev)

∣∣∇yA(u)
∣∣2sign′ε (A(u)−A(v))φdt dx ds dy.

(3.5)

Observe that whenever ∇xA(v) is defined,∫∫
ΠT

∇xA(v) ·∇y(signε (A(v)−A(u))φ) ds dy = ∇xA(v) ·
∫∫
ΠT

∇y(signε (A(v)−A(u))φ) ds dy = 0,

or more conveniently,

−
∫∫
ΠT

signε (A(v)−A(u))∇xA(v) · ∇yφ ds dy =
∫∫
ΠT

∇ysignε (A(v)−A(u)) · ∇xA(v)φds dy.

(3.6)

Similarly, for a.e. (y, s) ∈ ΠT ,

−
∫∫
ΠT

signε (A(u)−A(v))∇yA(u) · ∇xφdt dx =
∫∫
ΠT

∇xsignε (A(u)−A(v)) · ∇yA(u)φdt dx.

(3.7)

Now using integrating (3.6), (3.1), and (3.2), we find that

−
∫∫∫∫
ΠT×ΠT

sign (v − u)∇xA(v) · ∇yφdt dx ds dy

= −
∫∫∫∫

ΠT×(ΠT \Ev)

sign (A(v)−A(u))∇xA(v) · ∇yφdt dx ds dy

= − lim
ε↓0

∫∫∫∫
(ΠT \Eu)×(ΠT \Ev)

∇yA(u) · ∇xA(v)sign′ε (A(v)−A(u))φdt dx ds dy.

(3.8)

Similarly, using (3.7), (3.1), and (3.2), we find that

−
∫∫∫∫
ΠT×ΠT

sign (A(u)−A(v))∇yA(u) · ∇xφdt dx ds dy

= − lim
ε↓0

∫∫∫∫
(ΠT \Eu)×(ΠT \Ev)

∇xA(u) · ∇yA(v)sign′ε (A(v)−A(u))φdt dx ds dy.
(3.9)

Adding (3.3) and (3.8) yields

(3.10) −
∫∫∫∫
ΠT×ΠT

(
|v − u|φt + sign (v − u)

[(
f(x, t, v)− f(x, t, u)

)
· ∇xφ

−∇xA(v) ·
(
∇xφ+∇yφ

)]
− sign (v − u)

(
divxf(x, t, u)− q(x, t, v)

)
φ
)
dt dx ds dy

≤ − lim
ε↓0

∫∫∫∫
(ΠT \Eu)×(ΠT \Ev)

(∣∣∇xA(v)
∣∣2 −∇yA(u) · ∇xA(v)

)
sign′ε (A(v)−A(u))φdt dx ds dy.
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Similarly, adding (3.5) and (3.9) yields

(3.11) −
∫∫∫∫
ΠT×ΠT

(
|u− v|φs + sign (u− v)

[(
f(y, s, u)− f(y, s, v)

)
· ∇yφ

−∇yA(u) ·
(
∇yφ+∇xφ

)]
− sign (u− v)

(
divyf(y, s, v)− q(y, s, u)

)
φ
)
dt dx ds dy

≤ − lim
ε↓0

∫∫∫∫
(ΠT \Eu)×(ΠT \Ev)

(∣∣∇yA(u)
∣∣2 −∇xA(u) · ∇yA(u)

)
sign′ε (A(u)−A(v))φdt dx ds dy.

Note that we can write

sign (v − u)
(
f(x, t, v)− f(x, t, u)

)
· ∇xφ− sign (v − u) divxf(x, t, u)φ

= sign (v − u)
(
f(x, t, v)− f(y, s, u)

)
· ∇xφ+ sign (v − u) divx

[(
f(y, s, u)− f(x, t, u)

)
φ
]

and

sign (u− v)
(
f(y, s, u)− f(y, s, v)

)
· ∇yφ− sign (u− v) divyf(y, s, v)φ

= sign (v − u)
(
f(x, t, v)− f(y, s, u)

)
· ∇yφ− sign (v − u) divy

[(
f(x, t, v)− f(y, s, v)

)
φ
]
.

