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ABSTRACT. We study a model of continuous sedimentation. Under idealizing assumptions, the
settling of the solid particles under the influence of gravity can be described by the initial
value problem for a one-dimensional scalar conservation law with a flux function that depends
discontinuously on the spatial position. We construct a weak solution to the sedimentation model
by proving convergence of a front tracking method. The basic building block in this method is
the solution of the Riemann problem, which is complicated by the fact that the flux function
is discontinuous. A feature of the convergence analysis is the difficulty of bounding the total
variation of the conserved variable. To overcome this obstacle, we rely on a certain nonlinear
Temple functional under which the total variation can be bounded. The total variation bound
on the transformed variable also implies that the front tracking construction is well defined.
Finally, via some numerical examples, we demonstrate that the front tracking method can be
used as a highly efficient and accurate simulation tool for continuous sedimentation.

1. INTRODUCTION

We consider a model of continuous sedimentation of ideal suspensions of small solid particles
dispersed in a viscous fluid. Under idealizing assumptions, the settling of the solid particles under
the influence of gravity can be described by the one-dimensional kinematic sedimentation theory
formulated by Kynch [25]. This theory models the suspension as a mixture of two superimposed
continuous media, the solid and the fluid. Its essential assumption states that if vs and vf denote
the solid and fluid phase velocity, then the relative velocity of the solids with respect to the fluid,
v = vs — vg, is a function of the local solids concentration « only, v, = v,(u). This assumption
is well justified for suspensions of small rigid spheres showing no floc structure or compressibility
effects. A thorough discussion of Kynch’s and related sedimentation models is provided in [6].

The basic balance equations are the continuity equations of the solid and of the fluid,

ug + (uvs)y =0, (1.1)
ug — (1= u)vf)z =0, (1.2)

where t is time and the vertical coordinate z is assumed in this paper to increase downwards. In
terms of the volume-average velocity of the mixture ¢ = uvs + (1 —u)v, the continuity equation of
the mixture, obtained as the difference of (1.1) and (1.2), can be written as g, = 0, i.e., q(-, 1) is
a constant function for each ¢ and is determined by boundary and feed conditions. In particular,
g = 0 in a closed settling column without in- or outlets.

In terms of the velocities v, (u) and ¢ = ¢(z,t), Eq. (1.1) can be rewritten as

ug + (g(z, t)u + u(l — u)vr(u))z =0.
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It is customary to introduce the so-called Kynch batch flux density function h(u) = u(1 —u)v,(u),
so that the governing equation takes the form

ut + (g(z, t)u + h(u))z =0. (1.3)

The function h reflects the material dependency of the suspension. The basic assumptions on h
can be stated as

supp (h) =1[0,1], h(u) >0 for we (0,1), A'(0)>0 and A'(1)<O0.

We have chosen the value “1” as the maximum solids concentration. Since it is not the purpose
of this paper to discuss the widest class of model functions, we simply assume h to be sufficiently
smooth. The vast majority of Kynch batch flux density functions h determined from settling
experiments in the literature have at least one inflection point, see [4, 6].

A very simple model for continuous sedimentation was studied by Bustos et al. [7], in which
Eq. (1.3) is restricted to a space interval, say = € [0, 1], corresponding to a cylindrical vessel, and
where the upper end z = 0 is identified with a feed inlet and the lower z = 1 with a discharge
outlet. The vessel is assumed to be fed continuously with feed suspension at the inlet (surface
source) and to be discharged continuously through the outlet (surface sink). The overflow of
clear liquid is not explicitly modelled. The volume average velocity is a function of time only,
q(t) = g-(t), where ¢, is a prescribed control function determined by the discharge opening. In
the model by Bustos et al. [7], Eq. (1.3) is provided with Dirichlet boundary conditions at z = 0
and z = 1 and appropriately studied in the framework of entropy boundary conditions [8].

This model, which was proposed first by Petty [27], has some severe shortcomings. Among
them is the lack of a global conservation principle due to the use of Dirichlet boundary conditions.
It is preferable to replace the boundary conditions at the ends of the vessel by transitions between
the transport flux ¢(z,t)u and the composite flux q(z,t)u+ h(u), such that the problem is reduced
to a pure initial value problem. Moreover, in a realistic model the feed suspension should enter at
a feed level located between the overflow outlet at the top and the discharge outlet at the bottom.
This gives rise to an upwards-directed volume average velocity ¢; < 0 above and a downwards-
directed velocity ¢, > 0 below the feed level. The feed source itself is modeled by a singular
source term. Such configurations were proposed by several authors [1, 9, 10, 26] under different
names such as clarifier-thickener units or high-capacity thickeners. Particularly thorough analysis
of clarifier-thickener models were presented by Diehl in a series of papers [12, 13, 14, 15].

