
CONVERGENCE OF FINITE DIFFERENCE SCHEMES FOR VISCOUS AND
INVISCID CONSERVATION LAWS WITH ROUGH COEFFICIENTS

KENNETH HVISTENDAHL KARLSEN AND NILS HENRIK RISEBRO

Abstract. We consider the initial value problem for degenerate viscous and inviscid scalar

conservation laws where the flux function depends on the spatial location through a “rough”

coefficient function k(x). We show that the Engquist-Osher (and hence all monotone) finite
difference approximations converge to the unique entropy solution of the governing equation

if, among other demands, k′ is in BV , thereby providing alternative (new) existence proofs

for entropy solutions of degenerate convection-diffusion equations as well as new convergence
results for their finite difference approximations. In the inviscid case, we also provide a rate of

convergence. Our convergence proofs are based on deriving a series of a priori estimates and
using a general Lp compactness criterion.

1. Introduction

The main subject of this paper is finite difference schemes for computing the entropy solution
of scalar viscous and inviscid conservation laws where the transport term depends explicitly on
the spatial location. Such equations are of the form

ut + divf(k, u) = ∆A(u), u(x, 0) = u0(x), (x, t) ∈ ΠT = R
d × (0, T ),(1.1)

where the flux function f(k, u) = (f1(k1, u), . . . , fd(kd, u)) depends on the spatial location through
the coefficient k = k(x),

k(x) = (k1(x), . . . , kd(x)).

For the initial value problem (1.1) to be well-posed, we must require that the nonlinear elliptic
operator u 7→ ∆A(u) satisfies the degenerate ellipticity condition

A(·) nondecreasing with A(0) = 0.(1.2)

Note that (1.2) implies that many well known nonlinear partial differential equations are special
cases of (1.1). In particular, (1.2) includes as special cases the inviscid conservation law, the
heat equation, one-point degenerate porous medium type equations [43], two-point degenerate oil
reservoir flow equations [15], and strongly degenerate convection-diffusion equations of the type
arising in the theory of sedimentation-consolidation processes [4].

We recall that if (1.1) is allowed to degenerate at certain points, that is, A′(s) = 0 for some
values of s, solutions are not necessarily smooth (but typically continuous) and weak solutions
must be sought. On the other hand, if A′(s) is zero on an interval [α, β], (weak) solutions may
be discontinuous and they are not uniquely determined by their initial data. Consequently, an
entropy condition must be imposed to single out the physically correct solution. Roughly speaking,
we call a function u ∈ L1 ∩ L∞ an entropy solution of (1.1) if

(i) ∂t |u− c|+ div [sign (u− c) (f(k, u)− f(k, c))]−∆ |A(u)−A(c)|
+sign (u− c) divf(k, c) ≤ 0 in D′ ∀c ∈ R,

(ii) ∇A(u) belongs to L2.

(1.3)
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We refer to §2.1 for a more precise statement of the definition of an entropy solution as well as
precise conditions on u0, f, k, A ensuring that this definition makes sense. Relevant mathematical
(existence and uniqueness) theory for entropy solutions can be found in [5, 28, 3, 42].

For the hyperbolic equation, the convergence analysis of numerical schemes has very long tra-
ditions and goes back to the 1950s. Being extremely selective, we mention only a few references
related to finite difference and finite volume approximations. The case of finite difference schemes
have been treated by Olĕınik [40], Harten, Hyman, and Lax [24], Kuznetsov [36], Crandall and
Majda [12], Sanders [44], Lucier [37], Osher and Tadmor [41], Cockburn and Gremaud [10], and
many others. The study of finite volume methods is more recent and have been conducted by
Champier, Gallouët, and Herbin [7], Vila [48], Cockburn, Coquel, and LeFloch [8, 9], Kröner and
Rokyta [32], Kröner, Noelle, and Rokyta [31], Noelle [38], Eymard, Gallouët, Ghilani, Herbin [21],
and Chainais-Hillairet [6], as well as many others. Among the cited papers, only [40, 7, 21, 6]
treat equations where the nonlinearity f depends on the spatial position x (and time t).

Although there seems to be an increasing interest in the (analysis of) numerical approximation
of entropy solutions of degenerate parabolic equations, the amount of literature on the subject
is at the moment modest. The (very recent) literature include papers by Evje and Karlsen [18],
Holden, Karlsen, and Lie [25], and Holden, Karlsen, Lie, and Risebro [26] on operator splitting
methods (see also the lecture notes by Espedal and Karlsen [15]); Evje and Karlsen [19, 17, 20, 16]
on upwind difference schemes; Kurganov and Tadmor [35] on central difference schemes; Bouchut,
Guarguaglini, and Natalini [2] on kinetic BGK schemes; Afif and Amaziane [1] and Ohlberger
[39] on finite volume methods; and Cockburn and Shu [11] on the local discontinuous Galerkin
method. Strictly speaking, the authors of [1, 11, 35] do not analyze their numerical methods
within an entropy solution framework.

It is somewhat surprising that there have been few attempts up to very recently (confer the list
of references given above) to develop a systematic treatment of mixed hyperbolic-parabolic partial
differential equations within a unified mathematical (entropy solution) framework. In fact, the
construction and analysis of numerical methods for first order hyperbolic and second order para-
bolic equations are usually considered as separate subject areas. In this work we demonstrate that
it is possible to give a coherent treatment of numerical methods for such large class of nonlinear
partial differential equations. Our main long-term goal is indeed to develop a consistent (mathe-
matical/numerical) framework which is the same whether we are working with the hyperbolic case
(A′ ≡ 0), the parabolic case (A′ > 0), or with the mixed hyperbolic-parabolic case (A′ ≥ 0). In
the present paper (see also [19, 17, 20, 16]), we are concerned with finite difference schemes and
their convergence analysis. For related work on other numerical methods for strongly degenerate
parabolic equations, see the list of references given above.

To illustrate the results of this paper, we now state them in the one dimensional case (i.e.,
d = 1). For the general results, we refer to sections 3 and 4. As a model difference scheme for
(1.1), we consider the generalized upwind (Engquist-Osher) scheme
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where the so-called Engquist-Osher numerical flux [14] takes the form

fEO (k, u1, u2) =
∫ u1

0

(
fu(k, s) ∨ 0

)
ds+

∫ u2

0

(
fu(k, s) ∧ 0

)
ds+ f(k, 0).

Here and in the following, a ∨ b = max {a, b} and a ∧ b = min {a, b}. Note that k and u are
discretized on grids that are staggered with respect to each other. Concretely, we set

u∆t(x, t) =
∑
i,n

χ[xi−1/2,xi+1/2〉×[tn,tn+1〉u
n
i , k∆t =

∑
i

χ[xi,xi+1〉ki+1/2,

where ki+1/2 = k
(
xi+1/2

)
and xi = ih.
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We have chosen to analyse the above scheme because of its simplicity. One can, however, adopt
the method of proof developed in this paper and obtain similar results for other schemes (e.g., all
monotone schemes) as well as more general equations. For example, under the assumption that
k ≡ 1, Evje and Karlsen [20] have studied high order difference schemes (based on the MUSCL
idea) for degenerate parabolic equations with source terms. One can easily combine the ideas
in the present paper with those in [20] and obtain high order difference schemes for degenerate
parabolic equations with source terms and k = k(x) non-constant. Moreover, one can easily treat
the case where k possesses also a temporal dependence, i.e., k = k(x, t). Although we consider only
explicit schemes in this paper, one can adopt the techniques used herein to analyse semi-implicit
and implicit schemes (the details will be presented elsewhere).

Assuming that u0, k and k′ are in BV , we are able to show that the approximate solutions
{u∆t}∆t>0 generated by our scheme converge strongly in L1

loc as ∆t ↓ 0 to the unique entropy
solution. Furthermore, in the hyperbolic case, we show that this convergence has a rate. More
precisely, we prove

Theorem 1.1. Let u∆t denote the function generated by the Engquist-Osher scheme. We assume
that the time step ∆t is related to the spatial step h through an appropriate CFL condition. If u0,
k and k′ are in BV ∩ L1 ∩ L∞, then

u = lim
∆t↓0

u∆t

is the unique entropy solution to (1.1). Furthermore, if A′ ≡ 0, then

‖u(·, t)− u∆t(·, t)‖L1(R) = O
(√

∆t
)
.

We remark that Theorem 1.1 provides an existence result for entropy solutions of strongly
degenerate parabolic equations which complements those in [50, 5]. We also remark that the
question of a convergence rate for the difference approximations to degenerate parabolic equations
will be addressed elsewhere.

We now relate our results to the ones obtained by Evje and Karlsen [19, 17], who analyse
monotone difference approximations of (1.1) in the special case k ≡ 1. In this case, the authors gave
a fairly complete analysis for the one-dimensional equation under certain smoothness assumptions
on the initial function u0, in which case it actually holds that A(u) belongs to the Hölder space
C1,1/2(R× [0, T ]), and not merely L2(0, T ;H1(R)) as follows from our analysis. We mention also
the work [16] which generalizes the analysis in [19, 17] to the more difficult case of doubly nonlinear
degenerate parabolic equations. In the present paper, we dispense with most of the smoothness
assumptions on u0 used in [19, 17]. Moreover, in the multidimensional case, the authors of [19]
do not prove that the limit u of their monotone difference approximations satisfies (ii) in (1.3), a
result that can be easily established by adopting the techniques developed in the present paper.

