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Abstract

The results of computations with ten finite difference schemes on a suite of one-dimensional
and two-dimensional test problems for the Euler equations are presented in various formats.

Keywords: Euler, Riemann problems, finite difference schemes, splitting

1 Introduction

Hyperbolic conservation laws, and the Euler equations of compressible fluid dynamics in particular,
have been the subject of intensive research for at least the past five decades, and with good reason.
The applications are many - aircraft design, stellar formation, weather prediction to name only
a few. There are some theoretical results [1, 2, 3], and we strongly recommend the pre-print
server web site [4] for the many papers there on theoretical and numerical aspects of hyperbolic
conservation laws. Even if the theory were perfect the applications would not be possible without
methods for obtaining approximate solutions. The unfortunate situation here is that rigorous
error estimates for supposed approximate solutions are almost entirely nonexistent, but see [5] for
a modest beginning. So, it is universally recognized that tests of methods on difficult problems
are essential.

Invariably, any published proposal for a new numerical method will include some actual cal-
culations, and these are clearly too numerous for us to catalogue. The book by Pat Roache [6]
contains many early references, and the many fine texts now available (for example, [7, 8]) also
contain references to calculations. Our concern here is to compare the behavior of some methods
to each other on problems that seem to us to be sufficiently difficult and representative to enable
the reader to draw some conclusions about the applicability of these methods. The now classic
work of this nature is the paper by Gary Sod [9]. It showed up the shortcomings of schemes such
as Lax-Wendroff and Lax-Friedrichs, and was very influential in the development of new methods.
The one dimensional Riemann problem used by Sod in his tests is widely known as Sod’s problem.
Although it does show the ability of a method to resolve a rarefaction, a contact, and a shock,
these waves in Sod’s problem are not particularly strong.

A more difficult set of one-dimensional problems has been considered by E. Toro [10], and in
that book Toro describes in detail several popular methods and shows their behavior on his tests
all of which have easily computed exact solutions. We have included five of Toro’s test problems,
but we have gone beyond those to include some interesting two-dimensional tests, including one
from [10]. In so doing, however, except in one case we no longer have exact solutions available, so
a definitive objective evaluation of the validity of the solutions obtained is not possible.

Lagrangian methods, finite element methods, particle methods, kinetic and relaxation methods
are not considered, nor are other systems of equations such as magneto-hydrodynamics.

OUTLINE: A detailed self-contained discussion of the ten schemes we have chosen would be
impractical for this already rather large report, therefore in the next section we present only very
briefly the basic ideas and references. Following that are three groups of tests. The first group
consists of seven 1D Riemann problems plus the Woodward-Collela blast wave problem. The
second group contains six 2D Riemann problems. The third group includes several 2D problems
with unstable interfaces, plus one with an infinite strength shock. For each group the data are
given, and then for each test in the group the output of the ten methods is collected. We also
include some comments about the behavior of the various schemes. In those cases for which we
do not have the exact solution, the comments are highly subjective.

3



DISCLAIMER: Modifications had to be made to fit the various codes into our data structure.
Bugs are always a possibility in that case, so we cannot guarantee that all schemes are functioning
exactly as intended by their creators.

2 Finite difference schemes

Here we provide a short summary and references for all schemes used in this comparision project.
We have chosen 10 methods that we feel are representative of the different basic finite difference
approaches to solving hyperbolic conservation laws.

Two of the methods described below are dimensionally split, namely, PPM and WAFC. While
we have chosen to describe all methods in only the most general terms, it is necesary to expound a
bit here on the notion of dimensional splitting. Some have described this technique as ill-advised
and inefficient, but we have found just the opposite to be the case, as have its defenders. For a
system ut + fx + gy = 0 the time step is split into two parts. In the first, the equation ut + fx = 0
is advanced by a one-dimensional scheme. Then using the updated values as data the equation
ut + gy = 0 is advanced to complete the time step. Either alternation or symmetrization as
first proposed by G. Strang [11] is usually used to preserve the accuracy of the 1D method and
reduce grid alignment effects. On the other hand, the typical two-dimensional scheme would use
difference approximations to fx and gy and simultaneously rather than sequentially update the
data.

There are several advantages to dimensional splitting. It is very easy to convert a 1D code to
2D this way. The stability condition is usually less restrictive and there are possibly fewer flux
evaluations necessary so that it can be more efficient than a 2D calculation. The big disadvantage
is that it is not an option for non-rectangular grids.

2.1 A composite scheme - CFLF

This is the only first order scheme in this collection. In several papers on shallow water and the
Euler equations, even in Lagrangian coordinates or on triangular grids [12, 13, 14, 15, 16, 17, 18] it
was found that an effective method, called LWLFn, could be achieved by using a cycle consisting
of n − 1 time steps of some version of the Lax-Wendroff (LW) scheme followed by one step with
Lax-Friedrichs (LF). The LF step acts as a consistent (with the differential equations) filter to
reduce the oscillations of LW. Typically LWLF4 works best, but in some cases it is possible to
take n much larger. E. Toro pointed out to us that in 1D LWLF2 is the same as his FORCE
scheme, [10].

LWLFn is formally first-order, but optimally stable and symmetric for the 2D versions of LW
and LF we have used. A full description of the final composite, called CFLF, is in [12].