It is such an improved model which is considered in this paper, and its main purpose is to
show that front tracking can be employed both as a means to show existence of weak solutions as
well as an efficient computational tool to compute approximate solutions of the clarifier-thickener
system. To put this observation in the proper perspective, we recall that the main idea behind
front tracking was introduced by Dafermos [11]. To illustrate it, consider the conservation law

us+h(u), =0, z€R, t>0; u(z,0) =uo(z), z€R, (1.4)

where ug is assumed to be piecewise constant. Then the entropy solution can be constructed by a
superposition of solutions of Riemann problems, i.e., solutions of the conservation law with initial
data consisting of two constant states separated by a simple discontinuity. If the flux h is piecewise
linear, each Riemann solution consists exclusively of constant states separated by shocks. When
waves from neighboring Riemann problems interact, the interaction will only involve constant
states and therefore lead to new Riemann problems and the construction can be continued forward
in time. Thus, the construction consists of solving Riemann problems and tracking straight-line
discontinuities. In the general case, the initial function is approximated by a step function and the
flux by a piecewise linear function. This way rarefaction waves are approximated by a sequence of
small shocks. Variants of the method have been used by many authors, see Holden and Risebro
[20] for the history and many references. In particular, Holden, Holden, and Hgegh-Krohn [19]
proved that the construction is well-defined and terminate in a finite number of steps, even for
non-convex flux functions, given a finite number of constant states in ug(z). Front tracking was
later formulated for hyperbolic systems by DiPerna[16], Bressan [2] and Risebro [28], who used
the method to give an alternative proof of Glimm’s famous existence result for hyperbolic systems.
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Very recently a modification of the front tracking method was used by Bressan, Liu, and Yang
[3] to prove that the limit of the front tracking sequence defines a continuous semigroup. The
front tracking method has also turned out to be a successful computational tool for systems of
conservation laws. For example, Risebro and Tveito [29, 30] used it to numerically solve the Euler
equations of gas dynamics and a non-strictly hyperbolic system modeling polymer flow, see [20]
for further references.

Variants of the front tracking technique based on Dafermos’ [11] have also been used earlier
to compute approximate solution to problems corresponding to batch sedimentation in a column
have been presented by Bustos and Concha [5] and Kunik [23, 24]. However, to apply front
tracking to the advanced clarifier-thickener model with continuous flow, one must be able to solve
Riemann problems that are nonstandard in that changes between flux functions, depending on the
space coordinate z, are involved. Such solutions were constructed by Gimse and Risebro [17, 18].
In [17] it was shown that under some mild conditions, Riemann problems with a discontinuous
flux functions always had weak solutions. Furthermore, one can always single out a unique weak
solution being the limit of a viscous approximation. The paper [18] considered the Cauchy problem
for a conservation law modeling two-phase flow in porous media, where the flux function depends
discontinuously on the spatial location.

It is the purpose of the present paper to demonstrate that under slight modifications, the
techniques advanced in [17, 18] also handle the non-standard Riemann problems occurring in the
present application.

The remainder of this paper is organized as follows: In Section 2 the mathematical model is
outlined. This model leads to three non-standard Riemann problems, whose solutions are con-
structed in Section 3. These solutions are then used as a tool in the front tracking algorithm used
to determine global weak solutions. In Section 4, we first formulate the front tracking method
for the clarifier-thickener problem. Then we show that the variation of a particular nonlinear
functional of the approximate solution constructed by front tracking, the so-called Temple func-
tional, is bounded. This result implies that the front tracking construction is well defined, in the
sense that there exist only a finite number of interactions between waves for ¢ > 0. Finally it is
shown that one can let the discretization parameter of the front tracking algorithm tend to zero,
which permits to conclude that a weak solution to the settler-clarifier problem exists, and that
this weak solution is a limit of a sequence constructed by front tracking. While we are in Section 4
mainly interested in proving existence of a weak solution, we demonstrate in Section 5 by three
numerical examples that front tracking provides moreover an efficient numerical tool for the actual
computation of weak solutions for practical problems.

2. THE MATHEMATICAL MODEL

Consider the configuration of Figure 1, where z = —1, 0 and 1 are assumed to be the levels
at which in normal operation, the clarified liquid leaves the equipment (overflow level), the feed
suspension in pumped into the unit (feed level), and through which the concentrated sediment
leaves the thickener (discharge level), respectively. At z = 0, the vessel is fed with fresh suspension
at a volume flow rate Qg (t) > 0. The volume flow rate of the discharge, @.(t) > 0 or equivalently
gr(t) = Qr(t)/S, where S denotes the constant cross-sectional area of the vessel, is also prescribed.
The volumetric balance of the mixture requires that

Q-(t) = Qi(t) + Qr(?). (2.1)

We assume that the volume flows satisfy Qr(t) > 0, Q,(¢t) > 0 and @;(t) < 0. Dividing (2.1) by
S shows that

a(t) =g (t) —Qr(t)/S <0 forz <0,

a1 = {qr(t) >0 for z > 0. (22)
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a(t) = Qu(t)/S

overflow level z = —1 + t

clarification zone

feed level z = 0 + *¢$+*+*+*¢*¢*+ qr(t) = Qr(t)/S, ur(t)

settling zone

T
-+

discharge level x = 1 -

FI1GURE 1. The one-dimensional clarifier-thickener model.

The prescribed local volumetric solids concentration of the feed flux is up(t). Consequently, the
solids continuity equation for —1 < < 1 can be written as

Qr (Hur(t)

S 7
where ¢ denotes Dirac unit mass located at = 0, and ¢(z,t) is given by (2.2). Expressing § as
the derivative of the Heaviside function H and noting that

u + (g, Oyu + h(w)), = b(z) (2.3)

Qr(t)
S )

q(z,t) = q(t) + H(z)(g-(t) — a(t)) = at) + H(z)
we can rewrite (2.3) as

ug + (q(x, t) (u - up(t)) + q(t)ur(t) + h(u))m =0.

