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ABSTRACT. The one-dimensional kinematical sedimentation theory for suspensions of small
spheres of equal size and density is generalized to polydisperse suspensions and several space
dimensions. The resulting mathematical model, obtained by introducing constitutive assump-
tions and performing a dimensional analysis, is a system of first-order conservation laws for the
concentrations of the solids species coupled to a variant of the Stokes system for incompressible
flow describing the mixture. Various flux density vectors for the first-order system have been
proposed in the literature. Some of them cause the first-order system of conservation laws to be
non-hyperbolic, or to be of mixed hyperbolic-elliptic type in the bidisperse case. The criterion
for ellipticity is equivalent to a well-known instability criterion predicting phenomena, like blobs
and viscous fingering in bidisperse sedimentation. We show that loss of hyperbolicity, that is the
occurrence of complex eigenvalues of the Jacobian of the first-order system, can be viewed as
an instability criterion for arbitrary polydisperse suspensions, and that for tridisperse mixtures
this criterion can be evaluated by a convenient calculation of a discriminant. We determine
instability regions (or alternatively prove stability) for three different choices of the flux vector
of the first-order system of conservation laws. Consequently, mixed or non-hyperbolic, rather
than hyperbolic, systems of conservation laws are the appropriate general mathematical frame-
work for polydisperse sedimentation. The stability analysis examines a first-order system of
conservation laws, but predicts results that hold for the full multidimensional system of model
equations. The findings agree with experimental evidence and are appropriately embedded into
the current state of knowledge of non-hyperbolic systems of conservation laws.

1. INTRODUCTION

Mathematical models for the sedimentation of polydisperse suspensions, consisting of small
spherical particles belonging to a finite number of species that differ in size or density, are important
to a variety of applications such as solid-liquid separation in mineral processing and wastewater
treatment [60], classification [2, 73], fluidization [35, 36, 41], cast formation in the ceramic industry
[9, 10], blood sedimentation in medicine [61], and volcanology [28]. For monodisperse suspensions
of rigid spheres, widely used models for batch settling, continuous thickening and clarification go
back to the kinematic sedimentation theory by KYNCH [20, 45], while a so-called phenomenological
theory, as an extension of the kinematic model, is available for flocculated suspensions forming
compressible sediments [15, 19]. The salient mathematical properties of, and differences between
these models can best be studied in a spatially one-dimensional setup, such as a settling column,
in which no equations for the motion of the mixture need to be solved. Then, the kinematic theory
gives rise to a scalar first-order conservation law for the solids concentration involving a nonconvex
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flux density function, while the phenomenological theory produces a strongly degenerate parabolic-
hyperbolic partial differential equation determining this quantity. At least in one space dimension,
these monodisperse models are now well understood, have been subject of thorough existence and
uniqueness analyses, can be simulated efficiently by numerical methods, and predict experimental
results with reasonable accuracy, see [22] for a recent review.

Several attempts have been made to extend the monodisperse kinematic sedimentation theory
to polydisperse suspensions, see [17] for an overview. All of them can (in one space dimension and
for batch settling in a closed column) be written as a first-order system of N scalar conservation
laws for N solid particle species,

%+%:0, 0<z<L, t>0, i=1,...,N, (1)
where t is time, z is height, ¢; is the local volumetric concentration of particle species ¢ having
diameter d; and density p;, and v; is the corresponding phase velocity. Here it is understood
that d; # dj or g; # oj for i # j, 1 < 4,5 < N. The models differ in the specific way that v; is
prescribed as a nonlinear function of the vector ® := (¢1,...,¢n)T. In the sequel, we refer to each
of these choices as ‘models’. Thus (1) is a highly nonlinear, strongly coupled system of conservation
laws, which under most circumstances can be solved only numerically. To get a first insight into
the polydisperse sedimentation processes modeled by (1), this system was solved numerically for
various values of N and models defining the velocities v; [17, 18], where modern central difference
schemes for hyperbolic systems of conservation laws were employed. Similar computations (based
on numerical solution of the conservation equations) were performed by FLOTATS [32].

To proceed with the discussion, we recall here that the system of conservation laws

%—f+¥=o, 0<2<L, t>0; £(@) = (fi(®),..., I n(®))" 2)
is called hyperbolic if the Jacobian
0f1(®) 0f1(®)
opr T O¢n
Tt (®) = : : 3)
Ofn(®) ofn(®)
opr 7 O¢n

has N real eigenvalues for all &, and strictly hyperbolic if these are in addition pairwise distinct.

The oscillation-free quality of all cited numerical simulations and their agreement with both
physical insight and experimental evidence led to the tacit conjecture that the systems of con-
servation laws arising from polydisperse sedimentation models were always hyperbolic. As our
analysis shows, this is not generally true, since certain models lead to Jacobians with at least one
pair of complex conjugate eigenvalues on certain subregions of the set of admissible vectors @,
while others do not for suspensions with the same size and density parameters.

It is the purpose of this contribution to demonstrate that mixed systems of conservation laws,
rather than hyperbolic systems, provide the appropriate general mathematical framework for poly-
disperse sedimentation models. For the special case of bidisperse systems (N = 2), this means
that hyperbolic-elliptic or mixed systems do occur. At the same time, we show that certain models
lead (for N = 2 and particles of the same density) to systems that are indeed hyperbolic.

The importance of this observation lies in the fact that for bidisperse suspensions, the ellip-
ticity condition coincides with the condition for the existence of instabilities in the polydisperse
suspension, which in turn have been observed in experiments with particles of different densities
[5, 71]. In this situation, the hyperbolic-elliptic type change behaviour is a desirable property for
realistic bidisperse sedimentation models. Unfortunately, some bidisperse sedimentation models
predict (due to their algebraic design) instability regions, that is, ellipticity regions for N = 2,
under conditions in which they should not be expected, most notably for equal-density spheres,
for which (with one exception that is discussed in Section 6.1) observations of unstable behaviour
have never been reported.
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FIGURE 1. Sedimentation of a bidisperse suspension of heavy (e) and buoyant
(creaming) (o) particles: (a) stable demixing at small initial concentrations with
upwards and downwards travelling horizontal concentration fronts, (b) unstable
separation at large initial concentration with structure formation (“blobs” and
vertical “columns”). The left drawings refer to the initial state and the middle
and right diagrams to later stages of the separation.

To elaborate further the instability concept, consider a bidisperse suspension with one sedi-
menting phase, say Species 1, with g1 > g, where gr is the density of the pure fluid, and a second
buoyant or creaming Species 2 with g5 < gf. It is well known that the demixing behaviour of an ini-
tially homogeneous bidisperse suspension with particles having these properties strongly depends
on the initial concentrations of each species. While small initial concentrations produce upwards
and downwards traveling horizontal wave fronts (Figure 1(a)), such that the concentrations in the
system at a given time essentially remain a function of height, larger concentrations lead to unsta-
ble behaviour that increases the rate of separation of the species [30, 71]. This instability leads to
structures such as “blobs” or “columns” (Figure 1(b)) in which the lighter species moves upward
and the heavier downward [5, 47, 71]. These structures are much longer lived than the transient
currents (caused by inhomogeneities in local concentration) in monodisperse suspensions [5].

Based on a perturbation analysis of the three-dimensional model equations for the settling of a
bidisperse suspension, BATCHELOR and JANSE VAN RENSBURG [5] derived the following condition
for instability, which gives rise to the structures described above:

I = (3¢_ _ 8¢_> L 49rv1) A(gve)

96 06 96 op )
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The instability criterion (4) was also validated experimentally by YAN and MASLIYAH [72] for
the settling of heavy particles in an emulsion. In a very recent paper, BIESHEUVEL, VERWEIJ
and BREEDVELD [11] evaluated condition (4) by replacing v; and vy (or, equivalently, fi = ¢1v;
and fa = ¢ov2) by the appropriate equations arising from the well-established MASLIYAH [51] and
PATWARDHAN and TIEN [55] models, and determining instability regions in the (¢1, ¢2)-plane in
which (4) is satisfied if the ratios of the sizes and the reduced densities g; — gr and g2 — g are given.
Although the authors of both papers [11] and [72] successfully determine instability regions which
are consistent with experimental evidence, they do not interpret (4) as a condition for ellipticity of
the model equations. In fact, the main idea of this contribution consists in showing that the loss
of hyperbolicity can be regarded as an instability criterion for arbitrary N-disperse suspensions,
although we shall discuss in this paper only the tridisperse case, for which a convenient instability
criterion is available. It was the chief motivation of the present paper to extend the treatments in
[5, 11, 72] to a general framework.

This paper is organized as follows. In Section 2, we first introduce the mass and linear momen-
tum balance equations describing the polydisperse system as a mixture of N + 1 superimposed
continua, the NV solids species and the fluid. Then specific assumptions on the body force, the
solid and fluid stress tensors, the pore pressure, the solid-fluid and the particle-particle interaction
forces are stated. These assumptions are similar to those stated for monodisperse flocculated sus-
pensions in [15, 19, 20]. However, we consider in this paper suspensions that form incompressible
sediments not involving the concept of effective solid stress, and to make the final model not more
complicated than is necessary to discuss the instability problem, assume that all viscosity effects
are introduced by the viscous stress tensor of the fluid. On the other hand, the presence of several
solids species requires a particle-particle interaction term. The decisive properties of the final
model equations are given by the choice of the resistance coefficient for each particle species.