Taking these identities into account when adding (3.10) and (3.11), we get

−
∫∫∫∫
ΠT×ΠT

(
|v − u|

(
φt + φs

)
+ I1 + I2 + I3

)
dt dx ds dy

≤ − lim
ε↓0

∫∫∫∫
(ΠT \Eu)×(ΠT \Ev)

∣∣∇xA(v)−∇yA(u)
∣∣2sign′ε (A(v)−A(u))φdt dx ds dy

≤ 0,

(3.12)

where

I1 = sign (v − u)
[
f(x, t, v)− f(y, s, u)−

(
∇xA(v)−∇yA(u)

)]
·
(
∇xφ+∇yφ

)
I2 = sign (v − u)

[
divx

[(
f(y, s, u)− f(x, t, u)

)
φ
]
− divy

[(
f(x, t, v)− f(y, s, v)

)
φ
]]
,

I3 = sign (v − u)
(
q(x, t, v)− q(y, s, u)

)
φ.

We are now on familiar ground [24, 25] and introduce a nonnegative function δ ∈ C∞
0 (R) which

satisfies

δ(σ) = δ(−σ), δ(σ) ≡ 0 for |σ| ≥ 1,
∫
R

δ(σ) dσ = 1.

For ρ0 > 0, let

δρ0(σ) =
1
ρ0
δ

(
σ

ρ0

)
.

Pick two (arbitrary but fixed) Lebesgue points ν, τ ∈ (0, T ) of ‖v(·, t)− u(·, t)‖L1(Rd). For any
α0 ∈

(
0,min(ν, T − τ)

)
, let

Wα0(t) = Hα0(t− ν)−Hα0(t− τ), Hα0(t) =
∫ t

−∞
δα0(s) ds.

Inspired by [10], we introduce a nonnegative function ω ∈ C∞
0 (R+) which satisfies

ω(z) = 0 for z ≥ 1, ω′(z) ≤ 0 for z ∈ (0, 1),
∫
Rd

ω
(
|z|2
)
dz = 1.(3.13)

For ρ > 0 and x ∈ Rd, let

ωρ(x) =
1

2ρd
ω

(
|x|2

ρ2

)
.
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Observe that

∇xωρ(x− y) =
1

ρd+2
ω

(
|x− y|2

ρ2

)
(x− y) = −∇yωρ(x− y).

We now take φ to be of the form

φ(x, t, y, s) = Wα0(t)ωρ(x− y)δρ0(t− s) ∈ C∞
0 (ΠT ×ΠT ),(3.14)

so that the derivatives of φ which are singular in the limit ρ, ρ0 ↓ 0 cancel:

φt + φs =
[
δα0(t− ν)− δα0(t− τ)

]
ωρ(x− y)δρ0(t− s), ∇xφ+∇yφ = 0.(3.15)

Note that with this test function, I1 ≡ 0 and inequality (3.12) now takes the form

−
∫∫∫∫
ΠT×ΠT

|v(x, t)− u(y, s)|
(
φt + φs

)
dt dx ds dy ≤

∫∫∫∫
ΠT×ΠT

(
I2 + I3

)
dt dx ds dy.(3.16)

Sending α0, ρ, ρ0 ↓ 0 in (3.16), by an L1 continuity argument, we get

(3.17)
∫
Rd

|v(x, τ)− u(x, τ)| dx

≤
∫
Rd

|v(x, ν)− u(x, ν)| dx+ lim
α,α0,ρ,ρ0↓0

∫∫∫∫
ΠT×ΠT

(
I2 + I3

)
dt dx ds dy.

Before we continue, let us write I2 = I2,1 + I2,2, where

I2,1 = sign (v − u)
[(
f(y, s, u)− f(x, t, u)

)
· ∇xφ−

(
f(x, t, v)− f(y, s, v)

)
· ∇yφ

]
,

I2,2 = sign (v − u)
(
divyf(y, s, v)− divxf(x, t, u)

)
φ.