We continue with a few words about the proof of Theorem 1.1. The proof of the first part of
Theorem 1.1 is based on deriving uniform L∞, L1, and BV bounds on the approximate solution
u∆t. Equipped with the BV bound, we use the difference scheme itself and Kružkov’s interpolation
lemma [33] to show that u∆t is uniformly L1 continuous in time. Kolmogorov’s compactness
criterion then immediately gives L1

loc convergence (along a subsequence) of {u∆t}∆t>0 to a function
u ∈ L1 ∩ L∞. Uniqueness of the entropy solution [5, 28] (see also Theorem 2.1 herein) will imply
that the whole sequence {u∆t}∆t>0 converges and not just a subsequence.

To ensure that the limit u is the (unique) entropy solution in the sense of (1.3), we first prove
that the difference scheme satisfies a so-called discrete (or cell) entropy inequality and hence it
follows, by arguments analogous to the ones used to prove the Lax-Wendroff theorem, that the
entropy condition (i) in (1.3) holds true for the limit u. In passing, we mention that the BV
regularity and the cell entropy inequalities are used to derive the error estimate in the hyperbolic
case. In doing so, we follow Kuznetsov [36] and Kružkov [34].

Finally, we show that the limit u satisfies (ii) in (1.3). The arguments needed to prove (ii) are
rather involved and based on deriving a space estimate that is resemblant of the so-called weak BV
estimates employed by Champier et al. [7] and Eymard et al. [21] to prove convergence of finite
volume methods on unstructured grids for the hyperbolic equation, see also [1, 22] for the diffusion
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equation. Equipped with our weak BV estimate and an appropriate time estimate, Kolmogorov’s
compactness criterion implies strong L2

loc convergence (along a subsequence) of {A(u∆t)}∆t>0 to
A(u) and ∇A(u) ∈ L2.

Throughout this paper the coefficient k(x) is not allowed to be discontinuous. In the one-
dimensional hyperbolic case (A′ ≡ 0) with k(x) depending discontinuously on x, the equation
(1.1) is often written as the following 2× 2 system:

ut + f(k, u)x = 0, kt = 0.(1.4)

If ∂f/∂u changes sign, then this system is non-strictly hyperbolic. This complicates the analysis,
and in order to prove compactness of approximated solutions a singular transformation Ψ(k, u)
has been used by several authors [45, 23, 30, 29]. In these works convergence of the Glimm
scheme and of front tracking was established in the case where k may be discontinuous. Under
weaker conditions on k, e.g., k′ ∈ BV , and for f convex in u, convergence of the one-dimensional
Godunov method for (1.4) (not for (1.1)) was shown by Isaacson and Temple in [27]. Recently,
convergence of the one-dimensional Engquist-Osher method for (1.1) was shown by Towers [46, 47]
in the case where k is piecewise continuous. In this case, the Kružkov entropy condition (1.3) no
longer applies, and in [30] a wave entropy condition analogous to the Oleinik entropy condition
introduced in [40] was used to obtain uniqueness. We intend to study the degenerate parabolic
case (1.1) with a discontinuous k(x) in future work.

The rest of this paper is organized as follows: In the next section we introduce (precisely) the
notion of an entropy solution, and state the theorem regarding uniqueness and the L1 contraction
property of the solution operator to (1.1). We then proceed to show convergence and convergence
rates of difference schemes for the hyperbolic equation. In the last section we show convergence
of difference schemes for the degenerate parabolic equation.

Throughout this paper we denote by C a generic constant, not depending on our discretization
parameter ∆t. Note that the actual value of C may change from one line to the next during a
calculation.

2. Preliminaries

In this section we first give a precise definition of an entropy solution, and then present some
technical tools that we shall use.

2.1. Definition of the entropy solution. Throughout this paper we let fi(ki, u) be smooth
functions R× R → R, and set f(k, u) =

(
f1(k1, u), . . . , fd(kd, u)

)
. We assume that A : R → R is

a function that satisfies

A ∈ Liploc(R) and A(·) is nondecreasing with A(0) = 0.(2.1)

Concerning the flux function f : R
d × R → R

d, we assume that f ∈ C3
(
R

d × R; R
d
)

and that

fi, ∂ufi, ∂kfi, ∂ukfi, ∂ukkfi ∈ Lip(R× R; R), for i = 1, . . . , d.(2.2)

Furthermore, we assume that the relevant Lipschitz constants are bounded by

|∂ufi| ≤ Lu, |∂kfi| ≤ Lk, |∂ukfi| ≤ Luk, and so on,

for all i and for some constants Lu, Lk, Luk. Without explicitly mentioning this any more, we
will always assume in this paper that f(k, 0) = 0 for all k.

Regarding the coefficient k we assume that

ki ∈ C
(
R

d
)
∩BV

(
R

d
)
, ∂xj

ki ∈ L∞
(
R

d
)
∩BV

(
R

d
)

for all i and j.(2.3)

Under the above assumptions we shall study difference approximations to (1.1). Following [28]
(see also Carrillo [5]), an entropy solution is defined as follows:

Definition 2.1. An entropy solution of (1.1) is a measurable function u = u(x, t) satisfying:
D.1 u ∈ L1(ΠT ) ∩ L∞(ΠT ) ∩ C(0, T ;L1(Rd)).
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D.2 For all c ∈ R, and all non-negative test functions ϕ in C∞
0 (ΠT ) the following entropy

inequality holds:∫∫
ΠT

(
|u− c|ϕt + sign (u− c)

(
f(k(x), u)− f(k(x), c)

)
· ∇ϕ+ |A(u)−A(c)|∆ϕ

− sign (u− c) divf(k(x), c)ϕ
)
dt dx ≥ 0.

(2.4)

D.3 A(u) ∈ L2(0, T ;H1(Rd)).
D.4 Essentially as t→ 0+, ∫

Rd

∣∣u(x, t)− u0(x)
∣∣ dx→ 0.

Remark 2.1. (i) Observe that when A′ ≡ 0, (2.4) reduces to the well known entropy inequality
for scalar conservation laws introduced by Kružkov [34] and Vol’pert [49].
(ii) Condition (D.4), i.e., that the initial datum u0 should be taken by continuity, motivates the
requirement of continuity with respect to t in condition (D.1).

The following theorem from [28] shows that the initial value problem (1.1) is well posed:

Theorem 2.1. Assume that (2.1), (2.2) and (2.3) hold. Let v, u ∈ L∞(0, T ;BV (Rd)) be entropy
solutions of (1.1) with initial data v0, u0 ∈ L1(Rd) ∩ L∞(Rd) ∩ BV (Rd), respectively. Then for
almost all t ∈ (0, T ),

‖v(·, t)− u(·, t)‖L1(Rd) ≤ ‖v0 − u0‖L1(Rd).(2.5)

In particular, there exists at most one entropy solution of the initial value problem (1.1).

Remark 2.2. At the expense of loosing (2.5), the assumption that v, u ∈ L∞(0, T ;BV (Rd)) can
be removed and uniqueness still holds, see [28].

2.2. Some mathematical tools. In this section we present some mathematical tools that we
shall use in the analysis.

Let u : R
d×(0, T ) → R be a function such that u(·, t) ∈ L1

(
R

d
)

for all t ∈ (0, T ). By a modulus
of continuity, we mean a nondecreasing continuous function ν : R

0
+ → R

0
+ such that ν(0) = 0. We

say that u has a spatial modulus of continuity if

sup
|ε|≤y

∫
Rd

|u(x+ ε, t)− u(x, t)| dx ≤ ν(y;u),(2.6)

(where ν may depend on t). We also say that u has a temporal modulus of continuity if there is
a modulus of continuity ω(·;u) such that for each τ ∈ (0, T ),

sup
0≤ε≤τ

∫
Rd

|u(x, t+ ε)− u(x, t)| dx ≤ ω(τ ;u), ∀t ∈ (0, T − τ).(2.7)

Let θ(r) be a smooth non-negative function of a single variable r such that

θ(r) = θ(−r), θ(r) = 0, for |r| ≥ 1, and
∫

R

θ(r) dr = 1.

Let δε(x) = (1/εd)θ(|x|/ε), and, with a slight abuse of notation, δε(t) = (1/ε)θ(t/ε). Now define
a test function ϕ(x, y, t, s) by

ϕ(x, y, t, s) = δε(x− y)δε(t− s).
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For a function u = u(x, t), set

λ(u, c) = −
∫∫
ΠT

(
|u− c|ϕt + sign (u− c) (f(k, u)− f(k, c))ϕx − sign (u− c) f(k, c)xϕ

)
dt dx

+
∫
R

|u− c|ϕ
∣∣t=T

t=0
dx.

(2.8)

For two functions u and v we define the functional Λε(u, v) as

Λε(u, v) =
∫∫
ΠT

λ(u, v(y, s)) ds dy,(2.9)

where u = u(x, t) and v = v(y, s). In passing, we note that if A′ ≡ 0, and u is an entropy solution
of (1.1), then

Λε(u, v) ≤ 0.(2.10)

For two arbitrary functions u and v we have the following result:

Lemma 2.1 (Kuznetsov’s lemma). Assume that k = (k1, . . . , kd) is in C(Rd) and k′ is in L∞(Rd)
and that both k and kxi

have moduli of continuity for all i = 1, . . . , d. If u and v are in L1(ΠT )
and have moduli of continuity in space and time, then

‖u(·, T )− v(·, T )‖L1(Rd) ≤ ‖u(·, 0)− v(·, 0)‖L1(Rd) + Λε(u, v) + Λε(v, u)

+
1
2

[ν(u(·, 0); ε) + ν(v(·, 0); ε) + ν(u(·, T ); ε) + ν(v(·, T ); ε)]

+
1
2

[ω(u(·, T ); ε) + ω(v(·, T ); ε) + ω(u(·, 0); ε) + ω(v(·, 0); ε)]

+ ‖divk‖L∞ LuT sup
0≤t≤T

(ν(u(·, t); ε) + ω(u(·, t); ε))

+ CT
(
‖divk‖L∞ ν(k; ε) + max

i
ν (kxi

; ε))
)
,

(2.11)

where ω(·; ·) denotes a temporal modulus of continuity, and ν(·; ·) denotes a spatial modulus. The
constant C depends on fk and fkk.