2.2 A CFLF hybrid scheme - CFLFh

Hybrid schemes and the similar flux-corrected-transport schemes have a long history and are
presented very well in [8]. The idea is to create a numerical flux consisting of an average of
a diffusive flux such as from Lax-Friedrichs (LF) and an oscillatory flux such as Lax-Wendroff
(LW). The weights are chosen so that the scheme is formally second-order accurate but becomes
sufficiently dissipative in shocks. We have used the fluxes from the LW and LF versions used in
the composite scheme in subsection 2.1, along with the Harten weight [19] which can be found in
[8].
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2.3 Centered scheme with limiter - JT

This scheme by Guang-Shan Jiang and Eitan Tadmor [20] (which is the 2D successor of the
Nessyahu-Tadmor 1D NT scheme [21]) is called a nonoscillatory central scheme. It uses neither
dimensional splitting nor eigenvector decomposition nor any overt Riemann solver. It does use
discontinuous limited piecewise linear reconstruction from cell averages to get fluxes at cell edges.

The code is simple enough that it is presented in Appendix 5 of [20] and we were able to use
it as is, making only those modifications necessary to fit it into our data structure.

2.4 Positive scheme - LL

This method devised by Xu-Dong Liu and Peter Lax (LL) [22, 23] is based on a theorem of
Friedrichs stating roughly that if a finite difference method is a two-level method giving the
new value of the solution vector as a linear combination of values at the previous time with
coefficients that are positive symmetric matrices adding to the identity (but depending only on
the independent variables), then the scheme is L2 stable. The theorem doesn’t apply directly to
nonlinear systems, nevertheless Lax and Liu created such a positive scheme for the Euler equations.
It does require an eigenvector decomposition and limiting.

We use the code for this scheme published in [22], available also electronicaly.

2.5 Clawpack wave propagation scheme - CLAW

Clawpack is a sophisticated flux splitting scheme developed by Randall LeVeque [24], based on
earlier advection ideas [25]. The source and documentation are available to all at [26]. It has
many options for the user; dimensionally split or not, choices for limiters, etc. We have used the
nonsplit version with monotonized centered limiter using the Roe Riemann solver with 4 waves
(separate shear and entropy waves).

2.6 Weighted average flux (WAF) schemes - WAFT and WAFC

WAF is actually a class of schemes that include the Roe scheme - a fact communicated to us by
James Quirk [27, 28].

The flux at the cell boundary is obtained as a spatial weighted average over the states of an
approximate Riemann solver. A limiter is employed in the computation of the weights. Different
methods are obtained for different solvers and different averaging, [29, 10, 30]. We have used two
versions; the first, WAFT, is a 2D nonsplit code given us by E. Toro and which is a part of the
Numerica library [31]. This code uses a WAF scheme with HLLC approximate Riemann solver
using the Rankine-Hugoniot condition for evaluating the middle fluxes as described in chapter 10
of [10].

The other is a dimensionally split version, which we call WAFC, similar to WAFT, but using
the HLLC approximate Riemann solver with Einfeldt [32] speeds, and fluxes evaluated at the
middle states.

2.7 Weighted essentially nonoscillatory schemes - WENO5 and CWENO3

Weighted essentially nonoscillatory schemes (WENO) [33] are an improvement on the essentially
nonoscillatory (ENO) scheme of Harten and Osher [34]. Upwind biased spatial differencing is
used that produces high order accuracy for smooth flows but becomes low order and dissipative
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for shocks (a simple description of the basis of the WENO3 method has been presented in [12]).
We have used two versions of WENO; in one (WENO5) the WENO procedure is applied to an
eigenvector decomposition and is fifth-order accurate, the other we call CWENO3 (C comming
from conserved variables), in which the upwinding is done on the conserved variables directly and
is third-order accurate. The time integration is done with Runge-Kutta.

For WENO5 we use the code given to us by Guan-Shan Jiang with RK3 time integration and
for CWENO3 our code with RK3 time integration as described in [12].

2.8 Piecewise parabolic - PPM

The piecewise parabolic method (PPM) [35, 36] is in the class of higher order accurate Godunov
methods. It uses piecewise parabolic limited reconstruction to obtain states to use in the Riemann
problems defining the fluxes. Dimensional splitting is used.

We use the free version of PPM available at PPMLib library [37] (core routines are available
only as SGI binaries).
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3 1D tests

3.1 Description of 1D problems

For 1D tests we have chosen five 1D (in x) Riemann problems from [10], tests 1,2,4,5,6 plus four
others: test 1-tvj is the same as test 1 but with a large jump in the y-velocity; Noh is the classical
1D Noh problem [38]; test 3a is a modification of test 3 from [10] keeping a stationary contact;
peak is a hard problem with strong narrow peak in density found by Milan Kuchař́ık [39]), and the
Woodward-Collela blast wave problem [35]. All the 1D problems except the blast wave problem
are simple Riemann problems with known exact solutions.

All codes are 2D-capable, that is, they have two velocity components. The Riemann problems
are on the interval x ∈ (0, 1) (except for peak which is computed on x ∈ (0.1, 0.6) ) with initial
discontinuity at x0 ∈ (0, 1) solved for time t ∈ (0, T ). The initial conditions are given by constant
left state (ρL, uL, vL, pL) of density, x-velocity, y-velocity, and pressure on the interval x ∈ (0, x0)
and right state (ρR, uR, vR, pR) on the interval x ∈ (x0, 1). Each test is defined by the ten param-
eters ρL, uL, vl, pL, ρR, uR, vR, pR, x0, T . For all 1D Riemann problems except test 1-tvj, the data
are given in Table 1, together with vL = vR=0. The data for test 1-tvj is the same as for test test
1, together with vL = 1, vR = −5. The Noh problem uses the gas constant γ = 5/3 while all other
tests use γ = 1.4. All Riemann problem tests use natural boundary conditions.