Inserting this into (3.16), we get∫
Rd

|v(x, τ)− u(x, τ)| dx ≤
∫
Rd

|v(x, ν)− u(x, ν)| dx+ lim
α,α0,ρ,ρ0↓0

(
E1 + E2 + E3

)
,(3.18)

where

E1 =
∫∫∫∫
ΠT×ΠT

I2,1 dt dx ds dy, E2 =
∫∫∫∫
ΠT×ΠT

I2,2 dt dx ds dy, E3 =
∫∫∫∫
ΠT×ΠT

I3 dt dx ds dy.

Using (1.6), (1.4), and an L1 continuity argument, we get

lim
α,α0,ρ,ρ0↓0

(
E2 + E3

)
≤ Const

∫ τ

ν

∫
Rd

|v(x, t)− u(x, t)| dt dx.

It remains to pass to the limit in E1. The term I2,1 can be rewritten as

I2,1 = (F (x, t, v, u)− F (y, s, v, u)) · ∇xφ

where F is defined in (1.8). Sending α0, ρ0 ↓ 0 in E2 (again using (1.5) and an L1 continuity
argument), we obtain

lim
α0,ρ0↓0

E1 =
∫ τ

ν

∫
Rd

∫
Rd

(
F (x, t, v(x, t), u(y, t))− F (y, t, v(x, t), u(y, t))

)
· (x− y)

1
ρd+2

ω′
(
|x− y|2

ρ2

)
dy dx dt

Taking (1.7) into account, we have

(
F (x, t, v(x, t), u(y, t))− F (y, t, v(x, t), u(y, t))

)
· (x− y)

1
ρd+2

ω′
(
|x− y|2

ρ2

)
≤ γ|v(x, t)− u(y, t)| |x− y|2

ρ2

1
ρd

∣∣∣∣ω′( |x− y|2

ρ2

)∣∣∣∣ ≤ γ|v(x, t)− u(y, t)| max |ω′| 1
ρd

1|x−y|<ρ.
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¿From this we obtain the following estimate

lim
α,ρ↓

∫ τ

ν

∫
Rd

∫
Rd

(
F (x, t, v(x, t), u(y, t))− F (y, t, v(x, t), u(y, t))

)
· (x− y)

1
ρd+2

ω′
(
|x− y|2

ρ2

)
≤ lim

ρ↓0

Const
ρd

∫ τ

ν

∫
Rd

∫
|x−y|<ρ

|v(x, t)− u(y, t)| dy dx dt.

= Const
∫ τ

ν

∫
Rd

|v(x, t)− u(x, t)| dx dt.

Summing up, we have proved that∫
Rd

|v(x, τ)− u(x, τ)| dx ≤
∫
Rd

|v(x, ν)− u(x, ν)| dx+ C

∫ τ

ν

∫
Rd

|v(x, t)− u(x, t)| dx dt,

for some constant C > 0 depending on f , q and the test function. Sending ν ↓ 0 and then using
Gronwall’s lemma, we get∫

Rd

|v(x, τ)− u(x, τ)| dx ≤ eCτ
∫
Rd

|v(x, 0)− u(x, 0)| dx ≡ 0.(3.19)

Since this inequality holds for almost all τ ∈ (0, T ), we can conclude that v = u a.e. in ΠT .

Remark 3.1. If d ≤ 2 we are able to prove a slightly stronger version of Theorem 1.1; namely,
we can relax the assumptions on the x dependency of f . Concretely, if d ≤ 2, let us assume that

f(·, ·, u) ∈ L1(0, T,W 1,1
loc (Rd)).(3.20)

To show Theorem 1.1 in this case we proceed as before up to (3.14). We then modify the definition
of the test function as follows: For positive σ, we let

R(σ) =


1 0 ≤ σ < 1/2,
1− 2σ 1/2 ≤ σ < 1,
0 1 ≤ σ,

R̃(σ) = (R ∗ δρ) (σ).