Proof. We shall prove this lemma for d = 1, the general proof is completely analogous. Remember
that ϕx = −ϕy and ϕt = −ϕs. By adding Λε(u, v) and Λε(v, u) we find that

Λε(u, v) + Λε(v, u) = −
∫∫
ΠT

∫∫
ΠT

sign (u− v)
[
(f(k(x), u)− f(k(x), v))ϕx − f(k(x), v)xϕ(2.12)

− (f(k(y), u)− f(k(y), v))ϕx + f(k(y), u)yϕ

]
dt dx ds dy

+
∫∫
ΠT

∫
R

ϕ(x, y, T, s) |u(x, T )− v(y, s)| dx ds dy

+
∫∫
ΠT

∫
R

ϕ(x, y, t, T ) |u(x, t)− v(y, T )| dy dt dx

−
∫∫
ΠT

∫
R

ϕ(x, y, 0, s) |u(x, 0)− v(y, s)| dx ds dy

−
∫∫
ΠT

∫
R

ϕ(x, y, t, 0) |u(x, t)− v(y, 0)| dy dt dx.
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Using standard arguments, the four last terms will give the ‖u− v‖L1 terms and the terms starting
with 1

2 [. . . in (2.11). Regarding the remaining term, we follow Kružkov [34]. Let

m(x, y, w) = fk(k(x), w)k′(x)− fk(k(y), w)k′(y).

Then we rewrite the square brackets in (2.12) as[
(f(k(x), u)− f(k(x), v))ϕx − f(k(x), v)xϕ− (f(k(y), u)− f(k(y), v))ϕx + f(k(y), u)yϕ

]
= [(f(k(y), u)− f(k(x), u))ϕy + f(k(y), u)yϕ]

+ [(f(k(y), v)− f(k(x), v))ϕx − f(k(x), v)xϕ]

= fk(k(y), u)k′(y) [(y − x)ϕy + ϕ] +m(ξ1, y, u)(x− y)ϕy

+ fk(k(y), v)k′(y) [(y − x)ϕx − ϕ]

+m(y, x, v)ϕ+m(ξ2, y, v)(y − x)ϕx

= −fk(k(y), u)k′(y) [(y − x)ϕ]x + fk(k(y), v)k′(y) [(y − x)ϕ]x
+ (m(ξ1, y, u) +m(ξ2, y, v))ϕy +m(y, x, v)ϕ

=
[
k′(y) (fk(k(y), v)− fk(k(y), u))

]
[(x− y)ϕ]x

+ (m(ξ1, y, u) +m(ξ2, y, v)) (x− y)ϕy +m(y, x, v)ϕ,

where |ξi − y| ≤ |x− y| for i = 1, 2. Let now

F (u, v) = sign (u− v)
[
k′(y) (fk(k(y), v)− fk(k(y), u))

]
,

and note that F is Lipschitz continuous, with Lipschitz constant given by ‖k′‖L∞ Lu, in both
arguments. Next, we obviously have that∫∫

ΠT

∫∫
ΠT

F (u(y, s), v(y, s)) [(x− y)ϕ]x dt dx ds dy = 0.

Thus, our troublesome term reads

∫∫
ΠT

∫∫
ΠT

[F (u(x, t), v(y, s))− F (u(y, s), v(y, s))] [(x− y)ϕ]x dt dx ds dy

(2.13)

+
∫∫
ΠT

∫∫
ΠT

(
sign (u− v) (m(ξ1, y, u) +m(ξ2, y, v)) (x− y)ϕy +m(y, x, v)ϕ

)
dt dx ds dy.(2.14)

Now

|m(x, y, u)| ≤ Lk |k′(x)− k′(y)|+ ‖k′‖L∞ Luk |k(x)− k(y)| .

Hence, (2.14) is bounded by integrals of the form∫∫
ΠT

∫∫
ΠT

|l(ξ)− l(y)| |(x− y)δ′ε(x− y)| δε(t− s) dt dx ds dy(2.15)

and ∫∫
ΠT

∫∫
ΠT

|l(ξ)− l(y)| δε(x− y)δε(t− s) dt dx ds dy,(2.16)

where ξ = x, ξ1 or ξ2, and l = k or k′. Since |x− y| ≤ ε we have that |ξ − y| ≤ ε in (2.15) and
(2.16), so they are both easily seen to be bounded by ν(l; ε). The rest of (2.13) is bounded as
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follows∫∫
ΠT

∫∫
ΠT

∣∣∣F (u(x, t), v(y, s))−F (u(y, s), v(y, s))
∣∣∣ |((x− y)ϕ)x| dt dx ds dy

≤ ‖k′‖L∞ Lu

∫∫ ∫∫
|u(x, t)− u(y, s)| |((x− y)ϕ)x| dt dx ds dy

≤
‖k′‖L∞ Lu

ε

[∫ T

0

∫∫
|x−y|≤ε

|u(x, t)− u(y, t)| dxdy dt

+
∫∫

|t−s|≤ε

∫
|u(y, t)− u(y, s)| dy dt ds

]
≤ ‖k′‖L∞ LuT sup

0≤t≤T
(ν(u(·, t); ε) + ω(u(·, t); ε)) .

This concludes the proof of the lemma.

We need the following general L1 and L2 compactness criteria.

Lemma 2.2 (L1
loc compactness lemma). Let {zh}h>0 be a sequence of functions defined on R

d ×
(0, T ) which satisfies:

1. There exists a constant C1 > 0 which is independent of h such that

‖zh(·, t)‖L1(Rd) and ‖zh(·, t)‖L∞(Rd) ≤ C1, ∀t ∈ (0, T );

2. There exists a spatial modulus of continuity ν which is independent of h such that

‖zh(·+ y, t)− zh(·, t)‖L1(Rd) ≤ ν(|y|; zh) as y → 0, ∀t ∈ (0, T );

3. There exists a temporal modulus of continuity ω which is independent of h such that

‖zh(·, t+ τ)− zh(·, t)‖L1(Rd) ≤ ω(τ ; zh), ∀t ∈ (0, T − τ) whenever τ ∈ (0, T ).

Then {zh}h>0 is compact in the strong topology of L1
loc(R

d × (0, T )). Moreover, any limit point of
{zh}h>0 belongs to L1(Rd × (0, T )) ∩ L∞(Rd × (0, T )) ∩ C(0, T ;L1(Rd)).

Lemma 2.3 (L2
loc compactness lemma). Let {zh}h>0 be a sequence of functions defined on R

d ×
(0, T ) which satisfies:

1. There exists a constant C1 > 0 which may depend on T , but not h, such that

‖zh‖L2(Rd×(0,T )) ≤ C1;

2. There exists a constant C2 > 0 which may depend on T but not h such that

‖zh(·+ y, ·)− zh(·, ·)‖L2(Rd×(0,T )) ≤ C2 (|y|+ h) for all y as h ↓ 0;

3. There exists a constant C3 > 0 which may depend on T but not h such that

‖zh(·, ·+ τ)− zh(·, ·)‖L2(Rd×(0,T−τ)) ≤ C3

√
τ + h for all τ > 0 as h ↓ 0.

Then {zh}h>0 is compact in the strong topology of L2
loc(R

d × (0, T )). Moreover, any limit point of
{zh}h>0 belongs to L2(0, T ;H1(Rd)).

To prove that the difference approximations possess some L1 time continuity, we shall use the
following lemma due to Kružkov [33].

Lemma 2.4 (Kružkov’s interpolation lemma [33]). Let z(x, t) be a bounded measurable function
defined on R

d × (0, T ). For t ∈ (0, T ) assume that z possesses a spatial modulus of continuity∫
Rd

|z (x+ ε, t)− z(x, t)| dx ≤ ν(|ε| ; z),(2.17)
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where ν does not depend on t. Suppose that for any φ ∈ C∞
0 (Rd) and any t1,t2 ∈ (0, T ),∣∣∣∣∫

Rd

(z (x, t2)− z (x, t1))φ(x) dx
∣∣∣∣ ≤ ConstT ·

( ∑
|α|≤m

cα ‖Dαφ‖L∞(Rd)

)
· |t2 − t1| ,(2.18)

where α denotes a multi-index, and cα are constants not depending on φ or t. Then for any
t1, t2 ∈ (0, T ) and all ε > 0∫

Rd

|z(x, t2)− z(x, t1)| dx ≤ C ·

|t2 − t1|
∑
|α|≤m

cα
ε|α|

+ ν(z; ε)

 .(2.19)

Proof. Let δε(x) denote the usual mollifying kernel of radius ε, and let d(x) = z(x, t2)− z(x, t1).
For r > ε, set

β(x) =

{
sign (d(x)) for |x| ≤ r − ε,

0 otherwise,

and set βε = β ∗ δε. Then βε is in C∞
0 (Rn), has support inside the ball Br, and we have the bound

|Dαβε| ≤ Const/ε|α|. Also∣∣∣∣∫
Br

d(x) dx
∣∣∣∣ ≤ ∫

Br

|d(x)− βε(x)d(x)| dx+
∣∣∣∣∫

Br

βε(x)d(x) dx
∣∣∣∣

≤
∫∫
Rd

|d(x)− d(x− y)| δε(y) dxdy + C |t2 − t1|
∑
|α|≤m

cα
ε|α|

≤ C

ν(ε; z) + |t2 − t1|
∑
|α|≤m

cα
ε|α|

 .