In Section 3, the linear momentum balance equations are first simplified as a consequence of a
dimensional analysis, which justifies deleting all viscous and advective acceleration and the particle-
particle interaction terms. Nevertheless, some viscosity is retained by not deleting the viscous term
in the linear momentum balance of the fluid. The simplified linear momentum balances define a
linear system of equations for the solid-fluid relative or slip velocities u; := v; —vg, i =1,..., N,
where v; and v¢ are the three-dimensional phase velocities of particle species ¢ and the fluid,
respectively. This system can be solved explicitly. Neglecting the viscous terms in that system,
we obtain uyg,...,uy as explicit functions of the local concentration vector ® if the resistance
coefficient is specified. One common choice is related to the well-known RICHARDSON and ZAK1 [59]
hindered settling factor for monodisperse suspensions and was advanced in apparently independent
papers by MASLIYAH [51] and LOCKETT and BASSOON [48]. We shall therefore refer to the
resulting model, defined in terms of the explicit expressions of the slip velocities u; or equivalently,
the flux vector £ = f(®), as the MASLIYAH-LOCKETT-BASsSOON (MLB) model. The resulting
three-dimensional model equations are then given by a system of conservation laws involving
this flux density vector, plus a particular generalization of the Stokes system for incompressible
flow for the mixture velocity field and the pore pressure. The derivation of multidimensional
equations in Section 3 demonstrates that the instability criterion, although based on examination
of a spatially one-dimensional system of conservation laws, indicates when instabilities in two- or
three-dimensional model equations occur.

The MLB model can be viewed as a prototype of polydisperse sedimentation models in which
information from the momentum balances of the solid species determines the slip velocities. A
different family of models goes back to BATCHELOR [4], who postulated that in a dilute polydisperse
suspension, the settling velocity of a sphere of species 4, identified here with v;, is given by its
Stokes velocity, multiplied by one plus a linear combination of the concentrations of all species.
The coefficients in this linear combination have become famous as “Batchelor coefficients”, and
are calculated from first principles, see Section 3.5. Since the resulting formula can be used only in
the dilute limit, several authors have proposed modifications to it that yield flux density vectors
that are well-defined for the whole range of concentration values. We consider here both the
modifications by Davis and GEcCoL [25, 26] and by HOFLER and SCHWARZER [39, 40], to which
we refer as the DG and HS models, respectively, but in contrast to the MLLB model consider only
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suspensions of spheres that differ in size but not in density. The DG and HS models ignore the
linear momentum balances of the particles.

Section 4 is dedicated to the development of the new instability concept outlined in this intro-
duction. In particular, we show that instability of a tridisperse suspension at a given concentration
vector can be verified conveniently by evaluating a discriminant of the third-order characteristic
polynomial of the Jacobian J¢(®), where f(®) is defined by the different models. In practice,
however, this has to be done numerically and one has to inspect each parameter choice separately,
since the algebraic expressions involved become rather bulky. That this pointwise evaluation is a
feasible way to evaluate the instability criterion is ensured by the fact that the (complex) eigen-
values of an N x N matrix are Holder continuous functions of its coefficients with index 1/N (see
[54]), and that the Jacobians in the present context are continuous functions of ®.

In Section 5 we apply the instability criterion of Section 4 to the MLB, DG and HS models. We
first prove that the MLB model is stable, i.e. hyperbolic, for bidisperse suspensions with particles
that differ only in size, while it has been known from [11] that particles of different densities give
rise (in general) to instability regions. We then determine numerically instability regions for a
variety of mixed-density bi- and tridisperse suspensions. The numerical results suggest, however,
that instability regions are of no practical importance for equal-sized spheres differing only slightly
in density, since these are not located within the set of admissible concentration values.

We then show that the DG model with NV = 2 is stable if the solid particles differ only moderately
in size, say if the size ratio is not larger than about 5.5. Otherwise, the DG model starts to develop
instability regions in the (g1, ¢2)-plane, which increase with the size ratio, and are located in
regions of undoubtedly relevant concentration values. These instability regions are a consequence
of the somewhat unphysical properties of the Batchelor coefficients. In addition, an example of a
tridisperse instability region of the DG model is presented.

Finally, a very simple argument shows that the HS model is stable for any equal-density bidis-
perse suspension, if it is assumed that the Batchelor coefficients are nonpositive for these mixtures.

In Section 6 we briefly discuss two issues raised by our analysis that have not been considered
so far. First, we briefly review some experimental studies of polydisperse sedimentation under the
aspect of instability behaviour. Second, we discuss some of the non-standard properties and point
out open problems of the non-hyperbolic, and in particular hyperbolic-elliptic, first-order systems
of conservation laws to which polydisperse sedimentation models give rise.

2. BALANCE EQUATIONS AND CONSTITUTIVE ASSUMPTIONS FOR SEDIMENTATION OF
POLYDISPERSE SUSPENSIONS

2.1. Mass and linear momentum balance equations. The local mass balance equations of
the solid species and of the fluid can be written as

%‘i’_}_v((ﬁzvl):(), i=1,...,N, (5)
0
% (1= ep) =, Q

where ¢ := ¢1 + -+ - + ¢ denotes the total solids volume fraction. Defining the volume average
velocity of the mixture q := (1 — @)ve + ¢1vy + - -+ + ¢nV v, we derive easily that

¢ivi = ¢pi(ui +q— (prus +--- + ¢yun)), i=1,...,N, (7)
hence the mass balance equations (5) can be rewritten in terms of q and uy,...,uy as
d¢; ul
6t1+v'(¢iui+¢iq_¢iz¢kuk)=07 i=1,...,N. (8)
k=1

The sum of all equations (5) and equation (6) produces the simple mass balance of the mixture

V-q=0. 9)
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The momentum balance equations read

N
Dv; )
@mD—t’=V-T,-+g,~¢,-b+m§+zmgk, i=1,...,N, (10)
k=1
DVf N £
Qf(1—¢)D—t ZV'Tf+Qf(1—¢)b—Zmi- (11)

i=1
Here T; denotes the stress tensor of particle species ¢, i = 1,..., N, T that of the fluid, b is the
body force, mg and m}; are the interaction forces per unit volume between solid species ¢ and the
fluid and between the solid species ¢ and j, respectively, and we use the standard notation

Dv ov

2.2. Body force. In this work, it is assumed for simplicity that the only body force is gravity,
b = —gk, where g is the acceleration of gravity and k is the upwards pointing unit vector. There
is, however, no principal difficulty associated with including a centrifugal field, as e.g. in [16, 67].

2.3. Solid and fluid stress tensors. We assume that the stress tensors of the solid and fluid
phases can be written as T; = —p;I + T;’-E fori=1,...,N and Tf = —pfI + TF, respectively,
where p; denotes the phase pressure of particle species i, pr that of the fluid, I denotes the identity
tensor, and T and TF are the extra (or viscous) stress tensors of particle species i and the
fluid, respectively. We could assume here that all viscous stress tensors T and TF are given
by expressions that correspond, for example, to a viscous-linear fluid. This would require the
definition of phase viscosities for each species and the fluid [19], which is still an open problem for
monodisperse mixtures [66] and even more for polydisperse suspensions. However, we are mainly
interested here in the continuity equations for the solid species, and assume that viscous effects
due to the motion of the mixture are not dominant. Therefore we take the pragmatic approach
[27] to assign all viscous effects to the fluid extra stress tensor. To make this simplification visible
in the dimensional analysis, we assume that v5 and 1§ < v are characteristic viscosities associated
with the fluid and the solid species, respectively.

2.4. Pore pressure. The pressures p; and pr are theoretical variables that cannot be measured
experimentally. For monodisperse compressible suspensions [19], these variables are expressed in
terms of the pore pressure p and the effective solid stress .. However, our particles are rigid
incompressible spheres, so g, is assumed to be negligible, except in the packed bed.

We now relate the fluid phase pressure pr and the solid species phase pressures to the pore
pressure p. While the pore pressure p is defined within the fluid filling the interstices of the solids,
the partial fluid pressure is defined in the fluid component occupying the whole volume of the
mixture. Consider a cross-section S of a settling column and let Sy C S be the part of the cross
section filled out by the fluid. We define the surface porosity € := |S¢|/|S|, that is dS¢ = edS.
Then the surface forces exerted on the fluid in a cross section of the sediment are

/ pedS = [ pds; = / p(edS). (12)
S St S

Under fairly general conditions (see the Appendix), it is justified to assume that the surface
porosity equals the volume porosity. Therefore, we may replace € by 1 — ¢, and as a consequence
of the localization theorem [37] we obtain from (12) pr = (1 — ¢)p. The total stress of the mixture,
P, can be written as p; := pr+ps = (1— ¢)p+ ps, where the solids stress ps := p1 +- - - +pn is that
part of the total stress which acts on the solid particles. If we assume that the cross-sectional area
fraction of each species equals its volume fraction, we may conclude that (¢;/¢)ps is that part of
the solids stress which acts on species 4. It is therefore reasonable to relate the phase pressure p; to
the total pressure py by p; = ¢;ps for ¢ = 1,..., N. Then py = p, which could have been obtained
from the corresponding equation for flocculated suspensions forming compressible sediments by
setting g, = 0.
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2.5. Solid-fluid interaction force. In the case of a monodisperse suspension, the interaction
force m between the fluid and the unique solid phase was modeled by the expression [19]

Du
m=a(¢)u+ﬁV¢+7D—, (13)
where o is the resistance coefficient, u := vy — v is the solid-fluid relative velocity (or drift

velocity), the coefficient 8 is shown to coincide with the pore pressure p, and the virtual mass
term < is neglected after the dimensional analysis. In the present case, the virtual mass terms
will be neglected a priori, and we assume that the solid-fluid interaction term m! corresponding
to species 4 is given by the following constitutive relationship, in which «; denotes the resistance
coefficient related to the transfer of momentum between the fluid and solid phase species i:

m! = ;(®)u; + BV, i=1,...,N, (14)

2.6. Particle-particle interaction force. In the specification of the interaction force between
the different solid particle species, we follow SHIH et al. [62] and ARASTOOPOUR et al. [1] and
consider the NAKAMURA and CAPES formula [53], which reads here

0:d: s (d: + d;)? ) ]

Q’QJQ‘f;?i - d?]) Ivi = vill (vi = v5) (0 # ). (15)
where the parameter ¢ accounts for non-head-on-collisions [62] and the restitution coefficient e
equals zero for plastic and one for elastic collisions between particles. We anticipate that the term
mj; will be eliminated due to the analysis, but note that the values of the combined parameter
©(1+e) used by NAKAMURA and CAPES [53] varied between zero and 5, and that ARASTOOPOUR
et al. [1] used the value ¢ = 1 and moreover found that numerical simulations of their multiphase
flow model were not sensitive to the choice of .