For x ∈ Rd, we set Rα(x) = R̃(α |x|2). Then we define the test function as

φ(x, t, y, s) = Rα

(
x+ y

2

)
Wα0(t)ωρ(x− y)δρ0(t− s).(3.21)

Now

∇xφ+∇yφ =

[
α(x+ y)

2
R̃′

(
α
|x+ y|2

2

)]
Wα0(t)ωρ(x− y)δρ0(t− s).

Proceeding further as before, it turns out that we must estimate a term of the type

(3.22)

lim
α↓0

[∫∫
ΠT

sign (v(x, t)− u(x, t))
(
f(x, t, v(x, t))− f(x, t, u(x, t))

)
· xαR′

(
α |x|2

)
Wα0(t) dtdx

−
∫∫
ΠT

sign (v(x, t)− u(x, t))∇x

(
A(v(x, t))−A(u(x, t))

)
xαR′

(
α |x|2

)
Wα0(t) dtdx

]
.

Since f(x, t, v) and f(x, t, u) are bounded, the limit of the first double-integral is zero. Regarding
the limit of the second double-integral, we do not have that ∇xA(v) is bounded but only that
it belongs to L2

(
Rd
)
. Noting that R′ is zero outside 〈1/2, 1〉 and inside this interval R′ = −2.
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Hence, using Hölder’s inequality, we can estimate as follows:∫∫
ΠT

∣∣∣∇xA(v) · xαR′
(
α |x|2

)∣∣∣ dx = 2α
∫∫

Πα,T

|∇xA(v)| |x| dx

≤ 2
√
α

∫∫
Πα,T

|∇xA(v)| 1 dx

≤ 2
√
α ‖∇A(v)‖L2(Πα,T ) ‖1‖L2(Πα,T )

= O(1)
√
α ‖∇A(v)‖L2(Πα,T )

(
1√
α

)d/2
,(3.23)

where Πα,T denotes the set of (x, t) ∈ ΠT such that |x| ∈
[

1
2
√
α
, 1√

α

]
. Since ∇A(v) is in L2 (ΠT ),

(3.23) tends to zero when α ↓ 0 if d ≤ 2. Similarly, we can treat the term in (3.22) related to A(u).
In this way we eliminate the extra term due to the fact that ∇xφ +∇yφ 6= 0. The remainder of
the proof proceeds as before.

4. Proof of Theorem 1.2

In this section, we restrict ourselves to problems of the form (1.10), i.e., f(x, t, u) = k(x)f(u)
and q(x, t, u) ≡ 0. Let u, v ∈ L∞(0, T ;BV (Rd)) be two entropy solutions of (1.10) with initial
data u0, v0 ∈ L1(Rd)∩L∞(Rd)∩BV (Rd), respectively. As before,we are interested in estimating
the L1 distance between v and u. In what follows, the test function φ = φ(x, t, y, s) is the one
defined in (3.21). Repeating everything up to (3.17), we find that∫

Rd

|v(x, τ)− u(x, τ)| dx ≤
∫
Rd

|v(x, ν)− u(x, ν)| dx+ lim
α,α0,ρ,ρ0↓0

(
E1 + E2 + E3

)
,(4.1)

where

E1 =
∫∫∫∫
ΠT×ΠT

sign (v − u)∇xφ ·
[(
k(y)f(u)− k(x)f(u)

)
+
(
k(x)f(v)− k(y)f(v)

)]
dt dx ds dy,

E2 =
∫∫∫∫
ΠT×ΠT

sign (v − u)
(
divyk(y)f(v)− divxk(x)f(u)

)
φ.

E3 =
∫∫∫∫
ΠT×ΠT

sign (v − u) [(k(x)f(v)− k(y)f(u))−∇x (A(v)−A(u))] (∇xφ+∇yφ) dt dx ds dy

We start by estimating E1. To this end, introduce the function

F (v, u) := sign (v − u)
[
f(v)− f(u)

]
,(4.2)

and observe that from the identity (3.15) we have

E1 =
∫∫∫∫
ΠT×ΠT

(
k(x)− k(y)

)
F (v, u) · ∇xφdt dx ds dy.