Letting r ↑ ∞, we obtain (2.19).

We shall also need the technical result:

Lemma 2.5 (Crandall and Tartar [13]). Let (Ω, µ) be some measure space and let D be a subset
of L1(Ω). Assume that if u and v are in D, then also u ∨ v is in D. Let T be a map D → D such
that ∫

Ω

T (u) dµ =
∫
Ω

u dµ, ∀u ∈ D.

Then the following statements, valid for all u and v in D, are equivalent:

(i) If u ≤ v, then T (u) ≤ T (v).
(ii)

∫
Ω

(T (u)− T (v)) ∨ 0 dµ ≤
∫
Ω

(u− v) ∨ 0 dµ.
(iii)

∫
Ω
|T (u)− T (v)| dµ ≤

∫
Ω
|u− v| dµ.

3. Difference approximations: the hyperbolic equation

In this section we analyze a difference approximation to the solution of the hyperbolic equation

ut + divf(k, u) = 0, u(x, 0) = u0(x), (x, t) ∈ ΠT ,(3.1)

where k and f satisfy (2.2) and (2.3) respectively. For simplicity, we shall assume that u0 has
compact support, which implies that all subsequent sums over I are finite. To obtain results in
the general case, we can use the stability result in Theorem 2.1 (these standard details will not
be written out). We have chosen to analyze the hyperbolic equation separately since the analysis
parallels the general case but is simpler. In the next section, where we consider the general case, we
shall use several of the estimates obtained in this section. Furthermore, we provide a convergence
rate in the hyperbolic case.
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As already mentioned in the introduction, we use the Engquist-Osher scheme to make the
analysis more concrete, but our methods can easily be adapted to general monotone schemes. For
a scalar flux function fi(k, u), the Engquist-Osher flux fEO

i [14] can be written as

fEO
i (k, u, v) =

1
2

(
fi(k, u) + fi(k, v)−

∫ v

u

|∂ufi(k, s)| ds
)
.(3.2)

To define the scheme, let I be a multi-index I = (i1, . . . , id) and set ei to be a multi-index with
zeros everywhere except for a 1 at the ith place. Furthermore, we choose a time step ∆t such that
N∆t = T and a spatial discretization parameter h > 0. Letting λ = ∆t/h, the Engquist-Osher
scheme reads (d ≥ 2)

un+1
I = un

I − λ
d∑

i=1

[
f̄EO

I+ei/2 − f̄EO
I−ei/2

]
= un

I − λ
d∑

i=1

1
2d−1

∑
j 6=i

J=I±ej/2

[
fEO

i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− fEO

i

(
ki

J−ei/2, u
n
I−ei

, un
I

)]
,

(3.3)

where

f̄EO
I+ei/2 =

1
2d−1

∑
j 6=i

J=I±ej/2

fEO
i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
.(3.4)

For d = 1, the Engquist-Osher scheme reads

un+1
i = un

i − λ
[
fEO

(
ki+1/2, u

n
i , u

n
i+1

)
− fEO

(
ki−1/2, u

n
i−1, u

n
i

)]
.

The approximate solution u∆t is then defined as

u∆t(x, t) = un
I , for (x, t) ∈ χI × [tn, tn+1),(3.5)

where χI denotes the set

χI =
{
x ∈ R

d
∣∣∣ (xI−ei/2

)
i
≤ xi <

(
xI+ei/2

)
i
, i = 1, . . . , d

}
and xI = hI. We initialize the scheme by setting

u0
I =

1
|χI |

∫
χI

u0(x) dx.

Note that fEO
i (k, u, v) is not continuously differentiable in the first variable but merely Lipschitz.

Therefore we introduce the following auxiliary numerical flux

fEO,ε
i (k, u, v) =

1
2

(
fi(k, u) + fi(k, v)−

∫ v

u

|∂ufi(k, s)|ε ds
)
,

where | · |ε is a smooth approximation to the absolute value function | · | such that∣∣ |a| − |a|ε
∣∣ ≤ ε and |a| = |a|ε for |a| > ε.

Note in particular that∣∣∣fEO
i (k, u, v)− fEO,ε

i (k, u, v)
∣∣∣ ≤ |u− v| ε, ∀k, u, v.(3.6)

This scheme can be analyzed as follows. Set∑̂
i
=

1
2d−1

∑
j 6=i

J=I±ej/2

and ψi(k, u, v) =
∂fEO,ε

i

∂k
(k, u, v).

Note that
|ψi(k, u, v)| ≤ Lk +

1
2
|u− v|Luk.
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Then we define FI as the right hand side in (3.3), i.e.,

un+1
I = FI (un) .(3.7)

Assuming the CFL condition

λ
d∑

i=1

max
k,u

|∂ufi(k, u)| ≤ 1,(3.8)

it is easy to show that ∂FI

∂un
J
≥ 0 for all J . In other words, the Engquist-Osher scheme is monotone.

Let Un = maxI |un
I |, then∣∣un+1

I

∣∣ = |FI (un)| ≤ FI (Un)

= Un + λ
d∑

i=1

∑̂
i

[
fi

(
ki

J+ei/2, U
n
)
− fi

(
ki

J−ei/2, U
n
)]

≤ Un + Lk∆t
d∑

i=1

∑̂
i

∣∣∣ki
J+ei/2 − ki

J−ei/2

∣∣∣ 1
h
≤ Un + Lk∆t

d∑
i=1

∥∥ki
xi

∥∥
L∞(Rd)

.

From this it follows that

‖u∆t(·, T )‖L∞(Rd) ≤ ‖u0‖L∞(Rd) + TLkdmax
i

∥∥ki
xi

∥∥
L∞(Rd)

.(3.9)

Next, by the Crandall and Tartar lemma (see Lemma 2.5) and the monotonicity of FI ,∑
I

|FI (un)− FI(0)| ≤
∑

I

|un
I | .

Hence

hd
∑

I

∣∣un+1
I

∣∣ ≤ hd
∑

I

|un
I |+ hdλ

d∑
i=1

∑̂
i

∣∣∣f i
(
ki

J+ei/2, 0
)
− f i

(
ki

J−ei/2, 0
)∣∣∣ ≤ hd

∑
I

|un
I | .

This means that

‖u∆t(·, T )‖L1(Rd) ≤ ‖u0‖L1(Rd) .(3.10)

For any quantity XI defined on our grid let D`XI denote the upward difference

D`XI = XI+e`
−XI .(3.11)

To bound the total variation of u∆t we again use the Crandall-Tartar lemma, which in this case
gives ∑

I

∣∣FI+e`

(
un
·+e`

)
− FI+e`

(un)
∣∣ ≤∑

I

∣∣un
I+e`

− un
I

∣∣ .
Note that we have

un+1
I+e`

= FI+e`

(
un
·+e`

)
and

∑
I

∣∣D`u
n+1
I

∣∣ ≤∑
I

|D`u
n
I |+

∣∣∣∣∣∑
I

[
FI+e`

(un)− FI (un)
]∣∣∣∣∣ .(3.12)
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Before we start to estimate the difference on the right-hand side of (3.12), note that

∣∣∣ψi (k1, u, v)− ψi (k2, u, v)
∣∣∣

=
1
2

∣∣∣∣(∂kkfi(η, u) + ∂kkfi(ν, v)) (k1 − k2)

−
∫ v

u

(
[signε (∂ufi(k1, s))− signε (∂ufi(k2, s))] ∂ukfi(k1, s)

+ signε (∂ufi(k2, s)) ∂ukkfi(γ, s)
)
ds

∣∣∣∣
≤ max

k,u
|∂kkfi(k, u)| |k1 − k2|+ max

k,u
|∂ukfi(k, u)| |u− v|

+
1
2

max
k,u

|∂ukkfi(k, u)| |u− v| |k1 − k2| ,

where signε (·) denotes the derivative of | · |ε. Furthermore, we have

|ψi (k, u1, v)− ψi (k, u2, v)| ≤ max
k,u

|∂kufi(k, u)| |u1 − u2| ,

|ψi (k, u, v1)− ψi (k, u, v2)| ≤ max
k,u

|∂kufi(k, u)| |v1 − v2| .



VISCOUS AND INVISCID CONSERVATION LAWS 13

Using the above estimates on ψi and (3.6), there exist numbers ξJ+e`/2±ei/2 between ki
J±ei/2 and

ki
J+e`±ei/2 such that

FI+e`
(un)− FI (un)

= −λ
d∑

i=1

∑̂
i

[(
fEO

i

(
ki

J+e`+ei/2, u
n
I , u

n
I+ei

)
− fEO

i

(
ki

J+ei/2, u
n
I , u

n
I+ei

))
−
(
fEO

i

(
ki

J+e`−ei/2, u
n
I−ei

, un
I

)
− fEO

i

(
ki

J−ei/2, u
n
I−ei

, un
I

))]
= O(ε)− λ

d∑
i=1

∑̂
i

[
ψi

(
ξJ+e`/2+ei/2, u

n
I , u

n
I+ei

)
D`k

i
J+ei/2

− ψi

(
ξJ+e`/2−ei/2, u

n
I−ei

, un
I

)
D`k

i
J−ei/2

]
= O(ε)− λ

d∑
i=1

∑̂
i

[
ψi

(
ξJ+e`/2+ei/2, u

n
I , u

n
I+ei

)
DiD`k

i
J+ei/2

−Diψi

(
ξJ+e`/2−ei/2, u

n
I−ei

, un
I

)
D`k

i
J−ei/2

]
= O(ε)− λ

d∑
i=1

∑̂
i

[
ψi

(
ξJ+e`/2+ei/2, u

n
I , u

n
I+ei

)
DiD`k

i
J+ei/2

−
{
ψi

(
ξJ+e`/2+ei/2, u

n
I , u

n
I+ei

)
− ψi

(
ξJ+e`/2−ei/2, u

n
I , u

n
I+ei

)
+ ψi

(
ξJ+e`/2−ei/2, u

n
I , u

n
I+ei

)
− ψi

(
ξJ+e`/2−ei/2, u

n
I , u

n
I

)
+ ψi

(
ξJ+e`/2−ei/2, u

n
I , u

n
I

)
− ψi

(
ξJ+e`/2−ei/2, u

n
I−ei

, un
I

)}
D`k

i
J−ei/2

]
≤ O(ε) + λ

d∑
i=1

∑̂
i

[∣∣∣ψi

(
ξJ+e`/2+ei/2, u

n
I , u

n
I+ei

)
DiD`k

i
J+ei/2

∣∣∣
−
{
Lkk

∣∣DiξJ+e`/2−ei/2

∣∣+ Luk |Diu
n
I |+

Lukk

2

∣∣Diu
n
IDiξJ+e`/2−ei/2

∣∣
+ Lku

(
|Diu

n
I |+

∣∣Diu
n
I−ei

∣∣)} ∣∣∣D`k
i
J−ei/2

∣∣∣].