Test ρL uL pL ρR uR pR x0 T
1 1 0.75 1 0.125 0 0.1 0.3 0.2
2 1 -2 0.4 1 2 0.4 0.5 0.15
Noh 1 1 10−6 1 -1 10−6 0.5 1
3a 1 -19.59745 1000 1 -19.59745 0.01 0.8 0.012
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.095 0.4 0.035
5 1.4 0 1 1 0 1 0.5 2
6 1.4 0.1 1 1 0.1 1 0.5 2
peak 0.1261192 8.9047029 782.92899 6.591493 2.2654207 3.1544874 0.5 0.0039

Table 1: Definition of 1D Riemann problem tests

The classic Woodward-Collela blast wave problem [35] computes the interaction of waves from
two Riemann problems with reflecting boundary conditions. The problem is treated again on the
interval x ∈ (0, 1). Two initial discontinuities are located at x1 = 0.1 and x2 = 0.9. The initial
density is one and the velocity is zero everywhere. Initial pressures in three different regions (left
pl, middle pm and right pr) are (pl, pm, pr) = (1000, 0.01, 100).

For the numerical treatment of most test problem we use 100 grid cells, exceptions being tests
3a and 4 using 200 cells, blast using 400 and 2000 cells and peak using 800 cells.
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3.2 Errors of the numerical solution

For 1D Riemann problems we can compute their exact solution and so we are able to compare
the errors of their numerical solution, giving us an objective evaluation of the different numerical
methods. Table 2 summarizes L1, L2 and maximum relative errors of the numerical solution of
these 1D Riemann problems by different numerical schemes. Errors are in %. For most tests
presented errors are errors in density, only for test 2 we present errors in internal energy and for
peak in velocity.

Test 1 1-tvj 2 noh 3a 4 5 6 peak
relative L1 errors

CFLF 2.0 7.3 16.4 1.4 12.0 3.8 1.5 0.7 3.0
CFLFh 1.5 8.1 10.2 1.9 10.3 2.7 0.7 0.8 1.9
WAFT 0.7 3.3 21.9 2.8 2.6 1.4 0 0.3 1.0
WAF4 0.8 7.8 fail 1.4 2.8 1.4 0 0.3 1.1
CLAW 0.8 5.5 fail 1.3 3.1 1.7 0 0.4 fail
PPM 0.5 3.9 6.3 4.6 9.4 1.1 0 0.1 1.3
WENO 1.3 3.5 23.7 2.0 9.2 2.2 0 0.4 2.4
CWENO 2.2 6.8 28.2 2.5 14.7 3.9 1.1 1.1 2.4
LL 1.3 10.0 31.3 1.5 5.2 2.4 0.5 0.7 0.8
JT 1.3 3.9 6.4 1.7 8.1 2.3 0.6 0.6 1.1

relative L2 errors
CFLF 3.6 11.8 22.4 6.0 31.5 10.4 3.7 2.4 7.0
CFLFh 3.2 13.2 18.8 7.1 30.2 8.5 2.5 2.5 5.8
WAFT 1.9 7.9 36.3 5.8 16.3 5.4 0 1.4 4.2
WAF4 1.9 13.5 fail 5.5 17.6 5.5 0 1.4 4.5
CLAW 2.3 10.5 fail 5.9 18.2 6.5 0 1.8 fail
PPM 1.5 8.4 9.7 11.1 31.6 4.7 0 0.7 5.1
WENO 2.8 7.3 36.5 7.4 32.5 8.2 0 1.7 7.8
CWENO 3.7 11.7 38.8 8.3 36.5 11.1 3.1 3.0 6.6
LL 3.2 13.9 36.1 6.5 21.9 8.3 2.1 2.5 4.4
JT 2.7 8.4 8.4 6.9 28.3 7.7 2.4 2.3 5.1

relative max errors
CFLF 11.0 31.2 33.7 34.5 56.9 25.3 13.2 14.2 71.2
CFLFh 11.9 34.1 39.6 39.4 67.9 25.1 11.5 12.9 76.7
WAFT 8.6 30.8 57.8 29.8 53.4 20.4 0 10.1 76.2
WAF4 8.9 43.1 fail 31.6 56.4 20.3 0 10.1 77.6
CLAW 9.4 32.0 fail 33.1 56.4 22.8 0 11.4 fail
PPM 6.2 23.3 22.7 51.3 71.3 15.4 0 4.7 80.3
WENO 9.0 21.7 61.7 41.4 73.7 31.3 0 10.4 80.3
CWENO 10.9 32.7 53.6 45.4 65.6 41.2 12.7 12.7 78.0
LL 11.3 28.2 40.3 37.4 57.1 28.2 12.1 14.3 77.8
JT 10.6 28.9 16.1 39.5 67.0 23.9 12.0 12.1 80.6

Table 2: Relative L1, L2 and max errors in % for 1D Riemann problem tests for all 10 schemes,
fail means that the scheme has failed to compute given test.
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3.3 1D results

Results are shown in the following subsections and figures.
All codes are 2D-capable, that is, both velocity components are advanced. In all 1D problems

the transverse velocity is 0, except Test 1-tvj.
Note that for most problems we present the results for the density. The exception are the test

2 for which we present internal energy and peak for which we present velocity and density.
Test 1: This is Toro’s variant of Sod’s Riemann problem, differing from it in that there is a

sonic point in the rarefaction. All ten methods resolve the shock very well without oscillation with
the exception of CFLF, although CWENO3 and LL are more dissipative than the others. PPM is
outstanding on the contact, with WAFC and WAFT not far behind. Many of the schemes tested
in [10] develop the so-called sonic glitch in the rarefaction, but this is not present in any of our
ten schemes, but WAFC, PPM, CLAW, and JT have a dip at the base of the rarefaction wave.