The elimination of the particle-particle interaction term is not dependent on any particular
formula. Though collisions seem likely in polydisperse suspensions, especially when some parti-
cles move upward, there is considerable experimental and theoretical evidence that mj; can be
neglected at the very low Reynolds numbers considered here. VERHOEVEN [68] observed the fall
of a single sphere through a dilute suspension of smaller, lighter spheres (cited in [64]). He noted
that the larger sphere moved irregularly through the suspension, alternately gaining and losing
companions: “Though the spheres in these clusters were sometimes close together, they were al-
ways separated by fluid”. Figure 7 of [69] shows the calculated trajectories of two sedimenting
spheres on a collision course. Generally, they either “side-step” each other or rotate as a doublet
and then separate. (Though permanent doublets are possible for two isolated spheres, interac-
tions with other spheres would break them up in suspensions [64, 65].) Figure 6 of DAVIS [23]
shows a similar doublet rotation in the calculated trajectories of a single sphere falling through
a suspension of neutrally buoyant spheres. These “collisions” are damped by lubrication terms.
As the gap between spheres narrows, the resistance to direct contact increases sharply [42]. Since
particle-fluid interactions, including lubrication terms, are accounted for by mf, direct contact
between particles (which is important at large Reynolds numbers) plays a negligible role here.

3
mj; = 590(1 +e)

2.7. Solid-fluid interaction force at equilibrium. Inserting the present constitutive assump-
tions into equations (10) and (11) leads to the following momentum balance equations for the solid
phases and the fluid:

N

sz. — - . . E p— - p— . . u; - ms ) —
Qz¢zD—t = —0ipigk +V - T; — ¢;Vp — pV¢; + ai(®)u; + Vi + I; i 0=1,...,N, (16)
N
o1 = 6) % = —oe(1 = gk + V- TF = (1= 9)Vp + 56— fV6 = Y cw(@m. (17

k=1
Note that in deriving (17) from (11), we have used V¢ = V¢ + --- + Vén. To determine the
parameter 3, consider the polydisperse system at equilibrium (¢ — o0) in a settling column.
At equilibrium, the solids and fluid phase velocities vanish, and the pore pressure reduces to
the hydrostatic, i.e. vi =0, uy = -+ = uy = 0 and Vp = —prgk at equilibrium. Inserting
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these assumptions into the fluid linear momentum balance equation (17), we obtain as in the
monodisperse case # = p. Inserting this into (16) and (17) and rearranging (17), we obtain

Dv; .
QifﬁiD—; = —0ipigk + V- T} — ¢;Vp+ a;(®)u; + »_miy, i=1,...,N, (18)
N
DVf 1 B
—orgk — —— - — v.TE 1
Vp = —oigk ¢; W= ey + gV T (19)

3. DIMENSIONAL ANALYSIS AND FINAL FORM OF THE MODEL EQUATIONS

3.1. Dimensional analysis. To further simplify the governing equations (8), (9), (18) and (19),
we perform a dimensional analysis to detect which terms are negligible. To this end, we introduce
dimensionless variables by referring all densities to the fluid density gf, all velocities to the velocity
U, all lengths to a typical length L and all pressures to the hydrostatic pressure grgL. Here, we
assume that U is the settling velocity of a single particle of the fastest settling species in an
unbounded medium, and L is the depth of the settling vessel. A characteristic time is then given
by T = L/U, which a single particle needs to travel from the top to the bottom of the vessel.

All dimensionless variables are marked by a star. A dimensionless gradient of a variable u is then
defined by V*u = LVu and a dimensionless time derivative by du/0t* = TOu/0t = (L/U)0u/0t.
Having in mind that the viscous stress tensors T and T} could be given by the expressions
corresponding to a viscous-linear fluid, one can nondimensionalize these expressions by
L2 L?

v.-TF, v (TF)" = —=—=V.-TF, 20
QfV(S)U (2R ( f) QfVSU f ( )

v (TE) =

where vy denotes a typical kinematic viscosity, for example that of the pure fluid.

Using the Froude number of the flow Fr and the sedimentation Reynolds number Re defined
by Fr := U?/(gL) and Re := dU/vf, where d is the size of the largest particles, we obtain the
following dimensionless forms of equations (18) and (19):

Dv} dl/ Fr
zF = —g} zk =2 *
o piFrs = —eiok+ popp VT (TE)
(21)
— ¢:V*p* + o} (®)u] + EFrZ(mik)*, i=1,...,N,
1 < Dv? 1 dFr
**Z—k—— *(I) *_F f - s *'TE*. 29
Ve 1—¢;a’“( Jui -~ Pt 57 Re v (TF) (22)

The following numerical values of the parameters are typical for the particulate systems considered
here: d = 10~* m (assumed size of a single sphere of the largest species), g = 10m/s? (acceleration
of gravity), L = 1m (typical height of a settling vessel), U = 10~*m/s (settling velocity of a
particle of the fastest species in an unbounded fluid), and v§ = 107 m?/s (kinematic viscosity of
water). As mentioned above, it is reasonable to assume v§ < v§, and due to our decision to move
all effects of viscosity onto the fluid extra stress tensor we can assume v§/vf < 1. These values
imply Fr = 107° Re = 1072 and d/L = 10~*. We assume that all dimensionless variables are of
the order of magnitude O(1). Then we obtain, by discarding from the system of equations (21) all
terms that have a coefficient which is 107® or smaller, and discarding the advective acceleration
term from (22) but retaining the viscous term, the following simplified linear momentum balances
from (21) and (22), which are written again here in their dimensional forms:

Vp = —orgk — —— Zak Juy, + —¢V TF. (24)
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Inserting (24) into (23), we obtain

a(@)(1-9) | < B
Tui + Zak(é)uk =r;, r;:=1-¢)(0i—0r)gk+V -T¢, i=1,...,N. (25)
¢ k=1
3.2. Explicit formula for the slip velocities u;. Equations (25) form a linear system of N
equations for the unknowns u; that can be solved explicitly by the Sherman-Morrison formula,
which states that for a matrix A of the type A = D + xyT, where D is an invertible diagonal
matrix and x and y are given vectors, its inverse A~! is given by

A'=D+xy") ' =D - (1+y"™D %) 'D'xy"D. (26)
Then the solution of the system (25) is
¢ -
w=——"|(r; - ¢>krk>, i=1,...,N. (27)
e (R
Let o(®) := (1 — @)or + ¢101 + - - + dnon denote the local density of the mixture and note that
¢1(01 — o)+ + dn(on — or) = o(®) — or. (28)
Inserting the expressions ry,...,rx into (27) and neglecting the viscous term V - TF leads to the
following explicit equation for the slip velocities u; as functions of ®:
Pi .
= i —o(®))gk =1,...,N. 29
u; az((b) (QZ Q( ))g ? ? ? ’ ( )
In order to ensure that u; remains finite when ¢; — 0, we assume that
ai(®) = ¢:&i(®), (30)

where the function &; depends only on the diameter d;, i.e. & = §; if d; = d;, and remains bounded
away from zero when ¢; — 0. Physically, this limit represents the velocity of a single particle of
species ¢ settling in a suspension of other species [64].

The derivation of (29) has closely followed MASLIYAH [51] who in turn used previous results
from Wallis [70], but is here presented for three space dimensions. On the other hand, a slight
generalization of an equation stated by LOCKETT and BASSOON [48] is

i — o(®
u; :uoozgzig()(l _¢)n(<1>)—2’ 1= 17"'5Na (31)
Qi — Of
where
2 P—
u = —dileizedgy Ly (32)
18p¢

denotes the Stokes velocity of a single sphere of diameter d; and density p; settling in pure fluid
of density gr and dynamic viscosity u¢. Equations (29) and (31) are equivalent if we choose
L _ 6 __ 4 (1-¢)"®-2 ji=1,...,N (33)
&i(®) (@) 18 ’ B
This form, which is based on the RICHARDSON-ZAKI equation [59], has been fairly successful in
interpreting experimental data [47]. The dependence of n on ® is through wall effects, which are
small when the diameter of the largest sphere is very small compared to the diameter of the settling
vessel. In the sequel, we refer to Eq. (31) as the MASLIYAH-LOCKETT-BASSOON (MLB) model,
whose value against alternate formulations was also emphasized recently by BIESHEUVEL [8].
Equation (33) can be written as

(@) — 18 (1 — (@) =2
6(®) = ~ g V(@)= (-9 (34

To simplify the further discussion, we insert (30) and (34) into (29) to obtain the expression

(Qi - g(@))dfg .
i =——— 2"V (®)k, =1,...,N, 35
u o V@) i (35)
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where V(@) is an arbitrary suitable function (not necessarily that of the MLB model). In view of

(28), it is convenient to introduce the reduced densities gs :== s — 0f, 8; == 0i — 0, 1 =1,..., N,
the vector p := (d1,...,0n)", and the parameters
__gd o _d}

= =+ 4¢=1,....N 36
u 18Mf7 K2 d%’ ? 7 7 ) ( )

such that the final expression for the slip velocities reads

3.3. Final form of the model equations. The final model equations are the continuity equa-
tions of the solids species (5) and of the mixture (9), the linear momentum balance of the fluid
(24), and the equations (37) for the slip velocities u;, which have been obtained from the linear
momentum balances of the solid species. Inserting (37) into (5) and (24), we obtain the final
system of model equations:

99;