As the above inequality holds for any ε > 0, we can let ε ↓ 0 and obtain

|FI+e`
(un)− FI (un)|

≤ λ
d∑

i=1

∑̂
i

[∣∣∣ψi

(
ξJ+e`/2+ei/2, u

n
I , u

n
I+ei

)
DiD`k

i
J+ei/2

∣∣∣
−
{
Lkk

∣∣DiξJ+e`/2−ei/2

∣∣+ Luk |Diu
n
I |+

Lukk

2

∣∣Diu
n
IDiξJ+e`/2−ei/2

∣∣
+ Lku

(
|Diu

n
I |+

∣∣Diu
n
I−ei

∣∣)} ∣∣∣D`k
i
J−ei/2

∣∣∣].
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Since we have that ψi is bounded, we find that∑
I

∣∣D`u
n+1
I

∣∣hd−1 ≤
∑

I

|D`u
n
I |hd−1

+ C∆t
{
hd−2

∑
I

d∑
i=1

∑̂
i

∣∣∣D`Dik
i
J+ei/2

∣∣∣
+ hd−1 max

i,j

∥∥∥ki
xj

∥∥∥
L∞(Rd)

∑
I

d∑
i=1

∑̂
i

∣∣∣D`k
i
J−ei/2

∣∣∣
+ hd−1 max

i,j

∥∥∥ki
xj

∥∥∥
L∞(Rd)

∑
I

d∑
i=1

|Diu
n
I |
}
,

for some constant C independent of ∆t. The first and second sums inside {· · · } are bounded since
we assume that ki and ki

xj
are in BV

(
R

d
)
. By summing the above over ` = 1, . . . , d, we find that

|u∆t(·, tn+1)|BV (Rd) = hd−1
d∑

`=1

∑
I

∣∣D`u
n+1
I

∣∣
≤ (1 + C∆t) |u∆t(·, tn)|BV (Rd) + C∆t

(
|k|BV (Rd) + max

i,j

∣∣∣ki
xj

∣∣∣
BV (Rd)

)
.

Consequently,

|u∆t (·, t)|BV (Rd) ≤ C
(
|u0|BV (Rd) + t

)
, ∀t ∈ (0, T ),(3.13)

where C does not depend on ∆t.
Next, we shall use the scheme to show that u∆t ∈ C

(
0, T ;L1(Rd)

)
uniformly in ∆t. This is

done as follows

hd
∑

I

∣∣un+1
I − un

I

∣∣ ≤ ∆thd−1
∑

I

∑̂
i

d∑
i=1

[∣∣∣fEO
i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− fEO

i

(
ki

J+ei/2, u
n
I−ei

, un
I

)∣∣∣
+ max

∣∣∣∣∂fEO
i

∂k

∣∣∣∣ ∣∣∣Dik
i
J−ei/2

∣∣∣]
≤ C∆t

(
|u∆t|BV (Rd) + |k|BV (Rd)

)
,

from which we obtain

‖u∆t(·, t+ τ)− u∆t(·, t)‖L1(Rd) ≤ Cτ, ∀t ∈ [0, T − τ ].(3.14)

By Lemma 2.2, we have that the sequence {u∆t}∆t>0 is compact in L1
Loc(ΠT ). Moreover, any

limit point of this sequence satisfies (D.1) and (D.4).
Next, we shall prove two cell entropy inequalities. The first one is based on Kružkov’s entropies

and will be used later to prove an error estimate. The second one is based on smooth (C2) convex
entropies and will be used to show that the limit of any convergent subsequence of {u∆t}∆t>0

satisfies the entropy condition (D.2).
Let

wn
I = un

I ∨ c, vn
I = un

I ∧ c, wn+1
I = FI (wn

I ) , vn+1
I = FI (vn

I ) , cn+1
I = FI(c),

where FI is defined in (3.7). Then we have that

wn+1
I ≥ un+1

I ≥ vn+1
I , vn+1

I ≤ cn+1
I ≤ wn+1

I .

This implies that ∣∣un+1
I − cn+1

I

∣∣ ≤ wn+1
I − vn+1

I .
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Now

wn+1
I − vn+1

I

= |un
I − c| − λ

d∑
i=1

∑̂
i

[(
fEO

i

(
ki

J+ei/2, u
n
I ∨ c, un

I+ei
∨ c
)
− fEO

i

(
ki

J+ei/2, u
n
I ∧ c, un

I+ei
∧ c
))

−
(
fEO

i

(
ki

J−ei/2, u
n
I−ei

∨ c, un
I ∨ c

)
− fEO

i

(
ki

J−ei/2, u
n
I−ei

∧ c, un
I ∧ c

))]
.

Denoting the numerical entropy flux by

qEO
i (k, u, v) = fEO

i (k, u ∨ c, v ∨ c)− fEO
i (k, u ∧ c, v ∧ c)

and noting that

∣∣un+1
I − cn+1

I

∣∣ = ∣∣∣∣∣un+1
I − c+ λ

d∑
i=1

∑̂
i

[
fi

(
ki

J+ei/2, c
)
− fi

(
ki

J−ei/2, c
)]∣∣∣∣∣

≥ sign
(
un+1

I − c
)(

un+1
I − c+ λ

d∑
i=1

∑̂
i

[
fi

(
ki

J+ei/2, c
)
− fi

(
ki

J−ei/2, c
)])

≥
∣∣un+1

I − c
∣∣+ sign

(
un+1

I − c
)
λ

d∑
i=1

∑̂
i

[
fi

(
ki

J+ei/2, c
)
− fi

(
ki

J−ei/2, c
)]
,

we find that∣∣un+1
I − c

∣∣ ≤ |un
I − c| − λ

d∑
i=1

∑̂
i

[
qEO
i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− qEO

i

(
ki

J−ei/2, u
n
I−ei

, un
I

)]

− sign
(
un+1

I − c
)
λ

d∑
i=1

∑̂
i
Difi

(
ki

J−ei/2, c
)
.

(3.15)

This discrete entropy inequality will be used later to derive an error estimate.
Let U ∈ C2 be a convex entropy and let q̃EO

i (k, u, v) denote the associated numerical entropy
flux defined by

q̃EO
i (k, u, v) =

∫ u

0

U ′(s)
(
∂ufi(k, s) ∨ 0

)
ds+

∫ v

0

U ′(s)
(
∂ufi(k, s) ∧ 0

)
ds.(3.16)

Let us write the scheme (3.3) as

un+1
I = wn

I − λ
d∑

i=1

∑̂
i

[
fEO

i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− fEO

i

(
ki

J−ei/2, u
n
I , u

n
I+ei

)]
,(3.17)

where

wn
I = un

I − λ
d∑

i=1

∑̂
i

[
fEO

i

(
ki

J−ei/2, u
n
I , u

n
I+ei

)
− fEO

i

(
ki

J−ei/2, u
n
I−ei

, un
I

)]
.(3.18)

From (3.18), it follows in a standard way using monotonicity (i.e., the CFL condition) that

U(wn
I )− U(un

I )
∆t

+
d∑

i=1

∑̂
i

q̃EO
i

(
ki

J−ei/2, u
n
I , u

n
I+ei

)
− q̃EO

i

(
ki

J−ei/2, u
n
I−ei

, un
I

)
h

≤ 0.(3.19)

Using (3.17) and convexity of U(·), it follows that

U(wn
I ) ≥ U(un+1

I ) + U ′(un+1
I )λ

d∑
i=1

∑̂
i

[
fEO

i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− fEO

i

(
ki

J−ei/2, u
n
I , u

n
I+ei

)]
.
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Plugging this into (3.19), we get our desired cell entropy inequality

U(un+1
I )− U(un

I )
∆t

+
d∑

i=1

∑̂
i

q̃EO
i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− q̃EO

i

(
ki

J−ei/2, u
n
I−ei

, un
I

)
h

+ U ′(un+1
I )

d∑
i=1

∑̂
i

fEO
i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− fEO

i

(
ki

J−ei/2, u
n
I , u

n
I+ei

)
h

−
d∑

i=1

∑̂
i

q̃EO
i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− q̃EO

i

(
ki

J−ei/2, u
n
I , u

n
I+ei

)
h

≤ 0.