To continue, we need the following simple lemma (whose easy proof can be found in, e.g., [5]):

Lemma 4.1. Consider a function z = z(x) belonging to L∞(Rd) ∩BV (Rd) and let h ∈ Lip(Iz).
Then h(z) belongs to L∞(Rd) ∩BV (Rd) and∣∣∣∣ ∂∂xj h(z)

∣∣∣∣ ≤ ‖h‖Lip(Iz)

∣∣∣∣ ∂∂xj z
∣∣∣∣ in the sense of measures, for, j = 1, . . . , d,

where Iz denotes the interval
[
−‖z‖L∞(Rd), ‖z‖L∞(Rd)

]
.
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Note that the function F (v, u) defined in (4.2) is locally Lipschitz continuous in v and u with
Lipschitz constant that of f . Now since v(·, t) ∈ L∞(Rd) ∩ BV (Rd) for each t, by Lemma 4.1
∇xF (v, u) is a finite measure. After an integration by parts, we thus get

E1 = −
∫∫∫∫
ΠT×ΠT

(
divxk(x)F (v, u) +

(
k(x)− k(y)

)
· ∇xF (v, u)

)
φdt dx ds dy.

Since k ∈ C(Rd) and ∇xF (v, u) is a finite measure, it follows that∫∫∫∫
ΠT×ΠT

(
k(x)− k(y)

)
· ∇xF (v, u)φdt dx ds dy → 0 as ρ ↓ 0.

Consequently, we end up with

lim
α0ρ,ρ0↓0

E1 = −
∫ T

ν

∫
Rd

divk(x)F (v(x, t), u(x, t))Rα(x) dx dt.

Regarding E2, since k ∈W 1,1
loc (Rd), the usual L1 continuity argument gives

lim
α0,ρ,ρ0↓0

E2 =
∫ τ

ν

∫
Rd

divk(x)F (v(x, t), u(x, t))Rα(x) dt dx ≡ − lim
α0ρ,ρ0↓0

E1.(4.3)

Finally, when estimating E3, we have to estimate an integral of the type (3.22). Now the second
integral in (3.22) can be estimated like the first, since ∇xA(v) and ∇xA(u) are in L1

(
Rd
)

as v
and u are of bounded variation. Therefore

lim
α↓0

E3 = 0.

¿From (4.3), we get∫
|v(x, τ)− u(x, τ)| dx ≤

∫
Rd

|v(x, ν)− u(x, ν)| dx→
∫
Rd

|v(x, 0)− u(x, 0)| dx as ν ↓ 0.

Since τ ∈ (0, T ) was an arbitrary Lebesgue point of ‖v(·, t)− u(·, t)‖L1(Rd), we immediately obtain
the L1 contraction property claimed in Theorem 1.2.

5. Proof of Theorem 1.3

In this section, we are going to estimate the L1 difference between the entropy solution v of
(1.13) and the entropy solution u of (1.10). To do this, we proceed exactly as in the proof of
Theorem 1.1. In what follows, we let φ = φ(x, t, y, s) be an arbitrary test function on ΠT × ΠT

satisfying ∇xφ = −∇yφ.
Similarly to (3.10) and (3.11), we can derive the following integral inequalities for the entropy

solutions v = v(x, t) and u = u(y, s) of (1.13) and (1.10):

(5.1) −
∫∫∫∫
ΠT×ΠT

|v − u|φt + sign (v − u)
(
l(x)

(
g(v)− g(u)

)
· ∇xφ− divxl(x)g(u)φ

)
dt dx ds dy

≤ − lim
ε↓0

∫∫∫∫
(ΠT \Eu)×(ΠT \Ev)

(∣∣∇xA(v)
∣∣2 −∇yA(u) · ∇xA(v)

)
sign′ε (A(v)−A(u))φdt dx ds dy,

and

(5.2) −
∫∫∫∫
ΠT×ΠT

|u− v|φs + sign (u− v)
(
k(y)