5t + V- (¢ia+ fi(®)k) =0, i=1,...,N, (38)
V-q=0, (39)

1 1
Vp=—(er+0-®)gk + mv -TE = —o(®)gk + mv -Tf. (40)

Specifically for the MLB model, the components of the flux density vector £f(®) are given by

N
fi(®) = f1(®) = uV (@) l&‘(@i —2-9)-) &dp(ar—2-®)|, i=1,... N (41)

k=1

Noting that vi = q — (¢1u; + --- + ¢yuy), we can rewrite TF in terms of the sought mixture
velocity q and the slip velocities u;, which are now given functions of . For example, if we set

2
TF = (@) |Tve + (v0) = (7 - vo) (42)
as for a standard viscous-linear fluid, we obtain the linear momentum balance
1
Vp = —o(®)gk + ﬂ{ [(V1() " (Va+ (Va)T) + u(@)Ad] + V- (u(¢)U(@, V9)) } (43)

where 4 is a concentration-dependent viscosity function and

T

N
U@, V) = 3" V(i) + (Vo) - 3(V - (b)) T (a4)

Eq. (43) can of course be written as
1 T .
Vp = —e(@)gk + 7 [(Vu(¢)) (Va+(Va)') + u(¢)Aq] +g(®,Ve, V),  (45)
where g is a function depending on ® and the derivatives of its components of up to second order.
Observe that in the absence of solid particles, i.e. when ® = 0, Equations (39) and (40) form

the Stokes system for an incompressible fluid for the velocity q (then identical to the fluid phase
velocity v¢) and the pressure p.

3.4. Initial and boundary conditions in one space dimension. In one space dimension,
Eq. (39) turns into 8¢/0z = 0, that is ¢ = ¢(¢). In a closed vessel, the mixture velocity at the
bottom vanishes, hence ¢ = 0 and the remaining equations that actually have to be solved are the
system of conservation laws (2), together with an initial concentration distribution

®(2,0) = ®°(2) € Dy,,.., 0<2<1L, (46)
where Dy, is the set of admissible concentration values defined by

D¢max = {¢=(¢177¢N)€RN :¢1 2077¢N207 ¢1+"'+¢NS¢max}7
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and 0 < @¢pax < 1 in turn denotes the maximum admissible cumulative solids concentration, and
the zero flux boundary conditions

fl.—o=0, fl.= =0, t>0. (47)

In this paper, we do not present exact or numerical solutions of the initial-boundary value problem
(2), (46), (47), but refer to our previous papers [17, 18] for a collection of examples.

3.5. BATCHELOR’s formula and its modifications. The previous analysis has been based on
both the mass and linear momentum balance equations for each particle species. A different
approach is due to BATCHELOR [4], who postulated that in a dilute suspension, the phase velocity
of spheres of species i having diameter d; can be approximated by the expression

Vi = vi(®) = tooi (1 +€{'89), (48)

where e; is the N-dimensional vector having the entries one at the i-th position and zero otherwise,
S = (Sij)1<i,j<n is the N x N matrix of the so-called Batchelor coefficients, and u.; is the Stokes
velocity of particle species ¢ given by Eq. (32).

The entries S;; of the matrix S depend on the diameter and reduced density ratios \;; := d; /d;
and g;/0; of particle species i and j. Numerical values of these coefficients are given for several
special cases by BATCHELOR and WEN [6], which represent numerical evaluations of integrals
derived in [4], i.e., the coefficients S;; are deduced from first principles.

In this paper, we limit the discussion to those cases where all particles are of the same density,
0;/0; = 1, and the coefficients S;; are given by

Sij = Bo+ BiXij + B2Af; + BsAl; B <0, k=0,...,3. (49)

Cases included here are the parameter vectors 8 = (8o, - - ., 33) with
B = (—3.50,—-1.10,—1.02, —0.002) (50)
and B = (—3.42,-1.96,—1.21,-0.013) (51)

determined by Davis and GECOL [25] by fitting numerical data of BATCHELOR and WEN [6] to
cubic polynomials, where 0 < A;; < 8 and formula (50) applies to large and (51) to small particle
Péclet numbers, and the values 8 = (—3.52, —1.04, —1.03, 0) utilized by HOFLER and SCHWARZER
[40], see also [18].

The formulas (48) are valid only in the dilute limit & — 0, and both DAvis and GECOL [25]
and HOFLER and SCHWARZER [40] suggested modifications to (48) in order to obtain well-defined
model equations for all ® € Dy_ ..

In order to make v; = 0 when ¢ = ¢max and to retain the same settling velocities as those given
by (48) in the dilute limit ® — 0, DAvIS and GECOL [25] propose utilizing a flux vector fP%(®)
having the following components, which are calculated from the Batchelor coeflicients S;;:

N
D(®) = posdids (1 +) (S5 - sz-~)¢j> (1-¢)~%, i=1,...,N. (52)
j=1
As stated in [25], the salient features of the expression (52) are that it agrees with BATCHE-
LOR’s equations (48) in the dilute limit ¢ < 1, that it merely requires BATCHELOR’s sedimen-
tation coefficients as parameters, and that for the monodisperse case N = 1 it reduces to the
RICHARDSON-ZAKI [59] equation f(¢) = pdsd(1 — ¢)™ with the exponent n replaced by —Sj;.

In a similar attempt to make v; = 0 when ¢ = @max, HOFLER and SCHWARZER [39, 40] replace
Eq. (48) by the expression

Vi = Ui €XP (e;FSQ + ngZ) (1 - (]_5)” , (53)

where ¢ := ¢/¢dmax, and the exponent n = 2 is considered [40]. The velocities v; given by (53)
vanish for ¢ = ¢max and have the same partial derivatives for & = 0 as (48). Using the parameters
p and dy,...,0n defined in (36), we obtain

fi(®) = £75(®) = pasdigiexp (e S + 1) (1-9)". (54)
In the sequel, we refer to Eqns. (52) and (54) as the DG and HS models, respectively.
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3.6. The special case N = 2. We shall write out the system (2) for the two simplest non-trivial
cases: the settling of initially homogeneous suspensions with two different particle sizes which
are of the same density and with one particle size but different densities, respectively. The MLB
model, as expressed by (31), handles both cases, in which we obtain

@) = e (@)1 - b - o) (151 0SB ), (55)

o= (S G a0 R ) e
repectively. The DG and HS flux density vectors for equal-density particles read

o) —un (G S N ). &)

0r5w) = s (1 28 (S lCls s St o ) )

4. THE INSTABILITY CRITERION

In the case N = 2, the characteristic polynomial of the Jacobian J¢(¢1, ¢2) reads

_ 1[0f1(¢1,¢2) + 0fa(¢1,62)1\° _ 1
2 o1 Os 1>
We have p2(A; @1, ¢2) > 0 for all A and thus has one pair of complex conjugate roots such that the
system (2) is elliptic, if and only if the instability condition (4), which in our terms reads

I = (3f1(¢1;¢2) _ 3f2(¢1,¢2)>2 + 4011(01,62) 0F2(¢1, 62)
2= A Do D A

is satisfied. Thus in the case N = 2 the instability region, that is the subset of Dy_.  where the
criterion (4) from [5] is satisfied, coincides with the region where the 2 x 2 system of conservation
laws (2) changed from first-order hyperbolic to first-order elliptic type.

We observe that the instability criterion, predicting the existence of perturbations, is related to
the loss of hyperbolicity of the model equations in a subregion of Dy, . In fact, with “ellipticity”
replaced by “loss of hyperbolicity”, this criterion becomes independent of the number of species,
since only in the case N = 2 are the equations either hyperbolic or elliptic. To show that loss of
hyperbolicity can indeed be viewed as a general instability criterion for any polydisperse suspen-
sion, we closely follow the analysis by BATCHELOR and JANSE VAN RENSBURG [5], but extend
their treatment from bidisperse to N-disperse suspensions.

The linearized form of (38) for a small disturbance to the homogeneous suspension is then

0% = (0fi(®). N\
ot +J=Zl< 0¢; k) -V¢; =0, i=1,...,N. (61)

pa(X; @) = det (T (@) — M) = (A (59)

<0, (60)

We then investigate, as in [5], the evolution of a disturbed state of the form

¢i=¢>(-0)+A,~exp(at+ih-(x—ct)), i=1,...,N. (62)

(3
Here o, h and c are real, due to the assumption that a perturbation of arbitrary initial form
can be expressed as a sum or integral of such three-dimensional Fourier components evolving
independently. Inserting (62) into (61), we obtain

N , (0)
(0 —ih-c)4;+i) h- (mk> A;=0. (63)
i=1 9%
We now let
, (0)
ki = h- (%{;‘?%)  1<ij<N. (64)
J
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Eliminating the amplitudes A;, i = 1,..., N, we find that the matrix (¢ — ih - ¢)I + iK must be
singular, where I denotes the N x N unity matrix and K = (k;;); j=1,..,~. Then the following
equation must be valid (otherwise all amplitudes vanish):

det((o —ih-c)I +iK) = 0. (65)
Condition (65) is obviously equivalent to
det(K — (oi + h-c)I) =0, (66)

hence oi+h - ¢ must be an eigenvalue A of the matrix K. Consequently, a necessary and sufficient
condition for an exponentially growing disturbance to exist, that is that (66) has a positive solution
o, is that the matrix K possesses an eigenvalue A with positive imaginary part. However, since K
is real, this means that there should exist at least one pair of complex conjugate eigenvalues (one
of which of course has positive imaginary part). Obviously, we may write