(3.20)

We now multiply (3.20) by a nonnegative test function, do summation by parts, and then
subsequently send ∆t → 0. We conclude that a limit point u of {u∆t}∆t>0 satisfies the entropy
condition ∫∫

ΠT

(
U(u)ϕt + q(k, u) · ∇ϕ−

(
U ′(u)fx(k, u)− qx(k, u)

)
ϕ
)
dt dx ≥ 0,(3.21)

where q = (q1, . . . , qd) satisfies

∂uq(k, u) = U ′(u)∂uf(k, u).

Furthermore, fx, qx denote the functions obtained by taking the divergence of f(k(·), u), q(k(·), u),
respectively. Since (3.21) holds for any convex C2 entropy U and corresponding entropy flux q,
a standard approximation argument applied to | · −c| will reveal that (2.4) (with A′ ≡ 0) holds
for all c ∈ R. Hence, by the uniqueness of the entropy solution, the whole sequence {u∆t}∆t>0

converges to the unique entropy solution.
Now we shall use the cell entropy inequality (3.15) and Kuznetsov’s lemma (Lemma 2.1) to

show that u∆t converges to the unique entropy solution at a rate of ∆t1/2. For simplicity we shall
restrict our proof to the case of one space dimension, i.e., d = 1. However, with some effort, the
calculations given below can be generalized to the multi-dimensional case d > 1.

Let u(x, t) be the unique entropy solution to

ut + f(k, u)x = 0, u(x, 0) = u0(x)(3.22)

where u0 and k′ is of bounded variation, and let u∆t(x, t) and k∆t be as before. Now Λε(u, u∆t) ≤ 0,
and all the continuity moduli in Kuznetzov’s lemma are linear in ε, therefore (2.11) reads

‖u(·, T )− u∆t(·, T )‖L1(R) ≤ ‖u0 − u∆t(·, 0)‖L1(R) + Λε(u∆t, u) + Cε,(3.23)

where the constant C does not depend on ∆t. We must estimate Λε(u∆t, u). Set

η(u) = |u− c| , q(k, u) = sign (u− c) (f(k, u)− f(k, c)).

Multiplying the cell entropy inequality (3.15) by positive numbers hϕn
i with ϕn

i = 0 for |i| large,
and summing over i and n = 0, . . . , N − 1 where N∆t = T , we find that

l(u∆t, c) :=
∑
i,n

[(
ηn+1

i − ηn
i

)
ϕn

i h

+
(
qEO

(
ki+1/2, u

n
i , u

n
i+1

)
− qEO

(
ki−1/2, u

n
i−1, u

n
i

))
ϕn

i ∆t

+ sign
(
un+1

i − c
) (
f
(
ki+1/2, c

)
− f

(
ki−1/2, c

))
ϕn

i ∆t
]

=l1 + l2 + l3 ≤ 0.

(3.24)
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We also find that

λε (u∆t, c) =
∑
i,n

[(
ηn+1

i − ηn
i

) ∫ xi+1/2

xi−1/2

ϕ(x, tn) dx(3.25)

+
(
q
(
ki+1/2, u

n
i+1

)
− q

(
ki−1/2, u

n
i

)) ∫ tn+1

tn

ϕ(xi, t) dt(3.26)

+
(
q
(
ki+1/2, u

n
i+1

)
− q

(
ki+1/2, u

n
i

)) ∫ tn+1

tn

(
ϕ
(
xi+1/2, t

)
− ϕ (xi, t)

)
dt(3.27)

+ sign
(
un+1

i − c
) (
f
(
ki+1/2, c

)
− f

(
ki−1/2, c

)) ∫ tn+1

tn

ϕ (xi, t) dt

]
(3.28)

=: λ1+λ2,1 + λ2,2 + λ3.

Since l(u∆t, c) ≤ 0,

λε (u∆t, u) ≤ |λε (u∆t, u)− l (u∆t, u)| ≤ |λ1 − l1|+ |λ2,1 − l2|+ |λ3 − l3|+ |λ2,2| .

First we note that

|λ2,2| ≤ Lu

∑
i,n

∫ xi+1/2

xi

∫ tn+1

tn

|δ′ε(x− y)| δε(t− s) dt dx
∣∣un

i+1 − un
i

∣∣
and ∫∫

ΠT

|λ2,2| ds dy ≤
LuTh

ε
|u∆t|BV (R) .(3.29)

We choose the numbers ϕn
i as

ϕn
i =

1
∆th

∫ xi+1/2

xi−1/2

∫ tn+1

tn

ϕ(x, t) dt dx.

Using this we find that

|λ1 − l1| ≤
∑
i,n

∣∣ηn+1
i − ηn

i

∣∣ 1
∆t

∫ tn+1

tn

∫ xi+1/2

xi−1/2

|ϕ(x, t)− ϕ(x, tn)| dx dt

≤
∑
i,n

∣∣ηn+1
i − ηn

i

∣∣ ∫ tn+1

tn

∫ xi+1/2

xi−1/2

|ϕt| dx dt.

Therefore,

∫∫
ΠT

|λ1 − l1| ds dy ≤
∑
i,n

∣∣ηn+1
i − ηn

i

∣∣ ∫ tn+1

tn

∫ xi+1/2

xi−1/2

∫∫
|δ′ε(t− s)| δε(x− y) dsdydxdt

≤
∑
i,n

∣∣ηn+1
i − ηn

i

∣∣C∆th
ε

≤ C
∆t
ε
.

(3.30)
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We continue with

|λ2,1 − l2| ≤
∑
i,n

[∫ tn+1

tn

ϕ(xi, t) dt×
∣∣(q (ki+1/2, u

n
i+1

)
− qEO

(
ki+1/2, u

n
i , u

n
i+1

))
−
(
q
(
ki−1/2, u

n
i

)
− qEO

(
ki−1/2, u

n
i−1, u

n
i

))∣∣
+
∣∣∣∫ tn+1

tn

ϕ(xi, t) dt− ϕn
i ∆t

∣∣∣ ∣∣qEO
(
ki+1/2, u

n
i , u

n
i+1

)
− qEO

(
ki−1/2, u

n
i−1, u

n
i

)∣∣]

+
∑
i,n

[∣∣q (ki+1/2, u
n
i+1

)
− qEO

(
ki+1/2, u

n
i , u

n
i+1

)∣∣ ∫ tn+1

tn

∫ xi+1

xi

|ϕx| dx dt

+
∫ tn+1

tn

∫ xi+1/2

xi−1/2

|ϕx| dx dt
∣∣qEO

(
ki+1/2, u

n
i , u

n
i+1

)
− qEO

(
ki−1/2, u

n
i−1, u

n
i

)∣∣]

≤
∑
i,n

[
Lu

∫ tn+1

tn

∫ xi+1

xi

|ϕx| dx dt
∣∣un

i+1 − un
i

∣∣
+ C

∫ tn+1

tn

∫ xi+1/2

xi−1/2

|ϕx| dx dt
{∣∣ki+1/2 − ki−1/2

∣∣+ ∣∣un
i − un

i−1

∣∣+ ∣∣un
i+1 − un

i

∣∣}].
Consequently ∫∫

ΠT

|λ2,1 − l2| dyds ≤ C
(
|u∆t|BV (R) + |k|BV (R)

) h
ε
≤ C

h

ε
.(3.31)

Finally we estimate

|λ3 − l3| ≤
∑
i,n

[∣∣f (ki+1/2, c
)
− f

(
ki−1/2, c

)∣∣×
1
h

∫ tn+1

tn

∫ xi+1/2

xi−1/2

|ϕ(xi, t)− ϕ(x, t) + ϕ(x, t)− ϕ(x, t−∆t)| dx dt

+
∑

i

∣∣f (ki+1/2, c
)
− f

(
ki−1/2, c

)∣∣{∫ ∆t

0

ϕ(xi, t) dt+ ∆tϕN−1
i

}]

≤Lk

∑
i,n

[∣∣ki+1/2 − ki−1/2

∣∣ ∫ tn+1

tn

∫ xi+1/2

xi−1/2

h |ϕx|+ ∆t |ϕt| dx dt

+ Lk

∑
i

∣∣ki+1/2 − ki−1/2

∣∣ {∫ ∆t

0

ϕ(xi, t) dt+ ∆tϕN−1
i

}]
.

Therefore ∫∫
ΠT

|λ3 − l3| ds dy ≤ Lk

∑
i,n

∣∣ki+1/2 − ki−1/2

∣∣ h2∆t+ h∆t2

ε

+
∑

i

∣∣ki+1/2 − ki−1/2

∣∣C∆t

≤ C |k|BV (R)

(
h2 + h∆t

ε
+ ∆t

)
.(3.32)

Collecting the bounds (3.29), (3.30), (3.31), and (3.32), we find that

Λε (u∆t, u) ≤ C

(
∆t+

h+ ∆t+ h2 + h∆t
ε

)
,(3.33)
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for some constant C not depending on ∆t or h. Since we assume that u0 has bounded variation,

‖u(·, 0)− u∆t(·, 0)‖L1(R) ≤ Ch,

and using this in (3.23) as well as h = ∆t/λ we arrive at the inequality

‖u(·, T )− u∆t(·, T )‖L1(R) ≤ C

(
ε+

∆t
ε

)
,(3.34)

which is minimized by setting ε =
√

∆t.
The main result of this section is summed up in the following theorem, which is stated for

multi-dimensional equations:

Theorem 3.1. Assume that f and k satisfy (2.2) and (2.3), respectively. Moreover, assume that
u0 is a function in L1(Rd) ∩L∞(Rd) ∩BV (Rd). Let u be the unique entropy solution of (3.1). If
the CFL condition (4.16) holds, then there exists a constant C, depending on k, kxi , u0, f and T ,
but not on ∆t, such that

‖u∆t(·, T )− u(·, T )‖L1(Rd) ≤ C
√

∆t,(3.35)

where the Engquist-Osher approximate solution u∆t is build from (3.3) and (3.5).