Test 1-tvj: This has the same data as Test 1, but there is a large jump in transverse velocity,
which should have no effect on rho, u, or p. This produces an error in the kinetic energy and
destroys the solution for all schemes. However, if we run WAFC for this problem with removed
transverse kinetic energy then we get no effect from the nonconstant transverse velocity, obtaining
the same result as for test 1. This is an option only available to dimensionally split schemes and it
works well in 2D only for jumps aligned with the grid. When we tried WAFC with the transverse
kinetic energy removed for the 2D Noh problem (described later), it gives the wrong shock speed.
For that problem, Paul Woodward [40] pointed out to us that conversion of kinetic energy to heat
is the critical mechanism, therefore in that case ignoring some kinetic energy is not a good idea.
But in [41] the transverse kinetic energy removal is part of a scheme for two-fluid problems and
seems to be very effective.

Test 2: For this Riemann problem the central state is a near vacuum, in which both ρ and p
are close to zero, but the internal energy e = p/ρ(γ − 1) is not. It seems that no general Eulerian
scheme can compute the internal energy very well. To make LL work for this problem we needed
to set LL parameters to α = 0.1 and β = 2 on Xu-Dong Liu’s suggestion [42] which leads to larger
viscosity and bad resolution of the heads of rarefaction waves .

1D-Noh: The solution of this problem consists of two infinite strength shocks moving out from
the center, leaving a constant density and pressure state behind. CFLF has a slight overshoot
at the shocks, but only a very small dip in density at the center, as does JT. PPM has a poorly
resolved shock and a significant dip at the center, and is not symmetric about the center. The
WAFT run was with the superbee limiter and is also not symmetric, while a run using minmod
limiter was symmetric.

Test 3a: In this variant of Toro’s Test 3 there is a stationary contact generated at x = .8.
The WAF schemes and CLAW do best, with CFLF and CFLFhybrid not really acceptable at this
resolution.

Test 4: PPM is very good on this problem with two strong shock waves. CLAW and both
WAFs have good resolution but develop oscillations.

Test 5: This shows which methods (WAFT, WAFC, CLAW, PPM and WENO5) are exact
for a stationary contact.

Test 6: This is a slowly moving contact. PPM is excellent, followed by WAFT, WAFC, CLAW
and WENO5. CFLF and CFLFh develop oscillations behind the contact.

Peak: All schemes have difficulty accurately computing the velocity, especially around the
rarefaction with very small change in density. WAFT and WAFC resolve very nicely the very
narrow peak in density between the contact and the shock.
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Blast: For this test we present results computed using 400 cells (with “exact” solution from
PPM with 2000 cells) and results computed using 2000 cells (with “exact” solution from PPM
with 2000 cells).
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Test 1
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Figure 1: 1D results (density) for the test 1 problem by all ten schemes.
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Test 1 with jump in transverse velocity
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Figure 2: 1D results (density) for the test 1 with tvj problem by all ten schemes.
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Test 2
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Figure 3: 1D results (internal energy) for the test 2 problem by all ten schemes.
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Noh problem in 1D
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Figure 4: 1D results (density) for the Noh problem by all ten schemes.
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Test 3 a
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Figure 5: 1D results (density) for the test 3a problem by all ten schemes.
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Test 4
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Figure 6: 1D results (density) for the test 4 problem by all ten schemes.
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Test 5
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Figure 7: 1D results (density) for the test 5 problem by all ten schemes.
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Test 6
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Figure 8: 1D results (density) for the test 6 problem by all ten schemes.
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Peak
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Figure 9: 1D results (velocity) for the peak problem by all ten schemes.
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Peak density
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Figure 10: 1D results (density) for the peak problem by all ten schemes.
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Blast wave on 400 cells
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Figure 11: 1D results (density) for the blast wave problem by all ten schemes.
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Blast wave on 2000 cells
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Figure 12: 1D results (density) for the blast wave problem by all ten schemes.

22



4 2D tests

4.1 Accuracy - Smooth periodic problem

To check the accuracy of the presented schemes we have computed the numerical solution of an
exact smooth solution [33]

ρ(x, y, t) = 1 + 0.2 sin(π(x+ y − t(u+ v))), u, v, p constants

of the Euler equations for an ideal gas. We have used the particular values u = 1, v = −1/2, p = 1
for velocities and pressure. The gas constant is again γ = 1.4. Periodic boundary conditions are

Test Scheme 25 Order 50 Order 100 Order 200
relative L1 errors

CFLF 7.1e+00 0.7 4.2e+00 0.9 2.3e+00 0.9 1.2e+00
CFLFh 2.5e+00 2.3 5.1e-01 2.1 1.2e-01 2.0 3.1e-02
WAFT 5.7e-01 -0.1 6.0e-01 1.4 2.3e-01 1.8 6.7e-02
WAF4 5.7e-01 0.3 4.7e-01 1.1 2.2e-01 1.8 6.5e-02
CLAW 4.1e-01 2.5 7.3e-02 2.2 1.6e-02 2.2 3.7e-03
PPM 2.4e-02 3.1 2.8e-03 3.0 3.4e-04 3.0 4.3e-05
WENO 3.1e-02 5.0 9.7e-04 5.0 3.1e-05 4.5 1.3e-06
CWENO 7.3e+00 1.9 1.9e+00 1.8 5.6e-01 3.0 7.2e-02
LL 2.0e+00 1.3 8.0e-01 1.9 2.1e-01 2.0 5.4e-02
JT 1.1e+00 2.3 2.3e-01 1.9 5.9e-02 1.9 1.6e-02