, (0)
kij = hcos@ (61(;;;})) ; (67)

where 6 is the angle made with the upward vertical by the wavenumber vector h. Since ¢ must also
be a vertical vector, we can furthermore write h - ¢ = hccosf. We then have K = hcos 0\_7f(®(0))
and see that the instability criterion is equivalent to the existence of a pair of complex conjugate
eigenvalues A, A of the Jacobian J¢(®(?)). In other words, there must be a state ® = ®© at which
the system of conservation laws

i _0¢;i | 9fi(®)
E+v- (f:(®)k) = T e
fails to be hyperbolic. In the case N = 2, this means, of course, that the system must be elliptic.
Unfortunately, polydisperse sedimentation models do not give rise to Jacobians for which it is
easy to decide (as, for example, for symmetric matrices) whether they possess only real or both real
and complex conjugate eigenvalues. However, for tridisperse suspensions it is possible to decide
on hyperbolicity, and thus to determine whether the equations are stable, by evaluating one scalar
discriminant function defined in a similar way as Iy, whose sign determines the instability region.
Namely, for N = 3 the characteristic polynomial of the Jacobian J¢(®) takes the form

P3N ®) = X2 4+ r(®)A2 + 5(®)\ + t(D), (69)

=0, i=1,...,N (68)

where the leading coefficient has been normalized to one and the functions r, s and t are given by

0ft | Ofs  0fs _ - _
56t 50t 90 ) t = t(®) = — det Jr(®),

0f10fs  0f10fr  0f20fs 0fi0fr 0f1 8fs 0f20fs

s=s(®)=- (a¢3 0p1 | Oy Opr | 003 00, 061 06  On D5 0o 0¢3)'

It is well known [14] that the equation ps(A; @) = 0 has one real and one pair of complex conjugate
solutions if and only if with

r=r(®) =—tr J5(®) = (

1 2 1
p=p(®) ::s—§r2, qg=q(®):= §r3—§rs+t
the following inequality holds:
(P (Y ol Lo 1 15 1
I3(®) := (3) + (2) 575 ~T08° " + 4t + T t 6rst > 0. (70)

In most circumstances, it will be very cumbersome to calculate I3 for a given model by hand when
a general result with respect to the size and density parameters is sought. However, the criterion
(70) is useful when the stability of a model for given sizes and densities is to be examined, such
that it is sufficient to compute I3 numerically for a dense set of test vectors ® € Dy, ... Section 5
includes some numerical calculations of instability regions for N = 3.
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Note that wherever one of three particle species in a tridisperse suspension is absent, say
Species 3, the suspension behaves as a bidisperse suspension of Species 1 and 2. In this case,
¢3 = 0, such that f5(-,-,0) =0 and thus #(-,-,0) = 0. Then the bidisperse suspension is stable if

L 5 9
I; = ~103° (r°—4s) >0,
that is if r2 — 4s < 0. Since I, = 72 — 4s for a bidisperse suspension of Species 1 and 2, we see
that (70) is a more general criterion than, and in particular includes (60). Thus the intersections
of the three-dimensional instability regions determined by (70) with the planes ¢; = 0,i=1,2,3
coincide with the corresponding bidisperse instability regions.

A related observation is that whenever Ny < N of the species in an N-disperse suspension
have size or density ratios that produce an Ny-dimensional instability region with the bidisperse
equations, we know that there also exists an instability region in the N-dimensional domain.
Moreover, by the continuity of the eigenvalues with respect to ¢1,. .., ¢n, this instability region
will be of nonzero N-dimensional volume.

Finally, we remark that it would be possible to extend the explicit instability criterion based
on evaluating a discriminant of the characteristic polynomial also to the case N = 4. We will not
pursue this further here.

5. INSTABILITY REGIONS OF SELECTED POLYDISPERSE SEDIMENTATION MODELS

5.1. Stability of the Masliyah-Lockett-Bassoon model equations. We limit ourselves here
to a constant RICHARDSON-ZAKI exponent n = n(®) [59], such that V(®) = V(¢) = (1 — ¢)" 2
Then, differentiating (41) with respect to ¢y, we obtain

M N
D - ¢)"—3{(<1 — 6)du — (n— ) [&(@i ~0 %)= 06,0 -2 ®)

N (71)
+ (1 - ¢)¢; l—&gk —6k(ox —0-®) + 0r Z 5j¢j] };

where §;;, = 1 if i = k and d;; = 0 otherwise. For the special cases of spheres of equal density, but
different sizes, and that of equal size but different densities, we obtain the respective derivatives

6sz — n—2

T% = pos(1 - ¢) {(1 — ¢)dix + ¢z’(—(” - 1)[52' =011 == 5N¢N] +(1- ¢)5k)}’ (72)
asz n—2 _ _

5 =11 =07 {(1 =00+ 01(~(n 2z + (9~ 22+ 9]

(73)
~(1-g)[e-9a-2-9])}.

We first apply the instability criterion (60) to either system (72) or (73). BIESHEUVEL et
al. [11] recently presented a thorough numerical evaluation of the instability criterion (60) for
the MLB model and N = 2 with bidisperse suspensions of species differing only in size, only in
density, and both. Some of their results are presented as instability diagrams, that is as contours
of the instability region in the (¢1, ¢2)-plane. We adopt this representation here and discuss a few
bidisperse cases where additional insight can be provided. Consider now a bidisperse suspension
with particles of different sizes and the same density (with the flux vector M given by (55)). Then

6f%vl = n—2

5y = HB(1= "2 [(1= 91 = g1 = dage) + 61 (~(n = (1 = g1 — ) — (1= 9)) ],
6ﬁ\4 = n—2

Soy = 10s(1 = 9" 1 (~(n = (1= b1~ 8a6) — (1~ ),

ofy'

B = 105 (1 — )" 2o (—(n — 1)(62 — ¢1 — 6262) — (1 — 9)),
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6."%\4 - n—2
96 pds(1 — ) [(1 — ¢)(62 — p1 — G262) + B2 (—(n —1)(62 — ¢ — Faha) — da(1 — ¢))]-

We now prove that the MLB equations are in fact stable for N = 2, all values of §; > 0, and for
all ¢1, ¢2 € Dy by evaluating explicitly the instability criterion (60). To this end, we first define

I ==(po2(1 - ¢)n_2)_212
=[A= 91— ) + b1 (~(n = 1)(1 — 61 — ) — (1 - 9)
o (1= (B2 — 1 — Do) — (1= )]
+4¢1¢2(—(n — 1)(1 = ¢y — 8202) — 02(1 — 8)) (—(n — 1) (82 — p1 — G262) — (1 — ¢))
=(1-$)’(1=8)* + ¢} (~(n = 1)(1 = ¢ — 8 — (1~ 9))’
+ @3 (=(n — 1)(02 — ¢1 — Saga) — 2(1 - 9))” (™)
+2¢1(1 — 82)(1 — @) (—(n — 1)(1 — ¢1 — bagp2) — (1 — ¢))
—2¢2(1 = 82)(1 — @) (—(n — 1)(2 — ¢1 — G2h2) — 62(1 — ¢))
—2¢1¢2(—(n = 1)(1 = p1 — G262) — (1 = ¢)) (—(n — 1)(d2 — ¢1 — Sagp2) — 62(1 — ¢))
+4¢12(—(n = 1)(1 = ¢1 — Gatha) — 02(1 = ¢)) (—=(n = 1)(02 — b1 — Ga2) — (1 = 9)).
To see that I5 is nonnegative, note first that

(=(r = 1)(1 = ¢1 = 8262) = 62(1 = ) (—(n = 1)(62 = ¢1 = 2¢2) — (1 = ¢))
=(=(n =11 —¢1 —b2¢2) — (1 = ¢)) (—=(n — 1)(02 — ¢1 — b2¢h2) — 02(1 — ) (75)
+(n=1)(1 - 5)*(1-¢).

Consequently, we can rewrite I, as
L=(1-¢)2(1=8&)* + ¢} (~(n— (A - 61 — &26) — (1 - 9))°
+ 03 (=(n = 1)(0 — 1 — Gapn) — 8a(1 = 9))”
+2¢1(1 = 8)(1 = @) (—(n—1)(1 — ¢1 — b2002) — (1 - 9))
—2¢5(1 = 82)(1 = ¢)(—(n = 1)(62 — d1 — dagp2) — G2(1 — ¢))
+ 20102 (=(n = 1)(1 = g1 — dagh2) — (1 = ¢)) (—=(n — 1) (d2 — h1 — G2h2) — 02(1 — )
+4dida(n —1)(1 - 82)°(1 - ¢).

(76)

To proceed, we briefly prove the following inequality, which is written out here first in such a way
that the main idea becomes apparent:

Ap1¢a(n —1)(1 = 82)*(1 = @) > 4o (1 — 82)(1 = @) (=(n = 1)(82 — ¢1 = Gagpa) — 8a(1 = 9)). (77)
Obviously, inequality (77) can be reduced to

¢1(n —1)(1 = 02) > —(n —1)(d2 — 1 — dagpa) — d2(1 — @),
that is

(n—1)¢1 — dandy + d2¢y > —(n — 1)d2 + (n — 1)P1 + d2(n — 1)p2 — 2 + 21 + da¢ha.
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FIGURE 2. Instability regions of the MLB model for N = 2 with n = 4.65 and
particles of the same size and the indicated relative density ratios v = g2/9;. The
left and right diagrams correspond to bidisperse suspensions with two heavy and
one heavy and one buoyant (creaming) particle species, respectively, and include
the instability region for the common limiting case v = 0.