Remark 3.1. The assumptions on k = (k1, . . . , kd) in Theorem 3.1 are (slightly) less restrictive
than those used in [1, 7, 6, 21] for finite volume methods.

4. Difference approximations: the degenerate parabolic equation

In this section we analyse the Engquist-Osher scheme for the degenerate parabolic equation
(1.1). Again we shall assume that u0 has compact support so that all subsequent sums over I are
finite. To obtain results for the general case, we can use the stability result in Theorem 2.1.

Let λ = ∆t/h (as usual) and µ = ∆t/h2, then this the scheme reads (d ≥ 2)

un+1
I = un

I − λ
d∑

i=1

∑̂
i
Dif

EO
i

(
ki

J−ei/2, u
n
I−ei

, un
I

)
+ µ

d∑
i=1

D2
iA
(
un

I−ei

)
=: GI (un) ,

(4.1)

where Di denotes the usual upwind difference operator, see (3.11). For d = 1, the scheme reads

un+1
i = un

i − λDfEO
(
ki−1/2, u

n
i−1, u

n
i

)
+ µD2A(un

i−1).

Let u∆t be the piecewise constant function defined by (4.1) and (3.5).
As a starting point we assume that the following CFL condition holds

CFL = λ
d∑

i=1

max
k,u

|∂ufi(k, u)|+ 2µdmax
u

A′(u) ≤ 1.(4.2)

Remark 4.1. The CFL condition (4.2) will be sufficient to establish the convergence of the se-
quence {u∆t}∆t>0 and moreover that a limit point u of this sequence satisfies (D.1), (D.2), and
(D.4). However, to prove that u obeys (D.3), we shall later need a slightly stronger CFL condition
(see (4.16) below).

Now it is easy to see that the CFL condition (4.2) implies that ∂GI

∂un
J
≥ 0 for all J and the scheme

(4.1) is monotone. In the same manner as the bounds (3.9), (3.10), and (3.13), we show that

‖u∆t(·, t)‖L∞(Rd) ≤ C, ‖u∆t(·, t)‖L1(Rd) ≤ C, |u∆t(·, t)|BV (Rd) ≤ C, ∀t ∈ (0, T ),(4.3)

for some constant C not depending on ∆t. To show compactness of the scheme, we must also show
that u∆t ∈ C

(
0, T ;L1(Rd)

)
uniformly in ∆t. In order to do this, we use the Kružkov interpolation
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lemma (Lemma 2.4). Let ϕ(x) be a test function and set ϕI = ϕ (xI). Let DtX
n
I = Xn+1

I −Xn
I

for any Xn
I . From (4.1) we find that

∑
I

Dtu
n
IϕIh

d =
∑

I

λ
d∑

i=1

∑̂
i
fEO

i

(
kJ−ei/2, u

n
I−ei

, un
I

)
DiϕI−ei

hd + µ
d∑

i=1

DiA (un
I )DiϕI−ei

hd

≤ C∆t ‖∇ϕ‖L∞(Rd)

(∑
I

∑̂
i

d∑
i=1

∣∣fEO
i

(
kJ−ei/2, u

n
I−ei

, un
I

)∣∣hd

+
∑

I

d∑
i=1

|DiA (un
I )|hd−1.

)
In view of the uniform L1 and BV bounds in (4.3), an application of Lemma 2.4 gives

‖u∆t(·, t1)− u∆t(·, t2)‖L1(Rd) ≤ C
√
|t1 − t2|,(4.4)

for some constant C not depending on ∆t. By Lemma 2.2, the sequence {u∆t}∆t>0 is compact in
L1

Loc (ΠT ) and any limit point will satisfy (D.1) and (D.4).
We next show that the entropy condition (D.2) holds. To this end, a cell entropy inequality for

the scheme (4.1) is established in the same way as in the hyperbolic case. A modification of the
arguments leading to equation (3.15) yields

U(un+1
I )− U(un

I )
∆t

+
d∑

i=1

∑̂
i

q̃EO
i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− q̃EO

i

(
ki

J−ei/2, u
n
I−ei

, un
I

)
h

−
d∑

i=1

r(un
I+ei

)− 2r(un
I ) + r(un

I−ei
)

h2

+ U ′(un+1
I )

d∑
i=1

∑̂
i

fEO
i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− fEO

i

(
ki

J−ei/2, u
n
I , u

n
I+ei

)
h

−
d∑

i=1

∑̂
i

q̃EO
i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− q̃EO

i

(
ki

J−ei/2, u
n
I , u

n
I+ei

)
h

≤ 0,

(4.5)

for any convex C2 entropy U and corresponding numerical entropy fluxes q̃EO
i defined in (3.16)

and r defined by r′(u) = U ′(u)A′(u). Consequently, any limit point of {u∆t}∆t>0 satisfies∫∫
ΠT

(
U(u)ϕt + q(k, u) · ∇ϕ+ r(u)∆ϕ−

(
U ′(u)fx(k, u)− qx(k, u)

)
ϕ
)
dt dx ≥ 0,(4.6)

where q obeys ∂uq(k, u) = U ′(u)∂uf(k, u) and fx, qx denote the divergence of f(k(·), u), q(k(·), u),
respectively. Since (4.6) holds for any convex C2 entropy U and corresponding entropy fluxes q, r,
the usual approximation argument will show that (2.4) holds ∀c ∈ R.

It remains to show that a limit u of {u∆t}∆t>0 satisfies (D.3). This will be done by deriving a
weak BV estimate [7, 21, 1, 22]. Multiplying (4.1) by un

I h
d, and summing over I, we find that

∑
I

[
un

IDtu
n
I h

d + ∆t
d∑

i=1

∑̂
i
un

I

(
fEO

i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− fEO

i

(
ki

J+ei/2, u
n
I−ei

, un
I

))
hd−1

+ µ
d∑

i=1

DiA
(
un

I−ei

)
Diu

n
I−ei

]

= −∆t
∑

I

[
d∑

i=1

∑̂
i
un

I

(
fEO

i

(
ki

J+ei/2, u
n
I−ei

, un
I

)
− fEO

i

(
ki

J−ei/2, u
n
I−ei

, un
I

))
hd−1

]
.
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We can write

un
IDtu

n
I =

1
2

(
Dt (un

I )2 − (Dtu
n
I )2
)
,

and we also have that

DiA
(
un

I−ei

)
Diu

n
I−ei

≥
(
DiA

(
un

I−ei

))2
maxuA′(u)

since A′(u) ≥ 0. Using these observations, we find that

∆thd

maxuA′(u)

∑
I

d∑
i=1

(
DiA

(
un

I−ei

)
h

)2

+ ∆t
∑

I

d∑
i=1

∑̂
i
un

I

(
fEO

i

(
ki

J+ei/2, u
n
I , u

n
I+ei

)
− fEO

i

(
ki

J+ei/2, u
n
I−ei

, un
I

))
hd−1

≤ −hd

2

∑
I

[
Dt (un

I )2 − (Dtu
n
I )2
]

−∆t
∑

I

d∑
i=1

∑̂
i
un

I

(
fEO

i

(
ki

J+ei/2, u
n
I−ei

, un
I

)
− fEO

i

(
ki

J−ei/2, u
n
I−ei

, un
I

))
hd−1.

(4.7)

Before we proceed, we note that

fEO
i (k, v, w)− fEO

i (k, u, v) =
(
f−i (k,w)− f−i (k, v)

)
+
(
f+

i (k, v)− f+
i (k, u)

)
,

where

f−i (k, u) =
∫ u

0

(
∂ufi(k, s) ∧ 0

)
ds, f+

i (k, u) =
∫ u

0

(
∂ufi(k, s) ∨ 0

)
ds.

Thus we can write inequality (4.7) as

∆thd

maxuA′(u)

∑
I

d∑
i=1

(
DiA

(
un

I−ei

)
h

)2

(4.8)

+∆thd−1
∑

I

d∑
i=1

∑̂
i

[
un

I

(
f−i

(
ki

J+ei/2, u
n
I+ei

)
− f−i

(
ki

J+ei/2, u
n
I

))
+ un

I

(
f+

i

(
ki

J+ei/2, u
n
I

)
− f+

i

(
ki

J+ei/2, u
n
I−ei

))]
(4.9)

≤ −hd

2

∑
I

[
Dt (un

I )2 − (Dtu
n
I )2
]

+ C∆t
∑

I

d∑
i=1

∣∣∣Dik
i
I−ei/2

∣∣∣hd−1,(4.10)

for some constant C. The sum in (4.9) can be analyzed further by introducing the functions

F±
i (k, u) =

∫ u

0

s∂uf
±(k, s) ds.

Then an integration by parts reveals that

F±
i (k, b)−F±

i (k, a) = b
(
f±i (k, b)− f±i (k, a)

)
−
∫ b

a

(
f±i (k, s)− f±i (k, a)

)
ds.
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Therefore

un
I

(
f+

i

(
ki

J+ei/2, u
n
I

)
− f+

i

(
ki

J+ei/2, u
n
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)
+
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(
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(
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J+ei/2, s
)
− f+

i

(
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))
ds,

(4.11)

un
I

(
f−i

(
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)
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(
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I

))
= F−

i

(
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J+ei/2, u
n
I+ei

)
−F−
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(
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)
−
∫ un

I
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(
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(
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J+ei/2, s
)
− f−i

(
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J+ei/2, u
n
I+ei

))
ds.