Taking into account that the Kynch batch flux density function h is zero outside the interval
(=1,1), we finally obtain the conservation law

ug +g(z,t,u); =0, z€R t>0 (2.4)
with the composite flux density function
a(t)u for z < —1,
t h for —1 0,
oot u) = qi(t)u + h(w) or —l<z< (2.5)
@ (t)u+ h(uw) + (@ (t) — ¢ () ur(t) for0<z <1,
gr(t)u+ (@(t) — ¢ () ur(t) for z > 1.

For the remainder of this paper we regard ¢;(t), ¢-(t) and ur(t) as independent control variables
satisfying ¢;(t) < 0, ¢-(t) > 0 (then we always have Qr (t) = S(g-(t)—q/(t)) > 0) and 0 < up(t) < 1.
We shall also also assume that the control variables ¢;, ¢ and 0 < urp < 1 are constant with respect
to t (but see Section 5).
Thus the model we consider is the following
us+g(z,u); =0, z€R t>0, u(z,0) =uo(z), z€R (2.6)

By a solution we understand a weak solution in the usual sense, i.e.,

//(ucpt + g(z,u)p, ) dtdz + /ug(a:)cp(x,O) de =0 (2.7)
m

R
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FIGURE 2. The Kynch batch flux density function h(u) = Zlu(1 — u)?.

for all test functions ¢ € C§° (II), where II = R x [0, 00). The flux function g is defined according
to (2.5)

Qv for z < -1,
g(z,u) = f(CI(-T);U) for -1<z<1, (2.8)
gru+ (@ — go)up  for z > 1.
Recall that q; <0 < g.. The “interior” flux function f is defined as

flg,u) = q(u—ur) + h(u) + qur. (2.9)
For the plots and numerical examples in this paper we have used the function
27
h(u) = T u(l —u)?, (2.10)

see Figure 2. The mixture flow velocity ¢ has a discontinuity at = 0,

q forzxz <O,
q(z) =
qr forxz > 0.

3. SOLUTIONS OF THE RIEMANN PROBLEMS

Now we shall solve the Riemann problems at the discontinuities of g(-,u). In this we follow
Gimse and Risebro [17]. First we describe the Riemann problems at the overflow and discharge
levels x = F1, each of which involves one linear and one nonlinear flux function.

For z = —1, the left flux function is given by f;(u) = qu and the right flux function given by
(2.9) with ¢ = ¢;. Precisely, we wish to solve the initial value problem (2.6) around z = —1 and
for small ¢t where

w forx < —1,
= 3.1
uo(2) {ur for z > —1. (3-1)

There are two cases to consider depending on the sign of f (q;,u,). Let @ be defined by
f(@,a) =0 and @ >0. (3.2)

If f(q,ur) > 0 or u, < i, then the solution is given by a discontinuity moving to the left with
speed ¢, separating u; and 0, and a discontinuity moving to the right with speed f (q;,u;,) /ur,
separating the values 0 and u,. If u, > 4, let uy, be given by uym = f (¢, ur) /@ (see Figure 3).
Then the solution is given by a discontinuity moving to the left with speed q;, separating u; and
Um, and a discontinuity located at x = —1 separating u,, and u,.. These two cases are shown in
Figure 3.
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f(QJ,U) f(qhu)
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Um
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qu qu

FIGURE 3. Construction of the solution of the Riemann problem (3.1) centered at
z = —1 with u, < @ (left) and u, > @ (right).

For z = 1 the situation is slightly different since f (g, u) can have both a local maximum and
a local minimum for u between 0 and 1. Now we wish to solve the Riemann problem defined by
the initial datum

w; for z <1,
= 3.3
uo() {ur for z > 1. (3:3)

Let fmin denote the value at the local minimum, and @ the corresponding u value, i.e.,

f (qTJ ﬁ) = fmin, (3.4)
and define u to be the unique solution of
f (qraﬂ) = fmin; (35)

where u < @. Then the solution of the Riemann problem depends on whether w; is in the interval
(u, @) or not. If u; € (u, i), then the solution is given by a composite u wave from u; to 4, followed
by a ¢ wave with zero speed from % to u,, and then by a wave with speed ¢, from uy, to u,. Here
the term “composite wave” means a wave consisting of a shock followed by a rarefaction. The
right middle state up, is given by

_ fmin + (qr - QI)'U/F
qr

Um

If u; & (u, @), the solution is similar to the second case at £ = —1. Now the solution is given by a
q wave of zero speed from wu,. to u,,, followed by a right wave of speed ¢, from uy, to u,.. Now the
middle state uy, is given by

f (qT7ul) + (QT - ql)UF‘
qr

Note that the state immediately to the left z = 1 is always in the set [0,u] U [G,1]. See Figure 4
for an illustration. For later use we shall refer to the waves moving out of the interval [-1,1] as
left and right waves respectively. The waves with zero speed sitting at £ = F1 we call left or right
boundary waves. The waves moving into the region [—1,1] we label u waves.

The Riemann problem defined by the discontinuity in ¢ at x = 0, which includes the feed
mechanism, involves two nonlinear flux functions on either side and is therefore more complicated,

Um =
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f(gr,u) f(gr,u)

U
u'l"
aru+ (@ — ¢r)ur gru+ (@ — ¢r)ur
FIGURE 4. Construction of the solution of the Riemann problem (3.3) centered at z = 1
with w; € (u, u) (left) and w; & (u,u) (right).
but also covered by the general theory in [17]. This Riemann problem is given by
ug + f(q,u)z =0, (3.6)
w;  for z <0, q forz <O,
u(z,0) = q(x) = (3.7)
u, for z >0, qr forz >0,

where ¢; < 0 < g,. Here we will demonstrate that there exists a unique entropy solution for all
u; and u, in [0,1], in the sense that this solution is the limit of a viscous approximation.. This
solution consists of u waves, over which ¢ is constant, and a ¢ wave, separating ¢; and ¢,.