After cancellations, we get from this —dang; > —nds + ndada, that is ¢ + ¢ < 1, which is true
on D;. Therefore (77) holds on Dy for all 0 < ¢max < 1. In view of (77), we obtain from (76)

L 2(1-¢)’(1=8)° + 61 (~(n = 1)(1 = ¢1 — 6262) — (1= ¢))
+83(=(n = 1)(8 — ¢1 — 62) — 8(1 - ¢))
+261(1 = 82)(1 = ) (—(n = 1)(1 = 61 — 8262) = (1 = 9))
+262(1 = 82)(1 = ) (—(n = 1)(82 = 61 — b2) = 8(1 = 9)) (78)
+ 2616 (—(n = 1)(1 = d1 — b2) — (1= 8)) (—(n = 1)(62 — 61 — 622) — (1 — 9)
={(1=9)(1 = 2) + 61 (~(n = 1)(1 = 61 = 262) — (1 - 9)
Foa(n =152~ — Brn) ~ (1~ 9)}

Thus we have shown that Ir = (ug2(1 — ¢)" 2)2I, > 0. Consequently, the MLB model is stable,
that is hyperbolic, for bidisperse suspensions of spheres having the same density, for arbitrary
size ratios A2 = d2/dy = /0 and arbitrary RICHARDSON-ZAKI exponents n > 1. This general
stability result comes from a straightforward computation, while BIESHEUVEL et al. [11] still
formulate it as a conjecture motivated from a number of test calculations, and is in agreement
with the weight of evidence from numerous experiments that instabilities do not occur in bidisperse
suspensions with spheres of the same density but with different sizes. (See Section 6.1.)

We now determine instability regions for the MLB model for bidisperse suspensions of particles
of the same size but differing in density, for which the stability region depends only on the ratio
v := g2/ 01. Since the roles of Species 1 and 2 can be interchanged, it is sufficient to consider g, <
01- An analytical evaluation of the instability criterion to detect in which cases instability regions
do occur is at least cumbersome in this case. Instead, we present here numerically calculated
instability regions for a RICHARDSON-ZAKI exponent n = 4.65 and both cases of two heavy

2
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FIGURE 3. Instability region of the MLB model for N = 3 with n =
4.65, the particle size ratios do/dy = ds/d; = 0.5, and the reduced
density ratios p2/o1 = 1 and p3/o1 = —1/2, constructed by numer-
ical evaluation of condition (70). The thin lines correspond to ¢35 =

0.001,0.005,0.01,0.02,0.03,0.05,0.1,...,0.65,0.66,0.67,...,0.75. The intersec-
tions with the planes ¢; = 0 and ¢ = 0 are plotted in fat dots.

(v > 0) and one heavy and one buoyant (creaming) (v < 0) particle species, see Figure 2. Some of
the curves forming the contours of the instability regions in both cases have already been shown
by BIESHEUVEL et al. [11], but are plotted here on the entire domain D;, while the plots in [11]
are limited to 0 < ¢, ¢2 < 0.4. The left diagram of Figure 2 shows that for ratios v between 0.3
and 1.0, the instability region is located between the lines ¢ = 0.7 and ¢ = 1. However, since the
spheres are of equal size, the maximum cumulative solids concentration that has to be considered
in the bidisperse system is the dense packing volume fraction of around ¢max = 0.66 if the spheres
are assumed to be rigid. Thus the instability regions predicted in these cases are not of practical
relevance when the MLB model is employed for computations, in which the fluxes would be cut at
¢ = Pmax- Such a consideration does not apply to the case v < 0, since there always persists an
appreciable instability region, except for relatively dilute suspensions with ¢ roughly being smaller
than 0.2.

We have also computed and plotted in both diagrams of Figure 2 the common limiting instability
region for both cases attained for v = 0. Observe that the MLB model produces a large zone of
instability for a bidisperse suspension of heavy and neutrally buoyant spheres.

For tridisperse suspensions of particles of the same density but different sizes we have found no
pairs of density ratios da/d; and d3/d; and exponents n that would produce an instability region.
A natural conjecture is that the MLB equations are also stable for N = 3. To prove this one would
have to write out and try to rearrange all terms occurring in I3, which we do not undertake here.
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I3 > 0 (unstable)

FIGURE 4. Instability region of the MLB model for N = 3 with n = 4.65, the
particle size ratios da/dy = 1/v/2, d3/dy = 0.5, and the reduced density ratios
02/01 = 2 and g3/91 = 4, constructed by numerical evaluation of condition (70).
The thin lines correspond to ¢3 = 0.05,0.1,...,0.35,0.375,...,0.825,0.85. The
intersections with the planes ¢1 = 0, ¢2 = 0 and ¢3 = 0 are plotted in fat dots.

Instead, we present three numerical evaluations of I3 in cases where instabilities do exist, which
is ensured if different solid densities are present and, of course, ¢pax is large enough.

In Figure 3, we consider the MLB model for N = 3 with n = 4.65, the particle size ratios
da/di = ds/dy = 0.5, and the reduced density ratios g2/g1 = 1 and g3/81 = —1/2. As expected,
the instability region, which is roughly an interpolation between the two bidisperse instability
regions, avoids the plane ¢3 = 0. However, Figure 3 predicts that adding only 0.1% of volume
of buoyant particles (of Species 3) provokes instability for a large region of pairs (¢1, ¢2), e.g-
¢1 = 0.2, ¢ = 0.15, of the concentrations of a stable bidisperse suspension.

The different roles of particle sizes and densities in the MLB equations have already been
demonstrated in [11] for the case N = 2. We consider in Figure 4 the MLB model for N = 3
with n = 4.65, the particle size ratios dz/d; = 1/v/2, d3/dy = 0.5, and the reduced density
ratios g2/01 = 2 and g3/91 = 4. Note that in view of (32), the three particle species share the
same Stokes velocity u,,. Thus monodisperse suspensions of each of these species will behave
identically given the same initial and boundary conditions. However, the tridisperse suspension
has a relatively complex instability region.
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I3 > 0 (unstable

FI1GURE 5. Instability region of the MLB model for N = 3 with n = 4.65, identical
particle sizes, and the reduced density ratios g2/01 = 0.05 and g3/51 = —0.05,
constructed by numerical evaluation of condition (70). The thin lines correspond
to ¢3 = 0.005,0.01,...,0.025,0.05,0.1,...,0.85,0.86,...,0.92. The intersections
with the planes ¢1 = 0, ¢2 = 0 and ¢3 = 0 are plotted in fat dots.

In the case N = 3, the instability region can take a very complex shape and need not be one
connected subdomain of Dy, . This is illustrated in Figure 5, where we consider identical particle
sizes, and g2/01 = 0.05 and g5/p1 = —0.05. In this case, the instability region decomposes into
two disconnected domains. The coordinate axes in Figure 5 have been slightly inclined to make
this visible. We have, of course, checked many more levels of ¢3 = const. such that it is ensured
that these domains are indeed disconnected.

5.2. Stability of the modifications of BATCHELOR’s equations. The partial derivatives of
the flux vector of the DG model defined by (52) are

DG
PR i1 - 975 |1+ €750 - 95)du
(79)
+ ¢i (Sz'k + 1‘53i¢(¢+ e;SP — ¢Siz'))], 1<i,k<N.

We first consider the bidisperse case and show that if the matrix S is given by formula (49),
then the DavIs and GECOL model is stable provided that the number A;» (and hence Ay = Ajy
are close enough to one, i.e. if the particles do not differ too much in diameter.

To prove that a bidisperse suspension is stable, it is sufficient to show that

Of1(¢1,¢2) Of2(d1, P2)
02 0p1

>0, (80)
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FIGURE 6. Instability regions for N = 2 and the indicated particle size ratios
o1 = dy/dy = 1/4/85 of the DG model, constructed by numerical evaluation of
condition (60). The left and right diagrams correspond to the parameter vectors
(50) and (51), respectively, determined by DAvis and GEcoL [25]. The tested
values A2; = 1,2,...,5 do not produce an instability region.

because it then follows from (60) that I> > 0. In fact, we here get

ofPC 0fy¢ _

S125
= (pas(1 - ¢)_S”)252¢1¢2 [512521 4+ 22El

(¢ + (S21 — S11)¢2)

O0p2 O¢1 1-¢
S918 S\’ &D)
+ 121_ ;1 (¢ + (S12 — S11)¢1) + (1 _11¢) (¢ + (S12 — Sn)d)l) (¢ + (S91 — S11)¢2) .

Note that by (49), we always have S;; < S;; for 1 < j < i < N for arbitrary N. Consequently, the
four summands in the square brackets of (81) are all positive if

(b + (521 - 511)¢2 = ¢1 + [1 + (521 - 511)]¢2 Z 0 fOI‘ all (¢1,¢2) € Dl.

This condition is indeed satisfied if
[S21 — S11| = [B1(Aer — 1) + Ba(A3; — 1) + B3(A3; —1)| < 1, (82)

which is valid if the size ratio As; is sufficiently close to one. This condition is a sufficient condition
for the DG model to be stable. For a precise determination of the stability region in terms of Agq
for given parameter values it is necessary to evaluate the full instability criterion (60).

To demonstrate that the DG model with the parameters given in [25] becomes unstable in a
subregion of D; when A2; becomes large, that is when the squared size ratio 2 becomes small, we
evaluated the quantity I» numerically, using the parameter vectors (50) and (51), respectively, and
the test values of the size ratio A1 = 1/v/d2 = 1,2,...,9,10,15,20,...,50. Figure 6 shows that
for both parameter vectors 3, there exist instability regions in the (¢1, @2)-plane where Ir < 0,
i.e. where the system changes from hyperbolic to elliptic type. Moreover, we see that the size
of the instability region increases as Ay does. Furthermore, the smallest value Ay; producing an
instability region lies in both cases between 5 and 6 (5.868 and 5.070 for the parameter vectors
(50) and (51), respectively).