relative L2 errors
CFLF 7.8e+00 0.7 4.7e+00 0.9 2.6e+00 0.9 1.3e+00
CFLFh 2.7e+00 2.2 5.7e-01 2.1 1.3e-01 2.0 3.4e-02
WAFT 6.5e-01 -0.0 6.7e-01 1.3 2.8e-01 1.6 9.1e-02
WAF4 7.4e-01 0.4 5.6e-01 1.0 2.7e-01 1.6 8.8e-02
CLAW 5.6e-01 2.3 1.1e-01 2.1 2.6e-02 2.1 6.0e-03
PPM 2.7e-02 3.1 3.1e-03 3.0 3.8e-04 3.0 4.7e-05
WENO 3.4e-02 5.0 1.1e-03 5.0 3.4e-05 4.5 1.5e-06
CWENO 8.3e+00 1.8 2.4e+00 1.8 6.9e-01 2.7 1.1e-01
LL 2.6e+00 1.4 9.5e-01 1.7 2.9e-01 1.7 8.8e-02
JT 1.2e+00 2.2 2.5e-01 2.0 6.3e-02 1.9 1.7e-02

relative max errors
CFLF 9.3e+00 0.8 5.6e+00 0.9 3.1e+00 0.9 1.6e+00
CFLFh 3.5e+00 2.1 8.2e-01 2.3 1.7e-01 2.1 4.0e-02
WAFT 1.0e+00 -0.1 1.1e+00 0.9 5.7e-01 1.2 2.5e-01
WAF4 1.1e+00 0.2 1.0e+00 0.8 6.0e-01 0.8 3.5e-01
CLAW 1.1e+00 2.0 2.8e-01 1.6 9.0e-02 1.7 2.7e-02
PPM 3.2e-02 3.1 3.7e-03 3.0 4.5e-04 3.0 5.6e-05
WENO 4.0e-02 4.8 1.4e-03 4.9 4.7e-05 4.0 2.9e-06
CWENO 1.1e+01 1.5 3.7e+00 1.7 1.2e+00 2.2 2.5e-01
LL 4.1e+00 1.3 1.6e+00 1.3 6.6e-01 1.3 2.6e-01
JT 1.4e+00 2.2 3.0e-01 2.0 7.4e-02 1.6 2.5e-02

Table 3: Relative L1, L2 and max density errors in % for 2D smooth periodic problem for all ten
schemes on refined grid with orders of accuracy.
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employed. The problem is run on the series of refined grids with 25×25, 50×50, 100×100, 200×200
cells until the final time T = 4 giving the movement of the wave by one full period. Results for
all schemes are summarized in Table 3 for relative max, L1 and L2 norms density errors which are
shown in %. The order of accuracy of schemes in this table is computed as the base 2 logarithm
of the ratio of two errors from neighboring columns.

From the table we see that the most accurate is 5-th order WENO5 followed by 3-rd order
PPM. Also both these schemes keep the high accuracy from very rough grids for all three types
of errors. Most schemes are second order and CFLF is just first order.

4.2 Speed

To compare the schemes regarding their speed we have measured CPU time (on an SGI Origin
with 250 Mhz MIPS R10000 processor - we have PPM available only on SGI machines) for all
of them for 2D Riemann problem Case 4 described in the section 4.3 on the grid of 400 × 400
cells up to time T = 0.05. The results are summarized in Table 4 showing also the ratio how
many times the given scheme is slower than the fastest scheme from our ten schemes (WAFC)
and number of adaptive time steps used by the different schemes. From the number of steps one
can note that last four schemes (WENO5, CWENO3, LL, JT) need about twice as much time as
the first six schemes. In fact, the first six schemes use a CFL limit of one, while the last four need
CFL number 1/2. Of course this means that the last four schemes using CFL = 1/2 are slow
except JT which is remarkably fast with CFL = 1/2. WENO5 is the slowest using CFL = 1/2
and eigenvector decomposition. WENO5, CWENO3 and LL are slow, all others are quite fast.

scheme CPU time[s] ratio time steps
CFLF 95 1.0 47
CFLFh 133 1.4 46
WAFT 150 1.6 46
WAFC 93 1.0 48
CLAW 118 1.3 49
PPM 140 1.5 46
WENO5 570 6.1 89
CWENO3 271 2.9 87
LL 310 3.3 88
JT 103 1.1 92

Table 4: Exacution CPU times for 2D Riemann problem Case 4 on the grid of 400× 400 cells up
to time T = 0.05; ratio between the CPU time of given scheme and that one of the fastest scheme
(WAFC); number of time steps used by each scheme.

4.3 Description of 2D Riemann problems

We have taken six cases from the collection of 2D Riemann problems proposed by [43] and used
by others [23, 44], namely, cases 3,4,6,12,15 and 17 from [23] (which are configurations 3, 4, B,
F, G, K from [43]). These problems are solved on the square (x, y) ∈ (0, 1) × (0, 1). The square
is divided into four quadrants by lines x = 1/2, y = 1/2. The Riemann problems are defined by
initial constant states in each quadrant. These initial states in left/right-upper/lower quadrants
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for the pressure p, density ρ, x-component of velocity u and y-component of the velocity v are
presented at Table 5 together with the time T at which the results are presented. All these
problems use the gas constant γ = 1.4. In the figures presenting results we use the same set of
contours for density as has been used in [43]. All the Riemann problems in [43] are proposed in
such a way that the solutions of all four 1D Riemann problems between quadrants have exactly
one wave (shock, rarefaction or contact-slip). Following [23], let R stand for rarefaction, S for
shock, and J for contact-slip. Starting at the left side and going clockwise, the cases are: Case 3:
S, S, S, S, Case 4: S, S, S, S, Case 6: J, J, J, J , Case 12: J, S, S, J , Case 15: J,R, S, J , Case
17: S, J,R, J .