For simplicity, we shall assume that f(g,u) is strictly monotone along the transition curve

T:={(u,q) : duf(q,u) =0},

which is the curve in the (u, ¢)-plane that joins the local extrema of f(g,-) with respect to u, see
Figure 5. This means that the control parameters ¢;, ¢, and up are chosen in such a way that

0
6—5 #0 onT, (3.8)
which then implies that

either u —up <Qoru—urp >00nT.

We shall assume that the left inequality holds on the left branch of the transition curve, and the
right inequality holds on the right branch. Furthermore, we shall assume that g, is so small that
f(gr,u) has both alocal maximum and a local minimum in (0,1). We set ¢ to be the largest value
of ¢, for which this is the case. If h(u) is chosen as (2.10) we find that § = 9/4. Thus in this case
we have the the following restrictions on up:

qr < 2, and ﬂ <up < w (39)

4 3 3

We point out that the restrictions (3.9) are not really necessary and are stated for convenience
only, since they give fewer cases to discuss when solving the Riemann problem at z = 0.

For later use we depict this solution in the (u, ¢) plane, see Figure 5. We start at a point (u;, q;)
on the line g; x [0, 1] and move on a gray path to the point (u,, ¢,). There are two cases to consider
depending on the location of u;. Let fmax be the local maximum of f(g,,u) (such a maximum
exists for ¢, < q), and let u; < us2 denote the solutions of

f@,w) = f(@,u2) = fmax- (3.10)

The set of all points (u,q) satisfying f(g,u) = fmax is shown as a dotted curve in Figure 5.
Similarly, if f (¢, u) has a local minimum in w, then we let fu,in denote this value, and let us be
the unique solution of

[ (@, u3) = fmin- (3.11)
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q f(u7 q) = fmax q

0 w1 im Uz U3 1

FIGURE 5. Solution of the Riemann problem (3.6) located at x = 0 with u; < u1 (left)
and u; > u; (right).

The solution path is depicted as a gray path in the figures. The horizontal segments are u waves
while the segments that move on contour lines of f(g,u) are ¢ waves. To find a particular solution,
follow the gray path from (g;, ;) (on the lower horizontal line) in the direction of the arrows to
the any point (g, ur).

For example, assume that u; < wui, i.e., we are in the first case, and that u, lies to the right
of the local minimum. Then the solution is given by a u wave connecting u; and ug, followed by
a q wave connecting (u3, q;) with the local minimum, given by the point @, where 4 is defined by
(3.4), where the right branch of T intersects the line ¢ = ¢, and finally a u wave connecting the
U t0 Up.

As another example consider the case where u; is between 4, and us, and u,. is to the left of the
local maximum of f(g.,u). Then, according to the right part of Figure 5, the solution consists of
a u wave from u; to us (this wave will be a shock wave), followed by a ¢ wave connecting (u;, q;)
with (4, g,), where 4 is the local maximum of f(q,,u), followed by u wave from 4 to u, (this wave
will be a rarefaction).

Finally, we mention that any Riemann problems occurring inside the intervals (—1,0) or (0,1)
are Riemann problems for a single scalar conservation law, and are solved by taking the envelope
of the flux function, see [20] and Chapter 5 of [6]. Riemann problems outside the interval [—1, 1]
are Riemann problems for a linear equation, and their solution is trivial.

4. FRONT TRACKING

4.1. The front tracking procedure. Now that we have determined the solutions of all non-
standard Riemann problems occurring in our application, we can employ them as a tool for
constructing approximations to more general Cauchy problems. The front tracking algorithm we
construct closely resembles the ones used in [18, 21, 22]. These algorithms are all based on the
fact that for a scalar conservation law of the form

ug + Fu), =0, u(x,0) =uo(x),

one can construct the exact entropy solution if F' is piecewise linear on a finite number of intervals,
and ug takes values in the set of breakpoints of F' [19]. We shall make piecewise linear (in u)
approximations to f(q;,u) and f (g, u) in such a way that the solution of the Riemann problem
at x = 0 is easy to compute.
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To be specific, choose a (small) positive number 6. Let 4; and @y denote the local extrema of
f(gr,u). For i =0,F1,F2,... let u;(q) denote the solutions of

faui(Q) = fi, fi=id. (4.1)

In other words, the curves u;(q) are the contour lines of f in the (u,q)-plane.
With a slight abuse of notation, we define for ¢ = ¢; and q = g, the finite sets of points

{uz(qT)} = {Oaalaﬂaa ]-} U {U’L(qT)} N [Oa l]a {Uz(CIl)} = {0,U1,U2,U3, 1} u {uz(ql)} n [Oa l]a
where w1, uz and ug are defined by (3.10) and (3.11)
Ha,ur) = f(ai,u2) = f(@r, @) = fmax and  f(q,u3) = f(gr, %) = fmin,

see also and Figure 5. We order the set {u;(q)} so that u; 1(¢) < u;(¢g). Then we define a
piecewise linear (in u) approximation to f(g,u) by

f (g, u+1(9) = f(g,u;(q))
ujy1(q) —uj(q)

F(aw) = £ (a,ui(a) + (u—uj(q)) for u € [u;(q),ujr1(9)], (42)

for ¢ = ¢; or q,. Note that for a fixed (constant) g, the entropy solution of the initial value problem
ut+f6(q7u)$ =0, u(m,O) =u0($)7

can be found by front tracking if ug is piecewise constant, see [19]. Furthermore, if ug takes values
in the set {u;}, the solution will also take values in this set.