Particular attention is drawn to the limit ¢ — 0, for which 8fP% /8¢, (41, p2) — 0 and hence
I, > 0. To examine the lower boundary of the region of instability, we set ¢o = 0 and calculate
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FIGURE 7. Instability regions of the DG model with parameter vector (51),
for N = 3 and the particle size ratios Asy = di/da = 4 and A32 =
dofds = 4 (left) and A1 = 2 and A32 = 8 (right), constructed by nu-
merical evaluation of condition (70). The thin lines correspond to ¢3 =
0.001,0.005,0.01,0.02,0.04, . ..,0.44,0.445,0.45,0.455 in the left and ¢3 =
0.001,0.005,0.01,0.02,0.04, . ..,0.42,0.425,0.43,0.435 in the right diagram. The
intersections with the planes ¢; = 0 and ¢ = 0 are plotted in fat dots.

values of ¢ = ¢ such that 8fP%/0¢1 = 0fP%/0¢p2. This will be true whenever

S
1+ 1 1_1(7; =682(1 4 (S21 — S11)9).
This yields a quadratic equation in ¢,
(S11 = 821)6” + (A3 (1 = S11) — (S11 — Sa1 + 1)) o +1— X3, =0, (83)

which has two real roots, one positive and one negative. The positive root yields the values ¢1 = ¢
for which I, = 0. Some of them are given in the following table, where the Batchelor matrix S
has been computed with the coefficients given by either (50) or (51):

Aot 2 3 4 5 6 7 8 10 50
&t (Eq. (50)) | 0.1371 0.1605 0.1678 0.1709 0.1725 0.1733 0.1738 0.1743 0.1760
¢t (Bq. (51)) | 0.1223 0.1417 0.1507 0.1534 0.1547 0.1549 0.1559 0.1565 0.1661

Note that the positive roots occur for Ay; = 2,...,5, for which uniformly I, > 0 on D; as well as
for the values plotted in Figure 6 (A21 = 1 yields only the trivial value ¢; = 0). This means that
even in stable cases the two real eigenvalues coincide at (¢7,0).

The results of this analysis are remarkable in that DAvis and GECoL [25, 26] explicitly rec-
ommend the use of their hindered settling function with these parameters for size ratios up to
A21 = 8, but state that it does not apply for suspensions in which lateral segregation takes place.
However, with the present analysis, their hindered settling function may potentially predict un-
stable behaviour. DAvVIS and GECOL finish their paper [25] with a reference to BATCHELOR and
JANSE VAN RENSBURG’s stability analysis [5], but unfortunately do not apply it.

In the case N = 3, a similar simplified stability analysis in terms of the density ratios occurring
is not possible, since the model equations are stable if I3 < 0 on D;, which requires evaluating
both p and ¢, while to show instability, it is sufficient to consider the quantity p only. For the
reasons discussed towards the end of Section 4, we expect three-dimensional instability regions to
exist wherever two of the particle species possess a density ratio larger than about six.
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FIGURE 8. Instability region of the DG model with parameter vector (51), for
N = 3 and the particle size ratios Aoy = di/ds = 8 and A3z = dy/d3 = 8,
constructed by numerical evaluation of condition (70). The thin lines correspond
to ¢3 = 0.005,0.01,0.02,0.03,0.06,...,0.9. The intersections with the planes
¢1 =0, ¢o =0 and ¢3 = 0 are plotted in fat dots.

We illustrate this observation by a numerical evaluation of the instability condition (70) for
N = 3. We select the parameter vector (51) and consider first the size ratios Ag; = dy/da = 4 and
As2 = dp/ds = 4. Here all states ® with ¢35 = 0 or ¢, = 0 are stable, since (according to Figure 6)
the corresponding size ratio of 4 in both cases does not fall within the bidisperse instability region.
However, wherever ¢» = 0 the remaining Species 1 and 3 form a bidisperse suspension with size
ratio 16, which does produce an instability region. Consequently, the three-dimensional tridisperse
instability region will not intersect the planes ¢; = 0 or ¢3 = 0, and its intersection with ¢ =0
will be identical to the instability region for N = 2 with Ag; = 16. The left diagram of Figure 7
displays the numerical instability region in this situation.

If we assume the size ratios Ag; = 2 and A3s = 8, also the plane ¢; = 0, corresponding
to a bidisperse suspension with size ratio 8, will have a nonempty intersection with the three-
dimensional instability region.

Finally, we consider the case Ay; = 8 and A3z = &, in which we expect nonempty intersections
with all three planes ¢; = 0, ¢2 = 0 and ¢3 = 0. The corresponding three-dimensional instability
region is plotted in Figure 8. Observe that the volume of the instability region is surprisingly
much larger than one would expect given the relatively small area occupied by each of the three
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two-dimensional instability regions in its respective coordinate plane. Note that the shape of cross-
sectional area of the instability region (with respect to height) changes rapidly as soon as ¢3 starts
to take positive values. For example, the point & = (0.05,0.35,0) is clearly stable. However, the
point ® = (0.05,0.35,0.005) is not, which means that the DG model with the given parameters
predicts that adding only 0.5% volume fraction of a small particles to a stable suspension of spheres
that are eight and 64 times larger can produce instability.

It should be emphasized that it is not claimed here that this does actually happen in polydisperse
sedimentation. Rather, our study is aimed at evaluating models for polydisperse sedimentation, as
given by the variety of flux density vectors proposed in the literature, by means of mathematical
analysis and linear algebra. In this case we have demonstrated the consequences of the innocent
use of DAvis and GEcoL’s hindered settling functions in a situation it clearly was not designed
for, since the maximum size ratio in the tridisperse system just considered is 64.

We finally briefly consider the HS model, which has not been studied as extensively as the MLB
and DG models. For the flux density vector introduced in Eq. (54), we obtain

afi> (@) n__¢

= 1056 (1 — ¢)" exp (e 5) |5; - —— )¢ ' :
W_NQS&(I ¢)" exp(e; SP + ng) [(5,k+(51k ¢max1_¢>¢l:|, 1<i,k<N. (84)

It is easy to see that the HS model is stable for N = 2 and Batchelor matrices S with arbitrary
nonpositive entries. Indeed, (80) is true on Dy, since

n ¢ n ¢
(S”_El—a) (521_ ¢maqu3> >0

due to assumptions (49). We have not found size ratios for tridisperse suspensions in which the
HS model would be unstable and thus conjecture that it is stable also for N = 3, as is the MLB
model.

6. DISCUSSION

6.1. Comparison with numerical and experimental results. REVAY and HIGDON [58] used
Stokesian dynamics [13] to study the sedimentation of bidisperse suspensions in which the spheres
differed only in density. The contour for v = —1 in our Figure 2 is fairly close to the computed
result shown in their Figure 8 and very close to the experimental results of FESSAS and WEILAND
[29] that are also shown in that figure. For v > 0, there is qualitative agreement that instability
exists at low values, but not at high. For the MLB model, only the instability contours for 0.1
and 0.2 lie within the range of feasible concentrations; REVAY and HIGDON predict instability for
v < 0.39. Their contours lie to the left of ours and are closer together.

FEssAs and WEILAND [29] provide a vivid description of experimental instability: .. the
initially wniform mizture immediately became grainy and large clusters containing predominately
heavy or light particles formed. These clusters moved up or down, depending on composition,
colliding and interacting with each other. In doing so, the heavy (dark) clusters, for example,
ejected whatever buoyant (yellow) particles they contained. It seemed that a large proportion of
the overall settling took place by the rapid ascent and descent of clusters containing virtually one
particulate phase only.” A sequence of small photographs in WEILAND et al. [71] shows all
of the stages in this kind of separation. Figure 2 of LAw et al. [47] illustrates the different
appearance of stable and unstable systems: their Figure 2(a) shows stable behaviour, similar to
our schematic illustration Fig. 1(a), for initial concentrations ®9 = (#?,¢9) = (0.08,0.08), while
instabilities are clearly visible in their Figure 2(b) at ®) = (0.2,0.15). LAW et al. [47] indicated
that the RICHARDSON-ZAKI exponent n = 5.39 was suitable for their spheres, and indeed their
observations of stable and unstable behaviour at different initial concentrations are consistent
with the instability region produced by the MLB model with this value of n and the appropriate
densities, see Figure 9. As discussed below, instability phenomena in the second case could however
not be reproduced numerically in [17].

Delineation of the boundaries of experimental instability is difficult. A grainy appearance and
a fingering flow structure are usually considered to indicate instability, even in the absence of the
dramatic developments noted above. Table 1 of BATCHELOR and JANSE VAN RENSBURG [5] lists
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FIGURE 9. Instability region of the MLB model for N = 2 with n = 5.39 and
equal-sized particles with the densities gy = 1186 kg/m? and g = 1050kg/m?,
where gf = 1120kg/m?, according to LAW et al. [47]. The points ®J = (0.08,0.08)
and ®9 = (0.2,0.15) correspond to both the experiments by LAW et al. [47] and
the computations by BURGER et al. [17, Figs. 8-13].

the properties of particles and fluid for systems in which streaming columns have been observed.
With one exception (7 = 1, A\;2 = 0.63), these are in general agreement with our Figure 2. This
exception, which appears as Figure 3 of WEILAND et al. [71], is almost certainly not a true case of
I, < 0. As noted by BIESHEUVEL et al. [11], many authors who have studied cases where v =1
have never reported instabilities and have explicitly mentioned stable sedimentation. Clusters
form and columns of spheres move upward and downward to some extent even in monodisperse
suspensions [65], and occasionally these currents are surprisingly strong. Though these features
are usually not pronounced in stable bidisperse suspensions, they are sometimes not easily distin-
guished from marginal instability. On the other hand, BATCHELOR and JANSE VAN RENSBURG’s
Figure 7 indicates that suspensions with A1 &~ 1 and v < 0.5 are unstable when ¢; = ¢ = 0.15.
Stokesian dynamics [58, Figure 7] and the MLB model predict stability for all v > 0 at these
concentrations (as shown in our Figure 2 and Figure 5 of BIESHEUVEL et al. [11]). These au-
thors and YAN and MASLIYAH [72] provide many comparisons of the MLB (Masliyah) model with
experimental data for bidisperse systems.