(
f(u)− f(v)

)
· ∇yφ− divyk(y)f(v)φ

)
dt dx ds dy

≤ − lim
ε↓0

∫∫∫∫
(ΠT \Eu)×(ΠT \Ev)

(∣∣∇yA(u)
∣∣2 −∇xA(v) · ∇yA(u)

)
sign′ε (A(u)−A(v))φdt dx ds dy.
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Next we write

sign (v − u) l(x)
(
g(v)− g(u)

)
· ∇xφ− sign (v − u) divxl(x)g(u)φ

= sign (v − u)
(
l(x)g(v)− k(y)f(u)

)
· ∇xφ+ sign (v − u) divx

[(
k(y)f(u)− l(x)g(u)

)
φ
]

and

sign (u− v) k(y)
(
f(u)− f(v)

)
· ∇yφ− sign (u− v) divyk(y)g(v)φ

= sign (v − u)
(
l(x)g(v)− k(y)f(u)

)
· ∇yφ− sign (v − u) divy

[(
l(x)g(v)− k(y)g(v)

)
φ
]
.

Similarly to (3.12), by adding (3.10) and (3.11) we obtain

−
∫∫∫∫
ΠT×ΠT

(
|v − u|

(
φt + φs

)
+ I2

)
dt dx ds dy ≤ 0,(5.3)

where

I2 = sign (v − u)
[
divx

[(
k(y)f(u)− l(x)g(u)

)
φ
]
− divy

[(
l(x)g(v)− k(y)f(v)

)
φ
]]
.

We now specify the test function φ as in (3.14), so that (3.15) holds. Before we continue, let us
write I2 = I2,1 + I2,2 where

I2,1 = sign (v − u)
[(
k(y)f(u)− l(x)g(u)

)
· ∇xφ−

(
l(x)g(v)− k(y)f(v)

)
· ∇yφ

]
,

I2,2 = sign (v − u)
(
divyk(y)f(v)− divxl(x)g(u)

)
φ.

With the test function φ defined in (3.14), we can send α0, ρ, ρ0 ↓ 0 as usual and get∫
Rd

|v(x, τ)− u(x, τ)| dx ≤
∫
Rd

|v(x, ν)− u(x, ν)| dx+ lim
α0,ρ,ρ0↓0

(
E1 + E2

)
,(5.4)

where

E1 =
∫∫∫∫
ΠT×ΠT

I2,1 dt dx ds dy and E2 =
∫∫∫∫
ΠT×ΠT

I2,2 dt dx ds dy.

Taking into account the identity ∇yφ = −∇xφ, we get

I2,1 =
(
l(x)G(v, u)− k(y)F (v, u)

)
· ∇xφ,

where F is defined in (4.2) and G is defined by the same formula but with f replaced by g. Since
v(·, t) ∈ L∞(Rd) ∩ BV (Rd) for each t and F,G are locally Lipschitz continuous, ∇xF (v, u) and
∇xG(v, u) are finite measures. Therefore, after an integration by parts followed by adding and
subtracting identical terms, we get

E1 =
∫∫∫∫
ΠT×ΠT

(
−divxl(x)G(v, u)− l(x) · ∇xG(v, u) + k(y) · ∇xF (v, u)

)
φdt dx ds dy

=
∫∫∫∫
ΠT×ΠT

(
−divxl(x)G(v, u) +

(
k(y)− l(x)

)
· ∇xG(v, u)

+ k(y) · ∇x

(
F (v, u)−G(v, u)

))
φdt dx ds dy.

By adding and subtracting identical terms, we obtain

−divxl(x)G(v, u)φ+ I2,2 = sign (v − u) divyk(y)f(v)− sign (v − u) divxl(x)g(v)φ

= sign (v − u)
[
divyk(y)

(
f(v)− g(v)

)
−
(
divyk(y)− divxl(x)

)
g(v)

]
φ.