Note also that by construction of f°, the solution of the Riemann problems in case f is replaced
by f?, can still be described by Figure 5 for = 0 and by Figures 4 and 3 for z = F1. The
breakpoints of f° are also chosen such that if for some j the points (g;,u;) are connected to (g, u)
by a g wave, then v € {u;}. This means that if u; and uj are breakpoints, the solution of the
Riemann problem

ug + fO (q,u), =0, wu(z,0)=u; forz <0,
u + 0 (gr,u), =0, u(z,0)=u; forz>0

will take values among the breakpoints. Also, since the flux function is linear outside [—1, 1], then
a similar observation is valid for Riemann problems defined at z = F1. Since f? is piecewise
linear, the solutions of these Riemann problems will be piecewise constant, and the discontinuities
will move with finite speed.

Now we are ready to define the front tracking approximation to (2.6). Let

qu for x < —1,
¢ (z,u) = < fO(q,u) for-1<z <1, (4.3)
gru+ (@ —grup forl<u,

and let u3(z) be a piecewise constant approximation to ug taking values in the set {u;}. We define
u9 to be the weak solution to

ug +9° (z,0°), =0,  u(2,0) = ug(a). (4.4)
The weak solution u? is constructed as follows: First we solve the Riemann problems defined by
the discontinuities of u§ and at the points z = F1 and z = 0. This will give a finite number of
discontinuities emanating from the discontinuities of u3, # = F1 and z = 0. When these collide,
we can solve the Riemann problem defined by the state to the left and right of the collision. This
Riemann problem will be of the same type as the initial Riemann problems. Therefore we can
continue this process for as many collisions as we like, see [19, 20]. In the next section, we shall
see that there will only be a finite number of collisions for all ¢ > 0, and hence 4% can be defined
for any t.
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4.2. The Temple functional. As in [18, 21, 22, 31], it is difficult to show that 4 has bounded
variation, so instead we choose to bound the variation of a nonlinear function of u’. Let ¥ be
defined as

(g, u) = / C10uf(0,6)] e + £(0,0), (45)

and set z = ¥(q,u). In other words, ¥ is a real function of two real variables ¢ and u. Roughly
speaking ¥ (g1, u1) — ¥(gs,u2) measures “how many” contour lines separate (g1, u1) and (g2, u2).
The functional ¥ has become known as the Temple functional [31]. Note that ¥ is one-to-one
and regular everywhere except on 7. We can now view the front tracking solution u? as a sequence
of waves or fronts, left, boundary, u, ¢ or right, going from the left to the right. We label each
such front
W/l ) Wlb ) W’u ’ Wq and Wrb

respectively. Each of these waves connect a left state (u1,q1) to a right state (uz2,g2). We define
the strength of a front according to its type. For a u front W, we define the strength as

F (W) = |2 (g,u1) — 2(q, u2)] - (4.6)
For a left front W; we define the strength as
F(Wi) = |@i (w1 — u2)|, (4.7)
since for a W; front ¢1 = g2 = ¢;. Similarly for a right front W, we define the strength as
F(W,) = g, (ur —w)]. (48)

For q fronts the definition of the strength is more complicated. Let umax be the local maximum
of f(qi,u), and set
L= f((Il; umax) - fmax
(recall that fmax is the local maximum value of f (gr,u)). For a q wave to the left of the left
branch of T', we define its strength as

F(W,) =4, (4.9)
and if the g wave is to the right of the left branch of T, its strength is defined to be
F(W,) =2¢. (4.10)

It remains to define the strength of the boundary waves. Recall that these are waves of zero speed
connecting the interior flux function f(g,u) to the linear flux functions qu or ¢, (u — ur) + qur.
We start by defining the strength of a left boundary wave. If Wy, is a boundary wave connecting
uy and usg, then

0 if uy = ugy =0, (4.11)

F(Wy) = {
where @ is defined by (3.2), i.e., f(q, %) = 0 and @ > 0. In other words, if the solution of the
Riemann problem at the left boundary gives a wave moving with positive speed, then the strength
of the boundary wave is zero.

We define the strength of the right boundary waves in an analogous manner, though the sit-
uation is more complicated since f(g,,u) can have a local minimum. Then the strength of the
boundary wave separating u; and us is defined to be

F(Wb ) — |z(q7“5 ]‘) - Z(qr,@” lf Ul S Q: (412)
" |z(qr, 1) — 2(qr,@)| if us > @,

|2(qi, @) — 2(q1,0)| otherwise,

where u and @ are defined by (3.5) and (3.4) respectively. Recall from Section 3 that u; cannot
be in the interval (u,a).

The front tracking construction u° can be seen as a sequence of wave paths in the (u, ¢) plane;
WiWs --- Wy For any connected sequence of wave paths, we define F' additively

F(u) = F(WiWy---Wy)=>_ F(W;). (4.13)

)
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Fla,) Case A Fla,u) Case B

Ur

[
<

Uy Uy

qu qu

FIGURE 6. The solution of the Riemann problem at x = —1. Left: u, < i, right: u, > 4.