Case left right T
p ρ u v p ρ u v

upper 0.3 0.5323 1.206 0.0 1.5 1.5 0.0 0.0
3 lower 0.029 0.138 1.206 1.206 0.3 0.5323 0.0 1.206 0.3

upper 0.35 0.5065 0.8939 0.0 1.1 1.1 0.0 0.0
4 lower 1.1 1.1 0.8939 0.8939 0.35 0.5065 0.0 0.8939 0.25

upper 1.0 2.0 0.75 0.5 1.0 1.0 0.75 -0.5
6 lower 1.0 1.0 -0.75 0.5 1.0 3.0 -0.75 -0.5 0.3

upper 1.0 1.0 0.7276 0.0 0.4 0.5313 0.0 0.0
12 lower 1.0 0.8 0.0 0.0 1.0 1.0 0.0 0.7276 0.25

upper 0.4 0.5197 -0.6259 -0.3 1.0 1.0 0.1 -0.3
15 lower 0.4 0.8 0.1 -0.3 0.4 0.5313 0.1 0.4276 0.2

upper 1.0 2.0 0.0 -0.3 1.0 1.0 0.0 -0.4
17 lower 0.4 1.0625 0.0 0.2145 0.4 0.5197 0.0 -1.1259 0.3

Table 5: Initial states in four left/right-upper/lower quadrants for 2D Riemann problems for the
pressure p, density ρ, x-component of velocity u and y-component of the velocity v. T is the final
time.
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4.4 Results for 2D Riemann problems

As we stated in the introduction, exact solutions are not known for these two-dimensional Riemann
problems. Furthermore, the color maps can hide details such as small oscillations. But by having
pressure as color and density as contours, it is at least possible to see what the schemes think the
structures are. In some cases there are clear errors caused by a poor resolution of the initial 1D
problems.

Results are shown in the following figures. These runs are for grids with 400× 400 cells. Color
pressure map is overlayed by density contours and velocity arrows.

Case 3: WAFC is noisier than the others. One can notice the different resolution (by different
schemes) of the four 1D shocks separating the four regions of constant states. To some extent all
schemes agree on the basic structure of the solution in the region where these four shocks interact.

Note the artefacts remaining for some schemes on two segments of the initial discontinuities
between the upper right quadrant and upper left and lower right quadrants. When we look at these
more detail we find that these errors are present for all schemes, it is just that for some schemes
(CFLFh, WAFT, WAFC, CLAW and PPM) they are large enough so that they are visible in the
choosen density contours. Even further, when we try to compute just the 1D Riemann problem
defined between the two upper quadrants (or equivalently between the two right quadrants), these
artefacts (dip in density) are present for all schemes in the 1D results. Four schemes (CFLFh,
WAFT, WAFC and PPM) show also such errors at the other two initial inner jump segments
between the lower left quadrant and two of its neighbors on the right and at the top. This is
sometimes the price paid for good contact resolution, there is not enough dissipation to reduce a
residual error in density.
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Case 3

CFLF CFLFh

WAFT WAFC

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 13: Results for the 2D Riemann problem case 3 by four schemes with pressure colorbar.
Pressure is displayed by color, density by 32 contours (0.16 to 1.71 step 0.05) and velocity by
arrows. For all cases the computations were done and are presented on the square (x, y) ∈
(0, 1)× (0, 1).
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Case 3

CLAW PPM

WENO5 CWENO3

LL JT

Figure 14: Results for the 2D Riemann problem case 3 by remaining six schemes. Pressure is
displayed by color, density by 32 contours (0.16 to 1.71 step 0.05) and velocity by arrows. For all
cases the computations were done and are presented on the square (x, y) ∈ (0, 1)× (0, 1).
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Case 4: CFLFh is noisy, WAFC somewhat less so. The other methods are very similar to
each other. Most methods resolve well all the shocks, both the straight 1D shocks separating
two constant states and the two curved shocks bordering the lens shaped region of higher density
and pressure. The solution in this region should be symmetric about the lens axis (if we woud
stay in a coordinate system fixed to this axis, which is moving with constant speed, the problem
would be symmetric about this axis). Some schemes do not keep this symmetry in all details, e.g.
CFLF and JT have differences along the upper and lower curved shocks. WAFC has an artefact
in density similar to those in the previous case 3.

CFLF CFLFh

WAFT WAFC

0.5 1 1.5 2 2.5

Figure 15: Results for the 2D Riemann problem case 4 by four schemes with pressure colorbar.
Pressure is displayed by color, density by 29 contours (0.52 to 1.92 step 0.05) and velocity by
arrows. For all cases the computations were done and are presented on the square (x, y) ∈
(0, 1)× (0, 1).
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Case 4

CLAW PPM

WENO5 CWENO3

LL JT

Figure 16: Results for the 2D Riemann problem case 4 by remaining six schemes. Pressure is
displayed by color, density by 29 contours (0.52 to 1.92 step 0.05) and velocity by arrows. For all
cases the computations were done and are presented on the square (x, y) ∈ (0, 1)× (0, 1).
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Case 6: The contact resolving ability of WAFT and PPM show up very well here.
All the schemes have grid aligned artefacts in the high pressure areas around boundaries which

appear also in density and only for CFLFh also shows up on lower right in the chosen density
contour levels. Some of these relicts are standing around original jump segments while the others
result from waves emanated from the initial jumps which are faster than the main contact waves.