DEGENERATE PARABOLIC EQUATIONS WITH ROUGH COEFFICIENTS 17

Adding E1 and E2, we thus get

E1 + E2 =
∫∫∫∫
ΠT×ΠT

(
sign (v − u)

[
divyk(y)

(
f(v)− g(v)

)
−
(
divyk(y)− divxl(x)

)
g(v)

]
+
(
k(y)− l(x)

)
· ∇xG(v, u) + k(y) · ∇x

(
F (v, u)−G(v, u)

))
φdt dx ds dy.

(5.5)

Observe that by Lemma 4.1 we have∣∣∣∣ ∂∂xjG(v, u)
∣∣∣∣ ≤ ‖g‖Lip(I)

∣∣∣∣ ∂∂xj v(x, t)
∣∣∣∣ ,∣∣∣∣ ∂∂xj (F (v, u)−G(v, u)

)∣∣∣∣ ≤ ‖f − g‖Lip(I)

∣∣∣∣ ∂∂xj v(x, t)
∣∣∣∣ , for j = 1, . . . , d.(5.6)

Equipped with (5.6) and (1.14), we send α0, ρ, ρ0 ↓ 0 in (5.5) to obtain

lim
α0,ρ,ρ0↓0

(E1 + E2) ≤
∫ τ

ν

∫
Rd

(∣∣divk(x)
∣∣ ‖f − g‖L∞(I) +

∣∣div(k(x)− l(x))
∣∣ ‖g‖L∞(I)

+ ‖k − l‖L∞(Rd) ‖g‖Lip(I)

d∑
j=1

∣∣∣ ∂
∂xj

v(x, t)
∣∣∣+ ‖k‖L∞(Rd) ‖f − g‖Lip(I)

d∑
j=1

∣∣∣ ∂
∂xj

v(x, t)
∣∣∣) dx dt.

In view of (5.4), the following continuous dependence estimate now follows∫
Rd

|v(x, τ)− u(x, τ)| dx ≤
∫
Rd

|v(x, ν)− u(x, ν)| dx

+ τ
(
‖g‖Lip(I) sup

t∈(0,T )

|v(·, t)|BV (Rd) ‖k − l‖L∞(Rd) + ‖g‖L∞(I) |k − l|BV (Rd)

+ |k|BV (Rd) ‖f − g‖L∞(I) + ‖k‖L∞(Rd) sup
t∈(0,T )

|v(·, t)|BV (Rd)‖f − g‖Lip(I)

)
.

Sending ν ↓ 0 and using symmetry, we finally conclude that Theorem 1.3 holds.

6. Appendix (proof of Lemma 2.1)

In this appendix, we give a proof of Lemma 2.1. The proof follows Carrillo [12], but see also Alt
and Luckhaus [1] and Otto [28]. Note that Aψ is a nonnegative and convex function. Convexity
implies that for a.e. (x, t) ∈ ΠT , we have

Aψ
(
u(x, t)

)
−Aψ

(
u(x, t− τ)

)
≤
(
u(x, t)− u(x, t− τ)

)
ψ
(
A(u(x, t))

)
,

where we define u(t) = u0 for t ∈ (−τ, 0). In the sequel let φ ∈ C∞
0 (Rd × [0, T ]). Multiplying the

above inequality by φ(x, t) yields

Aψ
(
u(x, t)

)
φ(x, t)−Aψ

(
u(x, t− τ)

)
φ(x, t− τ) +Aψ

(
u(x, t− τ)

)(
φ(x, t− τ)− φ(x, t)

)
= Aψ

(
u(x, t)

)
φ(x, t)−Aψ

(
u(x, t− τ)

)
φ(x, t)

≤
(
u(x, t)− u(x, t− τ)

)
ψ
(
A(u(x, t))

)
φ(x, t),

(6.1)

where we define φ(x, t) = φ(x, 0) for t < 0. Note thatAψ(u0) ∈ L1(Rd) andAψ(u) ∈ L∞
(
0, T ;L1(Rd)

)
.