Let 2% = ¥(g(z),u’), then we have that

|z6|B.V. <F (“6) -

1

This inequality holds since z° is a piecewise constant function in z for each ¢. Hence |z‘5| By 18
the sum of the absolute value of the jumps in z°. For any front W separating z; and z, we have
that
|21 - 252| S F(W)
Furthermore, we have the following crucial lemma:

Lemma 4.1. Let w = (q,u), and let [w;,w,] denote the wave path from w; to w, defined by the
solution of the Riemann problem with left state w; and right state w,.. Let v be any other wave
path from w; to w,., then

F ([wi,w,]) < F(). (4.14)

Proof. First we note that if the wave path is a sequence of 4 waves, then the lemma holds, since
the Riemann solution will be the wave path defined by the horizontal line in the (u,q) plane
connecting w; to w,. This is clearly the “shortest” wave path with respect to F'. Next we consider
the Riemann problem at the left boundary, x = —1. Let @ be defined by (4.4). The solution of
the Riemann problem depends on whether u, < @ or not. If u, < @ (Case A), then the solution
is as indicated in Figure 6. We have that

F ([wi,we]) = gl + [2(q, ur) — 2(q,0)] -

It is clear that any other path connecting w; to w, passing through flux values outside the interval
[qiu, f(qi, ur)] will have an F value larger than F [w;, w,]. Furthermore, any path passing through
points f(q;, u) where u > u, will have a larger F' value, since such a path will either pass the same
point f(g;,u) twice, or else involve a boundary wave with zero speed, which will make the F value
of the path larger. This shows that in Case A, the path defined by the Riemann solution has the
smallest F' value.

If u, > @ (Case B), then the solution of the Riemann problem is consists of a left wave and a
boundary wave, see Figure 6. Now

F([wy, wr]) = |qw — fa, ur)| + |2(q, @) — 2(q,0)].

Also in this case any path involving flux values outside [guy, f(q;, u,)] will have a larger F' value
than the Riemann solution. Furthermore any path with a single boundary wave inside the region
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f(%\ Case C flgr,u) Case D

Up Up

¢ru~+ (@ — gr)ur ¢ru~+ (@ — gr)ur

FIGURE 7. The solution of the Riemann problem at z = 1. Left: v < uw; < @, right:
u < U.

qiu and to the left of f(q;,u) will have the same F' value as that of the Riemann solution. Note
that a boundary wave from u = 1 to u = 1 will not decrease F, since this wave will have strength
|2(qr, @) — 2(q1,0)|. This shows the lemma in this case.

For the Riemann problem at z = 1 the situation is similar. Recall that 4 denotes the local
minimum of f (g, u), and that u is defined by f(g,,u) = fmin- f u < u; < @ (Case C), the solution
of the Riemann problem is given by a left moving u wave, and a boundary wave followed by a
right wave, see Figure 7. In this case

F([wl)wT‘]) = |Z(QTaul) - z(‘]ma” + |z(QTa'a) - 2(qr, 1)| = |Z(qr, 1) - Z(‘]ra“l” .

If we choose a boundary wave path passing below the line f = fmin, the resulting F' value will
be larger, and also if we choose a path that is not monotone in u before the boundary wave,
the F' value will be larger. This finishes the proof of the lemma in Case C. If u; < u (Case D),
the solution of the Riemann problem consists of a boundary wave followed by a right wave, see
Figure 7. In this case

F ([wi, wr]) = |2(gr, 1) — 2(gr, w)| + [£(gr, wt) — gr(ur — ur) + quur|,

where the last term is the strength of the right wave propagating into the region z > 1. For
another wave path connecting (g,w;) and (g.,u,), its F' value will be strictly larger if it passes
through points in the interval (u,@). Otherwise it will be the same as the F value of the Riemann
solution. Hence the lemma holds in Case D. Finally if u; > a, it is easy to see that the lemma
holds.

For the proof of the lemma for a Riemann solution at = 0, the reader should consult Figure 5.
First we note that any path that is non-monotone on the horizontal lines ¢; and ¢, will have an
F value greater than that of the Riemann solution. By “non-monotone” we mean that the path
must be strictly increasing or decreasing in u for constant ¢, it can however be increasing on the
segment ¢; and decreasing on the segment ¢, or vice versa. Hence, we need only consider wave
paths that have this monotonicity property when proving the lemma in this case. We call such
paths u-monotone.

We start by considering u; < u1, and u, < 4, where 4 is largest solution of f(q.,u) = f(qi,u)-
Then the Riemann solution is given by a ¢ wave separating (u;, q;) and (um,g.) followed by a u
wave separating (um, ¢-) and (u., ¢,), and

F ([wi, wp]) = 40+ [2 (gr, um) = 2 (¢r, )| -

Let W denote the g wave to 4. Any u-monotone wave path connecting (v, q;) to (u, ¢,) with a g
wave to the left of or equal to the W will have the same F' value as that of the Riemann solution.
Wave paths that involve a ¢ wave that is to the right of W will have a larger F' value.
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Next we assume that w, > 4. Then any u-monotone wave path, that is also increasing on the
segment q;, will have the same F' value as that of the Riemann solution. Any path that is not
increasing on the lower horizontal segment will have a larger F' value. This proves the lemma, if
u < Ujp.