CFLF CFLFh

WAFT WAFC

0.2 0.4 0.6 0.8 1

Figure 17: Results for the 2D Riemann problem case 6 by four schemes with pressure colorbar.
Pressure is displayed by color, density by 29 contours (0.25 to 3.05 step 0.1) and velocity by arrows.
For all cases the computations were done and are presented on the square (x, y) ∈ (0, 1)× (0, 1).
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Case 6

CLAW PPM

WENO5 CWENO3

LL JT

Figure 18: Results for the 2D Riemann problem case 6 by remaining six schemes. Pressure is
displayed by color, density by 29 contours (0.25 to 3.05 step 0.1) and velocity by arrows. For all
cases the computations were done and are presented on the square (x, y) ∈ (0, 1)× (0, 1).
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Case 12: The key issue here is the resolution of the stationary contacts bordering the lower left
quadrant. When we compare with the 1D test 5 we see that all schemes exactly resolving stationary
contact there (WAFT, WAFC, CLAW, PPM, WENO5) also resolve exactly the stationary contacts
here.

The data for this problem is symmetric about the (0,0) (1,1) diagonal, and the non-symmetric
dimensionally split schemes WAFC and PPM preserve the symmetry quite well as all as do the
other non-split methods.

CFLF CFLFh

WAFT WAFC

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Figure 19: Results for the 2D Riemann problem case 12 by four schemes with pressure colorbar.
Pressure is displayed by color, density by 30 contours (0.54 to 1.7 step 0.04) and velocity by arrows.
For all cases the computations were done and are presented on the square (x, y) ∈ (0, 1)× (0, 1).
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Case 12

CLAW PPM

WENO5 CWENO3

LL JT

Figure 20: Results for the 2D Riemann problem case 12 by remaining six schemes. Pressure is
displayed by color, density by 30 contours (0.54 to 1.7 step 0.04) and velocity by arrows. For all
cases the computations were done and are presented on the square (x, y) ∈ (0, 1)× (0, 1).
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Case 15: Resolution of slowly moving contacts bordering the lower left constant state is
importat here (note the short curved contact in the middle) and one might compare with 1D test
6.

As in case 6 a detailed inspection reveals errors aligned with the slip and shock lines that show
up in the pressure color map. As in case 6 these artefacts appear also in density, but they are not
visible with the chosen density contour levels, and they have the same origin as in case 6.

CFLF CFLFh

WAFT WAFC

0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 21: Results for the 2D Riemann problem case 15 by four schemes with pressure colorbar.
Pressure is displayed by color, density by 29 contours (0.43 to 0.99 step 0.02) and velocity by
arrows. For all cases the computations were done and are presented on the square (x, y) ∈
(0, 1)× (0, 1).
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Case 15

CLAW PPM

WENO5 CWENO3

LL JT

Figure 22: Results for the 2D Riemann problem case 15 by remaining six schemes. Pressure is
displayed by color, density by 29 contours (0.43 to 0.99 step 0.02) and velocity by arrows. For all
cases the computations were done and are presented on the square (x, y) ∈ (0, 1)× (0, 1).
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Case 17: Here we have an interesting disagreement. LL shows a possibile instability on the
lower slip line not seen by the others.

As in case 12 important is the resolution of two standing contacts on the line x = 1/2 and we
can again compare with 1D test 5.

CFLF CFLFh

WAFT WAFC

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 23: Results for the 2D Riemann problem case 17 by four schemes with pressure colorbar.
Pressure is displayed by color, density by 30 contours (0.53 to 1.98 step 0.05) and velocity by
arrows. For all cases the computations were done and are presented on the square (x, y) ∈
(0, 1)× (0, 1).
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Case 17

CLAW PPM

WENO5 CWENO3

LL JT

Figure 24: Results for the 2D Riemann problem case 17 by remaining six schemes. Pressure is
displayed by color, density by 30 contours (0.53 to 1.98 step 0.05) and velocity by arrows. For all
cases the computations were done and are presented on the square (x, y) ∈ (0, 1)× (0, 1).
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4.5 Noh problem

This is a classic test of W. Noh [38] for an ideal gas with γ = 5/3 for which there is an exact
solution. The initial density is 1, the initial pressure is 0 (we set initial pressure to 10−6 in the
numerics as many schemes cannot deal with zero pressure), and the initial velocities are directed
toward the origin in the plane with magnitude 1. The solution is an infinite strength circularly
symmetric shock reflecting from the origin. Behind the shock (i.e. inside the circle) the density is
16, the velocity is 0 and the pressure is 16/3. The shock speed is 1/3 and ahead of the shock, that
is for

√
x2 + y2 > t/3, the density is (1 + t/

√
x2 + y2) while velocity and pressure remain same as

initially. The computational domain is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. At the boundaries x = 1 and y = 1
we used the exact density as a function of time and radius together with the initial pressure and
velocity. At the other two boundaries x = 0 and y = 0 we used the symmetric (reflecting) BCs.
This is a difficult problem. The Lagrangian codes dealing with this problem suffer from a very
large error in the density at the center. For an analysis of this problem see [45].

Here 1 you can see the animation of 400 × 400 cells computation by the CFLF4 scheme to
time T = 2 with frame interval ∆T = 0.1.

Those schemes (WAFT, CLAW, WENO5, JT) for which no result is shown failed to run. This
seems to be the one case in which CFLF was best among the ten. LL was completely wrong - we
also did run it on the whole plane in order to be certain that this was not the result of some error
on the symmetry boundary. JT ran on a 100 × 100 grid but not on the 400 × 400 grid. PPM
required a CFL limit of 0.2 for the 400× 400 grid, but ran with CFL=0.8 for a 100× 100 grid.