Dividing (6.1) by τ and integrating over Rd × (0, s), we get

(6.2)
1
τ

∫ s

s−τ

∫
Rd

Aψ
(
u(x, t)

)
φ(x, t) dx dt− 1

τ

∫ τ

0

∫
Rd

Aψ
(
u0(x)

)
φ(x, 0) dx dt

+
1
τ

∫ s

0

∫
Rd

Aψ
(
u(x, t− τ)

)(
φ(x, t− τ)− φ(x, t)

)
dx dt

≤ 1
τ

∫ s

0

∫
Rd

(
u(x, t)− u(x, t− τ)

)
ψ
(
A(u(x, t))

)
φ(x, t) dx dt.
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Since φ ∈ C∞
0 (Rd × [0, T ]) and A(u) ∈ L2(0, T ;H1(Rd)), we have ψ(A(u))φ ∈ L2

(
0, T ;H1

0 (Rd)
)
.

Therefore, exploiting that u ∈ C
(
0, T ;L1(Rd)

)
and ∂tu ∈ L2

(
0, T ;H−1(Rd)

)
, we can let τ ↓ 0 in

(6.2) and obtain∫
Rd

Aψ
(
u(x, s)

)
φ(x, s) dx−

∫
Rd

Aψ(u0)φ(x, 0) dx−
∫ s

0

∫
Rd

Aψ(u)φt dx dt ≤
∫ s

0

〈∂tu, ψ
(
A(u)

)
φ〉 dt,

for a.e. s ∈ (0, T ). Convexity implies also that for a.e. (x, t) ∈ ΠT and t > τ , we have

Aψ
(
u(x, t)

)
−Aψ

(
u(x, t− τ)

)
≥
(
u(x, t)− u(x, t− τ)

)
ψ
(
A(u(x, t− τ))

)
.

Multiplying this inequality by φ(x, t− τ) yields

Aψ
(
u(x, t)

)
φ(x, t)−Aψ

(
u(x, t− τ)

)
φ(x, t− τ) +Aψ

(
u(x, t)

)(
φ(x, t− τ)− φ(x, t)

)
= Aψ

(
u(x, t)

)
φ(x, t− τ)−Aψ

(
u(x, t− τ)

)
φ(x, t− τ)

≥
(
u(x, t)− u(x, t− τ)

)
ψ
(
A(u(x, t− τ))

)
φ(x, t− τ).

(6.3)

After dividing (6.3) by τ and integrating over Rd × (τ, s), we obtain

(6.4)
1
τ

∫ s

s−τ

∫
Rd

Aψ
(
u(x, t)

)
φ(x, t) dx dt− 1

τ

∫ τ

0

∫
Rd

Aψ
(
u(x, t)

)
φ(x, t) dx dt

+
1
τ

∫
Rd

∫ s

τ

Aψ
(
u(x, t)

)(
φ(x, t− τ)− φ(x, t)

)
dx dt

≥ 1
τ

∫ s

τ

∫
Rd

(
u(x, t)− u(x, t− τ)

)
ψ
(
A(u(x, t− τ))

)
φ(x, t− τ) dx dt.

Finally, similarly to (6.2), letting τ ↓ 0 in (6.4), we get, for a.e. s ∈ (0, T ),∫
Rd

Aψ
(
u(x, s)

)
φ(x, s) dx−

∫
Rd

Aψ(u0)φ(x, 0) dx−
∫ s

0

∫
Rd

Aψ(u)φt dx dt ≥
∫ s

0

〈∂tu, ψ
(
A(u)

)
φ〉 dt.

This concludes the proof of the Lemma 2.1.
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[27] O. A. Olĕınik. Discontinuous solutions of non-linear differential equations. Amer. Math. Soc Transl. Ser. 2,

26:95–172, 1963.
[28] F. Otto. L1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differential Equations,

131(1):20–38, 1996.

[29] É. Rouvre and G. Gagneux. Solution forte entropique de lois scalaires hyperboliques-paraboliques dégénérées.
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