(4.12)

Consequently (4.9) can be written

∆thd−1
∑

I

d∑
i=1

∑̂
i

[
F+

i

(
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J+ei/2, u
n
I

)
−F+

i

(
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J+ei/2, u
n
I−ei

)
+
∫ un

I
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I−ei

(
f+

i

(
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J+ei/2, s
)
− f+

i

(
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J+ei/2, u
n
I−ei

))
ds

+ F−
i

(
ki

J+ei/2, u
n
I+ei

)
−F−

i

(
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J+ei/2, u
n
I

)
−
∫ un

I
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I+ei

(
f−i

(
ki

J+ei/2, s
)
− f−i

(
ki

J+ei/2, u
n
I+ei

))
ds

]
.

We also have that F±
i is locally Lipschitz continuous in k as

∣∣F±
i (k1, u)−F±

i (k2, u)
∣∣ = ∣∣∣∣∫ u

0

s∂u

(
f±i (k1, s)− f±i (k2, s)

)
ds

∣∣∣∣ ≤ max
k,u

|∂ukfi| |u| |k1 − k2| .

Hence we obtain ∣∣∣∣∣∑
I

d∑
i=1

∑̂
i

[
F±

i

(
ki

J+ei/2, u
n
I

)
−F±

i

(
ki

J−ei/2, u
n
I

)]
hd−1

∣∣∣∣∣
≤ Luk max

t
‖u∆t(·, t)‖L∞(Rd)

∑
I

d∑
i=1

∣∣Dik
i
J−ei

∣∣hd−1,

(4.13)

which is bounded uniformly in ∆t. To bound the terms involving integrals, we need the following
technical lemma (whose easy proof can be found in [22]):

Lemma 4.1. Let h : R → R be a monotone, Lipschitz continuous function, with a Lipschitz
constant Lh. Then we have∣∣∣∣∣

∫ b

a

(h(ξ)− h(a)) dξ

∣∣∣∣∣ ≥ 1
2Lh

(h(b)− h(a))2 , ∀a, b ∈ R.
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Applying this to f±i we find that∫ un
I

un
I−ei

(
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i

(
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J+ei/2, s
)
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i

(
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,

−
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(
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(
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J+ei/2, u
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))2

.

The above and (4.7) imply that

∆thd
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∑
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d∑
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(
DiA

(
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)
h
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(
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(
ki
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)
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i

(
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J+ei/2, u
n
I−ei

))2
]

≤−h
d

2

∑
I

[
Dt (un

I )2 − (Dtu
n
I )2
]

+ C∆t,

(4.14)

where the constant C does not depend on ∆t. Furthermore, using the definition of the scheme,
(4.1), and the inequality (a+ b)2 ≤ 2(a2 + b2), we find that

1
2

(Dtu
n
I )2 ≤ 2λ2d

d∑
i=1

∑̂
i

[(
fEO
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(
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I , u
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I+ei
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(
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I

))2
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(
fEO

i

(
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n
I−ei
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I

)
− fEO

i

(
ki

J−ei/2, u
n
I−ei

, un
I

))2
]

+ 2µ2d
d∑
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[
(DiA (un

I ))2 +
(
DiA

(
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I−ei

))2]
≤ 4λ2d
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(
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)
− f−i

(
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))2

(4.15)

+
(
f+

i

(
ki

J+ei/2, u
n
I

)
− f+

i

(
ki

J+ei/2, u
n
I−ei

))2
]

+ 2λ2d
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∑̂
i

(
fEO

i

(
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I−ei

, un
I

)
− fEO
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(
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I

))2
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d∑
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[
(DiA (un

I ))2 +
(
DiA

(
un

I−ei

))2]
.

In what follows, we assume the following strengthened CFL condition

CFLε := 8λdmax
i,k,u

|∂ufi(k, u)|+ 4µdmax
u

A′(u) ≤ 1− ε,(4.16)

where ε ∈ (0, 1) is given a real number. Note that if A′ ≡ 0 and d = 1, i.e., in the hyperbolic
one-dimensional case, (4.16) implies CFLε ∈ (0, 1

8 ), which should be compared with the usual
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CFL ∈ (0, 1), see (4.2). The new CFL condition implies in particular that

4λ2d = 4λd
∆t
h

= 8λdmax
k,u,i

|∂ufi(k, u)|
∆t

2hmaxk,u,i |∂ufi(k, u)|
≤ ∆t(1− ε)

2hmaxk,u,i |∂ufi(k, u)|
,

2µ2d = 2µd
∆t
h2

= 4µdmax
u

A′(u)
∆t

2h2 maxuA′(u)
≤ ∆t(1− ε)

2h2 maxuA′(u)
,

and therefore

1
2

(Dtu
n
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2hmaxk,u,i |∂ufi(k, u)|
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i
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(
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))2
]

+
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(
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[
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(
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I−ei

))2]
.

(4.17)

Now we multiply the above inequality (4.17) by hd and sum over I and n = 0, . . . , N , and sum
(4.14) over n, and add the results to find that

∆tεhd
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d∑
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DiA

(
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)
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(
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(
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(
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]

≤ hd

2

∑
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(
u0

I

)2
+ CT ≤ 1

2
‖u0‖L∞(Rd) ‖u0‖L1(Rd) + CT ≤ C,

(4.18)

for some constant C not depending on ∆t. We thus have the following bound

∆thd
∑
n,I

d∑
i=1

(
DiA (un

I )
h

)2

≤ C,(4.19)

for some constant C not depending on ∆t.
Next let I(x) be the multi-index such that x ∈ χI . Then we have that I(x+ y)− I(x) =: J =

(J1, . . . , Jd), and |Jh| ≤ |y|+ h. Set Ki = I + (J1, . . . , Ji−1, 0, . . . , 0). Using this notation we can
write

A (u∆t (x+ y, t))−A (u∆t (x, t)) = A
(
un

I(x+y)

)
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(
un

I(x)

)
=
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Ji∑
j=1

DiA
(
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.

By the Cauchy-Schwartz inequality

(
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(
un

Ki−(j−1)ei

))2

,
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where |J | =
∑d

i=1 |Ji|. Hence using (4.19),∫∫
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(DiA (un
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where the constant C does not depend on y or h. Noting that |J |h ≤ C (|y|+ h), we find that

‖A (u∆t(·+ y, ·))−A (u∆t(·, ·))‖L2(ΠT ) ≤ C(|y|+ h).(4.20)

Next, we will use the weak space estimate (4.19) and the difference scheme itself to show that
A (u∆t) is also L2 continuous in time. Let n(t) denote the integer such that t ∈ [tn, tn+1). Then
we have∫∫
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(
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We denote the above integrand by B(t) and write
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Then each term in the sum over n above equals
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We can do a partial summation in (4.22) to find that
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(4.25)

In (4.25), one should recall that we have uniform control over the L2(ΠT ) norm of the discrete
gradient of A(u∆t), see (4.19). Since k is of bounded variation,

|(4.23)| ≤ ∆tC |k|BV (Rd) ,(4.26)

where C does not depend on ∆t. Regarding (4.24) we have that
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We can write∫ T−τ

0

B(t) dt ≤ (T − τ)C n(τ)∆t+
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2
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2
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)
dt,

where C does not depend on ∆t and B1, B2, B3 are defined via (4.21) and (4.27). Now∫ T−τ
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Similarly ∫ T−τ
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Finally ∫ T−τ
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where C does not depend on ∆t. Using the bounds (4.28)-(4.30), we find that

‖A (u∆t(·, ·+ τ))−A (u∆t(·, ·))‖L2(Rd×(0,T−τ)) ≤ C
√

∆t+ τ .(4.31)
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In view Lemma 2.3, we conclude that

A (u∆t) → A strongly in L2
loc(R× (0, T )) as ∆t ↓ 0 and A ∈ L2(0, T ;H1(R)).

Equipped with the strong convergence u∆t → u a.e., we conclude immediately that A = A(u) and
thus (D.3) holds.

We sum up our results in the following theorem:

Theorem 4.1. Assume that A, f , and k satisfy (2.1), (2.2), and (2.3), respectively. Furthermore,
assume that u0 is a function in L1(Rd) ∩ L∞(Rd) ∩ BV (Rd). If the CFL condition (4.16) holds,
then the piecewise constant approximate solutions (3.5) generated by the Engquist-Osher scheme
(4.1) converge to the unique entropy solution of (1.1).

In the special case without coefficients, i.e., k = 1, we can use our techniques to prove existence
of an entropy solution without necessarily having initial data in BV (Rd). This can be done as
follows. Assuming that u0 ∈ L∞(Rd) ∩ L1(Rd), we study the problem

ut + divf(u) = ∆A(u), u(x, 0) = u0(x),(4.32)

where f and A are as before. We obtain the two first bounds in (4.3) as before. Fixing ε ∈ R
d,

we have
‖u∆t(·+ ε, t)− u∆t(·, t)‖L1(Rd) ≤ ‖u0(·+ ε)− u0(·)‖L1(Rd) ≤ ν(|ε| ;u0),

since any function in L∞(Rd) ∩ L1(Rd) has some modulus of continuity and the scheme is now
translation invariant. Then we use Kružkov’s interpolation lemma (Lemma 2.4) to show that u∆t

also has a modulus of continuity in time. Next, we use the L1 compactness lemma (Lemma 2.2) to
show that {u∆t}∆t>0 has a subsequence that converges strongly in L1 to a function that satisfies
(D.1), (D.4), and the entropy condition (D.3). To finally show that the limit satisfies (D.3), note
that to obtain the crucial estimates (4.20) and (4.31) we did not use a BV bound on u∆t. Thus
we have shown the following theorem:

Theorem 4.2. Assume that the function u0 is in L∞(Rd)∩L1(Rd). If the CFL condition (4.16)
holds, then then the piecewise constant approximate solutions (3.5) generated by the Engquist-
Osher scheme (4.1) converge to the unique entropy solution of (4.32).
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