Finally, we assume that w; > u;. Then any u-monotone wave path that is monotone on the
lower horizontal segment for u > us, will have the same F' value as that of the Riemann solution,
whereas any wave path that intersects the the lower segment for some u < u;, will have a larger
F' value, unless u; = u1, in which case the F' value will be that of the Riemann solution. This
concludes the proof of the lemma. O

An immediate consequence of this lemma is that
F (2°(t)) < F (2°(0)).

In particular the total variation of 2% is uniformly bounded, independently of 6. Thus we have
shown

Lemma 4.2. Let u’(x,t) denote the front tracking approzimation defined in Section 4.1, and let
2 (z,t) = ¥(q(x),u’(2,1)),
where U is the mapping defined in (4.5). Assume that |¥(q(x),uo(x)|g . is finite, then
|2°( <C,

for some constant C independent of § and t.

’t)|B.V.

Now we shall use Lemma 4.1 to show that the front tracking construction is well defined, in
particular that there exists only a finite number of interaction between fronts for ¢ > 0. To this
end, we shall study some types of collisions closer.

First, if the colliding fronts are both u waves, and the collision results in an increase in the
number of fronts, then F(u?) after the collision is strictly smaller than F(u%) before the collision,
see, e.g., [19, 20]. We also have that if two fronts collide, and n > 1 fronts results from the collision,
then F decreases by at least (n — 1)4.

Next we consider collisions of u fronts and the boundary fronts.

We start by studying collisions between the left boundary front and a u front. Note that such
a collision always will result in a left front and a boundary front, and possibly a “reflected” u
front. Assume that this collision results in three or more fronts. Let the boundary front before
the collision separate u; and u,,, and the u front separate u,,, and u,. We have that f(q;,un) <0,
and if the collision results in more than two fronts, f(q;,u,) > 0. Let W}, denote the wave path
connecting u; to u,, followed by the wave path connecting u,, to u,, and W, the wave path of the
Riemann solution defined by w; and u,.. Now, W, must be as the left hand side of Figure 6, since
we have a front moving to the right. Furthermore, f°(g;,u,) > 0, which by construction implies
that f%(q;,u,) > 6. Therefore

F (W) = |z(qi, ur) — 2(@, um)| + |2(q1, @) — 2(q1,0)|
= |z(q, ur) = 2(@, @)| + |2(q, @) — 2(q, um)| + |2(@, @) — 2(q,ur)| + |2(q, ur) — 2(q, 0)]
>0+ |2(q, @) — 2(q, um)| + 6 + |2(q, ur) — 2(qr, 0)]
=20+ F(W,). (4.15)

Regarding collisions by a u front from the left with the right boundary front, we have that if this
collision results in more than two fronts, the middle state uy, must be smaller or equal to u, and
the left state greater than u. In this case an easy calculation shows that (4.15) holds.

Since F (u°(0)) is finite, and decreases by at least § each time a front is “reflected” from one
of the boundary fronts, since F' > 0, it follows that this can happen at most a finite number
of times. Hence after some finite time, t5, any front colliding with the boundary fronts will be
“transmitted”. From these observations, it follows that after a finite time tj, there will be no u
fronts with a non-zero speed inside the interval [—1, 1], and hence, for a fized &, there will only be
a finite number of collisions between fronts in u®. We also have by construction that u’ is a weak
solution to (4.4). We summarize this observation as a lemma.
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Lemma 4.3. Let u®(z,t) be the front tracking construction defined in Section 4.1, and assume
that |z‘5(-,0)|B.V. is finite. Then u’(x,t) is a weak solution to the initial value problem

uf +¢°(z,u), =0, z€R, te€ [0, 0),

where g° is defined by (4.3). Furthermore, u’ can be computed using only a finite number of steps.

Proof. We have already shown that u® can be computed in a finite number of steps, since to define

u? we only have to solve a finite number of Riemann problems, and to calculate when and where

a finite number of interactions occur. Also, by construction, u? is a weak solution. a

Remark. A numerical method that can calculate an approximation for all times ¢ in a finite
number of steps is often called “hyperfast”. Therefore, in this terminology, front tracking is a
hyperfast method for the initial value problem (1.3).

4.3. Compactness. Note that from the definition of z it now follows that

|9° (2, (1) | 5.y < M,

for some finite constant M not depending on § or ¢. Let ay(t) be a smooth approximation to the
characteristic function of the interval [y, 73],

ah(t) = X[r1,m2] * wh(t)a

where wy, is a standard mollifier with radius h. Then we use the test function ¢(z,t) = ¢(z)ap(t)
in (2.7), where ¢ is any smooth function with compact support. We let h — 0, and find that

/¢(a;) (W’ (z,72) — v’ (z,71)) dx+]2/¢'(a:)g5 (z,u®(z,t)) dzdt = 0.
From this WeRﬁnd that n
47 =)y = st R/ #(z) (u° (2, 72) = (2,7) da
< [

T1

<M(re—m11). (4.16)
Now we have established that u? is well defined for any ¢ > 0, and satisfies the estimates
122G oo ) < M, VE> 0, (4.17)
12°(,t)| 5 <M, VE>0, (4.18)
||z6(-,t) - z‘s(-,s)”Ll(R) <M(t-s), Vt,s>0,t>s. (4.19)

for some finite constant M independent of ¢ and ¢. To see that the last bound, (4.19), holds, we
observe that