6.2. Mixed systems of conservation laws. The analysis in this paper shows that commonly
used polydisperse sedimentation models give rise to systems of conservation laws which contain
regions of the phase space where the systems are non-hyperbolic (elliptic for N = 2). Such systems
are frequently referred to as mized systems of conservation laws. In addition to the application
considered in this contribution, such mixed systems occur in variety of applications including
transonic flow, traffic flow, one-dimensional unsteady flow of a van der Waals gas, propagation of
phase boundaries in elastic bars, enhanced oil recovery and multiphase (water, gas, oil) flow in
porous media, inertia-free shear-thinning flow, and two-phase flow. Of particular interest in the
light of the present analysis are systems of conservation laws modeling three-phase flow in porous
media, since there are some similarities to the systems modeling polydisperse sedimentation.

In fact, models for multiphase flow in porous media formed the main stimulus for intense
research related to systems that change type. We refer to [31, 43, 44, 49, 50] for overviews of the
theory of mixed systems of conservation laws and their applications. Following [31, 43, 44, 49, 50],
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we shall here only briefly review some of the current views that exist today regarding mathematical
and numerical theory for these mixed systems.

An obvious question arising from elliptic regions is that of the actual effect of the appearance
of complex eigenvalues. First of all, in practical numerical calculations, the existence of elliptic
regions does not appear to introduce computational instabilities, which is why the change of type
was not noticed at first [7]. Here it is appropriate to mention that oscillations were not observed
in the numerical calculations performed in [17] for various systems of conservation laws modeling
polydisperse sedimentation. In particular, the simulation of both the stable and unstable cases
depicted in Figure 9 (corresponding to the experiments by LAW et al. [47]) turned out to be free
of oscillations. (With the present analysis, it is clear that the two 2 x 2 systems, of the MLB and
HS models, solved in our second paper [18] are both hyperbolic.)

One reason for the lack of oscillations is, of course, the numerical diffusion introduced by most
numerical schemes, which turns the system of conservation laws into a parabolic system, which
is well-posed (see below). Nevertheless, the existence of oscillatory solutions (which are measure-
valued solutions) for non-hyperbolic systems has been proved both analytically and numerically
[33]. In fact, the numerical study [34] (using a first-order finite difference scheme) of the solution to
Riemann problems with initial data inside elliptic regions revealed that approximate solutions may
present persistent large amplitude oscillations. Numerical studies have also shown that, when one
state belongs to the hyperbolic region and the other to the elliptic, the solution is acceptable, but
still displays some oscillations. On the other hand, when both states are located in the hyperbolic
region, the numerical solutions seems to be stable. It has furthermore been demonstrated that
solutions to Riemann problems with ‘hyperbolic’ initial data avoid the elliptic regions, which
is a potentially interesting result. The distinction between Riemann and more general Cauchy
problems is essential, since this avoidance of the elliptic region is not true for more general Cauchy
data [38, 56].

Although solutions of Riemann problems may display oscillations, a view advocated in, e.g.,
[43, 44] is that for general Cauchy data (not Riemann data) nonlinear wave interactions remove
the catastrophic high-frequency ill-posedness (in the sense of Hadamard) associated with linear
mixed systems. In a nonlinear system, the instability does not grow exponentially (as in the
linear non-hyperbolic case), but saturates. This means that once the solution takes values in
the hyperbolic region, it stops growing. In fact, in practical examples there is no evidence of
catastrophic failure of well-posedness of the general Cauchy problem. It seems that systems that
change type appear to be incomplete rather than catastrophically ill-posed [43, 44]. But we know
already that hyperbolic models are incomplete in the sense that shock admissibility criteria are
needed to make the models well-posed. It can be expected that the solution of mixed systems is
more sensitive to the choice of admissibility criteria than is the solution of hyperbolic systems.

Although it outside the scope of this paper go into details about admissibility criteria, we
mention that there are three dominating shock admissibility criteria presently in use: linearized
stability, viscous profile, and nonlinear stability. In particular, the viscous profile approach
has been popular, which essentially consists of adding an (artificial or physical) diffusion term
(0/0x)(D(®)(0®/0x)) to the right-hand side of (2) and then looking at traveling-waves solutions
to the resulting convection-diffusion system. Here D(®) is the diffusion matrix and “artificial
diffusion” refers to the choice D = eI for some small constant € > 0. For example, in most fi-
nite difference schemes the (numerical) diffusion is a polynomial in J¢(®). There are examples of
systems where the viscous profile criterion is insufficient to ensure uniqueness of the Riemann solu-
tions, although it includes and generalizes the other well-known entropy conditions (see [3, 49, 50],
and the references therein).

One such example is given by the mixed systems of conservation laws modeling immiscible
three-phase flow of water, gas, and oil in porous media (which usually contain elliptic regions) [7].
Similar to the polydisperse sedimentation models, three-phase flow models (when capillary effects
are ignored) are based on the mass conservation principle for each phase along with constitutive
assumptions such as Darcy’s law and empirical expressions for determining the three-phase relative
permeabilities as functions of the saturations of the phases. If the capillary pressure is taken into
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account, then the convection system becomes a convection-diffusion system with a (physical)
capillary diffusion matrix D (which we do not detail here).

As already mentioned, solutions of Riemann problems (with ‘elliptic’ data) display large-
amplitude rapid oscillations. In earlier times, there seems to have been a general opinion that
conservation laws should yield a satisfactory hyperbolic theory outside the elliptic region. How-
ever, recent work emphasizes a more primary reason for anomalous behavior: namely, linearized
instability of the full convection-diffusion system, rather than ill-posedness of the purely convec-
tion system (see [3] and the references therein). These two concepts coincide when the artificial
diffusion D(®) = eI, or more generally when convective and diffusive effects commute (which is
the case in most finite difference schemes). On the other hand, MAIDA and PEGO [52] show that
the structure of the diffusion matrix D is important when other (nonlinear) diffusion matrices
are considered. They develop a useful sufficient condition in terms of D and Jf for linearized
instability. The corresponding Majda-Pego instability region contains but is typically larger than
the ellipticity region, see [3]. Non-uniqueness or nonexistence of solutions to Riemann problems
(the latter manifests itself in terms of highly oscillatory measure-valued solutions) can occur in
the Majda-Pego instability region, even in zones of strict hyperbolicity. In particular, so-called
non-classical transitional shock waves occur generically in models for three-phase flow in porous
media. A transitional shock wave is sensitive to diffusion and hence it seems that capillary pres-
sure must be modeled correctly to calculate the flow [49]. The fact that transitional shock waves
are sensitive to the precise form of the diffusion matrix does not mean that they are unstable
solutions. However, since transitional shock waves cannot be determined without specifying the
diffusion, the systems that govern three-phase flow are physically and mathematically ill-defined
in the absence of capillary pressure. Furthermore, the same fact implies that numerical simulation
by standard hyperbolic difference schemes of flow containing such waves can be misleading. The
computed transitional shock wave, and therefore the overall solution, can be associated with nu-
merical diffusion instead of the physical capillary diffusion. On the other hand, numerical schemes
that resolve the parabolic system capture these effects.

To regard a system that changes type as an inviscid limit of a parabolic system is not entirely
satisfactory since, as was discussed above, the stability or admissibility of such shock waves may
depend on the form of the (nonlinear) diffusion matrices. For example, it is not clear what the
physical diffusion matrix should look like for the polydisperse sedimentation models studied here,
but computational and experimental studies of hydrodynamic diffusion [18, 24, 39, 46, 63] in poly-
disperse suspensions may offer guidance. This system is radically different from the three-phase
flow systems for which the capillary pressure model provides the correct form of the diffusion
matrix. Consequently, in view of the above discussion, it seems unlikely that the viscous profile
criterion will turn out to be useful in the study of shock waves for mixed systems of conservation
laws modeling polydisperse sedimentation. This motivates the search for “inviscid” stability cri-
teria for shocks in mixed systems of conservation laws. It is outside the scope of this work go into
details about this, but refer to [43] and the references therein.

Summarizing, it can be stated that the mathematical and numerical theory as well as the general
understanding of mixed systems has advanced significantly since mixed systems were first observed
in applications [7]. However, most essential problems have remained unsolved. In particular, there
exists no core theory and there is no general agreement on admissibility criteria for mixed systems.

Finally, we emphasize that the complicated shock wave structures [43, 44, 49, 50] that are seen
in the solutions of mixed systems are usually not observed experimentally. In the absence of
practical evidence, one is of course led to conclude that the main reason that mixed systems occur
is inappropriate modeling (mixed nature arises often from closure laws). This sharply contrasts
with the mixed systems studied in this paper. In fact, we have demonstrated that the occurrence
of elliptic regions is the origin of some of the unstable modes that clearly have been observed
experimentally, as discussed in Section 6.1.
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APPENDIX: EQUIVALENCE OF SURFACE AND VOLUME POROSITIES

Consider a polydisperse suspension of spheres sedimenting in a container of constant cross-
sectional area. Let a;(z,t) be the fraction of that area occupied by the ith species (i = 1,...,N)
at height z and time ¢. Then a; is non-negative and continuous, but not smooth [57]. The volume
fraction of the ith species in a region of height L is

6i(t) = %/0 ai(z,1) dz.

If a;(z,t) is stochastically stationary with z,

L L
E(qbi(t)):%é’ /Oai(z,t)dz :%/0 £ (ai(t)) dz

by Fubini’s theorem [21]. Thus &£(¢;(t)) = £(a;(t)) and E(#(t)) = E(a(t)), where a := a3 +--- +
any = 1 —e. Thus the surface and volume porosities are equal whenever they are stochastically
stationary. (This proof, which follows BLUM’s treatment [12], can be generalized to arbitrary
particles. In this case, a; has at most a finite number of small discontinuities [57] and therefore is
integrable.)

Since we are not concerned with small random fluctuations, we take ¢;(t) = €(¢;(t)). Thus, it
is natural to take

z+h
6i(2,t) = lim %/ £(ai(C, 1)) dC = & (as(z, 1)

h—0 —h

whenever the latter varies smoothly.
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