[ ouswel di‘ < fur — us] | fllgsp -

1

|2(q, u1) — 2(q,u2)| =

From the bounds (4.17), (4.18) and (4.19) it follows from standard theory that the sequence {z°}
is strongly compact in L{ . Consequently, a subsequence, still labeled {2°}, converges a.e. and in

L} . to some function of bounded variation 2. We define

u(,t) = ¥~ (g(2), 2(z, 1)) (4.20)
Since u® = ¥~!(2%) and ¥~ is continuous, we also have that u’ converges a.e. and in L{,, to u,
and u is a weak solution to (2.6). The fact that u is a weak solution follows since u’® is a weak
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9(z,u) 9(z,u)
0.8 0.8
0.6 0.6
0.4 qu + h(u) 04 qu + h(u)
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0 PN u 0 u
0. 0.4 0.8 1 0.2 - 0. 0.8 1
~0.2 up ~0.2
—-0.4 qu —-0.4 qu
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¥ -1.2 qru + (qr - QI)“F‘
—fr

FIGURE 8. The flux density functions for Example 1 (left) and Example 2 (right).

solution of (4.4). For we have that

//u(,@,g-i-g(.z’,u)cpz dmdt+/ug(x)cp($,0) dx

jul

R
< // lu — v ¢y d:cdt-l—// |9(z, u) — ¢°(z,u)| |z | dadt
i I

+ / lu(z,0) -’ (z,0)| [z, 0)] da+

— 0, when é — 0.

Hence we have proved the following theorem:

Theorem 4.1. Assume that the coefficients q, g, and up satisfy the assumptions (3.8), and that
ug 14s such that |z(uo)|gy is finite. Then there exists a weak solution to (2.6), and this weak
solution is is a limit of a sequence constructed by front tracking.

5. NUMERICAL EXAMPLES

Since the front tracking construction is a numerical method, we present here some examples
where we have implemented the front tracking method.

5.1. Constant initial, boundary and control parameters. In the first two examples, we
start from a clarifier-thickener which is initially full of water, i.e., ug(z) = 0 for z € R. At t =0,
we start to fill up the vessel with feed suspension of the concentrations ur = 0.7 in the first and
urp = 0.8 in the second case. In both examples we select ¢ = —1 and ¢, = 0.6. Figure 8 shows
the plots of the four flux density functions involved for each of both examples. These parameters
have been chosen in such a way that the structures of the entropy solutions coincide with those
of Example 1 and Example 2 by Diehl [15], for which analytical and, in the case corresponding to
our choice urp = 0.8, numerical solutions obtained from Godunov’s method are presented.

A detailed construction of the entropy solutions is given in [15]. In both cases, the control
parameters satisfy

UFQF = UF(QT - QZ)S = 1.6upS > umaer (51)
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FIGURE 10. Example 1: Concentration profiles at selected times.
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0.1 02 03 04 05 06 07 08 09 w1

FIGURE 12. Example 2: Concentration profiles at selected times.
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time interval aQ qr Up
0,0.25) -0.50 | 0.40 | 0.80
0.25,0.5) -0.75 | 0.80 | 0.40
0.5,0.75) -0.50 | 0.40 | 0.80
0.75,1) -0.75 | 0.80 | 0.40
1,1.25) -0.50 | 0.40 | 0.80
1.25.1.5) -0.75 | 0.80 | 0.40

TABLE 1. The parameters for Example 3.

which means that the solids feed rate in these example always exceeds the maximum possible solids
discharge rate umax @ > u(1,t)Q,. Thus the clarifier-thickener is overloaded and one expects that,
since the settling zone can not handle the solids feed flux, solids pass into the clarification zone
and will eventually leave the unit through the overflow level.

The main qualitative difference between Examples 1 and 2 lies in the behavior at the feed
level x = 0 for small times. In the first case, with ugp = 0.7, this Riemann problem produces
a downwards propagating fan, and the concentration in the clarification zone remains initially
zero, while for up = 0.8, the local maximum of f(g,,u) is negative, and we obtain a centered
wave including positive and negative speeds, and the solids will propagate immediately into the
clarification zone.

We set the parameter § = 1/80 in the first two examples. In Figure 9 we show the fronts of
Example 1 in the (¢, z)-plane, while Figure 10 displays the same result as concentration profiles at
selected times. Figures 11 and 12 display the same types of results for Example 2. The numerical
results are as expected from the findings of Diehl [15]. Observer that the step-like solution behavior
in the thickening zone as seen in Figures 10 and 12 corresponds to regions of continuous transitions
of the true entropy solution. Finally, we find confirmed that the solution of Riemann problems at
z = —1 and z = 1 leads to significant changes of the solution values with respect to height: the
concentration near the bottom is increased, while the overflow concentration is decreased. This
contrasts with the results obtained by using entropy boundary conditions [8].

5.2. Time dependent coefficients. It is clear that the analysis of Sections 3 and 4 remains
valid if the control parameters q;, ¢, and up are piecewise constant functions of t. Assuming that
to = 0 and that the parameters are constant in the time intervals [t;,t; 1) for i > 0, we can use
front tracking to find a weak solution in each interval [t;, ¢;41), and therefore in [0, T7.

To demonstrate this, and to show that front tracking method is able to handle initial data that
are not necessarily constant, we show an example where the control parameters are as in Table 1,
and the initial data are given by

ug(xz) =0.5+0.3 sin<27r max (—1, min(z, 1)))

For this example, we have used § = 0.005. In Figure 13 we show the initial data and the final
result, and in Figure 14 we show the fronts in the (¢, z) plane.
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