1http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/Noh/
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Noh

CFLF

CFLFh

WAFC

Figure 25: Results for the Noh problem by the CFLF, CFLFh and WAFC schemes. Density color
map is overlayed by 23 density contours (2.5 to 4 step 0.25 and 14 to 17 step 0.2) and velocity
arrows on the left. Scatter plot of density versus radius together with the exact solution is on the
right. The computations were done on the square (x, y) ∈ (0, 1) × (0, 1) with 400 × 400 grid to
time T = 2.
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Noh

PPM

CWENO3

LL

Figure 26: Results for the Noh problem by the PPM, CWENO3 and LL schemes. WAFT, CLAW,
WENO5 and JT have failed for this problem. Density color map is overlayed by 23 density contours
( 2.5 to 4 step 0.25 and 14 to 17 step 0.2) and velocity arrows on the left. Scatter plot of density
versus radius is on the right. The computations were done on the square (x, y) ∈ (0, 1) × (0, 1)
with 400× 400 grid to time T = 2.
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4.6 Rayleigh-Taylor instability

Rayleigh-Taylor instability is a physical phenomenon appearing when a layer of heavier fluid is
placed on top of a layer of lighter fluid. For this problem we include a gravitational source term
in the momentum equation. We treat this problem in the region (x, y) ∈ (0, 1/6) × (0, 1) with
the gravitational acceleration g = 0.1 in −y direction. The upper fluid has density 2 and the
lower fluid 1. The interface of the fluids is at y = 1/2 + 0.01 cos(6πx), i.e. a slightly perturbed
line y = 1/2. The initial pressure is hydrostatic and the fluids are initially at rest. Around the
interface the initial conditions are smoothed out. Boundary conditions on all four border lines are
reflecting.

Here 2 you can see the animation of the 100 × 400 cells computation by the CFLFh hybrid
scheme to time T = 8.5 with frame interval ∆T = 0.5.

These runs are for a grid of 100× 400 cells on a half of the mushroom which are then mirrored
in the figures. Density color map and density contours are shown separately. The solid line in the
contour plot, was provided by J. Grove and V. Mousseau of Los Alamos [46] and is the result of
a front tracking code, while the dashed line is the density ρ = 1.5 contour. The interface between
the light and heavy fluid is unstable. As might be expected, the less dissipative schemes such
as CLAW and WENO5 show this interface breaking up, while the more dissipative schemes like
CFLF suppress the instability. Tariq Aslam [47] has reported to us that the interface breaks up
very early with a very high resolution fine grid WENO scheme. The front tracking contour also
seems to suppress the instability.

2http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/Rayleigh-Taylor/
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Rayleigh-Taylor

CFLF CFLFh

WAFT WAFC

CLAW PPM

Figure 27: Results for the Rayleigh-Taylor problem by six schemes. Density color map and front
contour. The solid line in the contour plots is the result of a front tracking code. The computations
were done on the rectangle (x, y) ∈ (0, 1/6)× (0, 1) with 100× 400 grid to time T = 8.5.
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Rayleigh-Taylor

WENO5 CWENO3

LL JT

1 1.2 1.4 1.6 1.8 2

Figure 28: Results for the Rayleigh-Taylor problem by remaining four schemes with density col-
orbar. Density color map and front contour. The solid line in the contour plots is the result of a
front tracking code. The computations were done on the rectangle (x, y) ∈ (0, 1/6) × (0, 1) with
100× 400 grid to time T = 8.5.
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4.7 Implosion problem

This converging shock problem has been presented in [48]. In [49] several variants of this problem
including also other shapes of interior low density and low pressure region have been treated.
The gas is placed in a square box. Inside a smaller square centered at the center of the box and
rotated by π/4 (see Fig. 29) the gas has initialy smaller density and pressure than in the rest
of the box. As in [48] we use the box (x, y) ∈ (−0.3, 0.3) × (−0.3, 0.3) and the smaller square
with corners at (±0.15, 0), (0,±0.15). The computation is done only in the upper right quadrant
(x, y) ∈ (0, 0.3)× (0, 0.3) of the box with diamond corners at points (0.15, 0), (0, 0.15). Initial data
inside the diamond are ρi = 0.125, pi = 0.14 and outside are ρo = 1, po = 1. Initial velocities are
zero. The gas constant is γ = 1.4. Reflecting boundary conditions are used on all four boundaries.

The initial data are the Sod problem data [9].

pρ

pρ
i i

o o

Figure 29: Initial conditions for the diamond problem

Here 3 you can see the animation of 400 × 400 cells computation. by the CLAW scheme to
time T = 2.5 with frame interval ∆T = 0.05.

Here 4 you can see the early stage animation of 400× 400 cells computation. by the WAFT
scheme to time T = 0.1 with frame interval ∆T = 0.005.

There is a clear consensus among the codes for the very early stages of the evolution. The
inital interior diamond boundary is a contact discontinuity that is nicely resolved by PPM and
CLAW. The color pressure map shows that the pressure is continuous normal to the contact, but
also that there is a pressure discontinuity tangential to the contact. The animation is particularly
effective in showing the wave structure.

In the later stages there is also a consensus on the gross structure of the waves reflected fromn
the boundary. The fate of the initial contact discontinuity is not clear, but there is remarkable

3http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/implosion/
4http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/implosion-short/
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agreement between CLAW and WENO5 that a jet has formed.
We can also see here the lack of symmetry in the split dimension PPM and WAFC, which both

use alternating Strang splitting, as well as in the 2D code WAFT using superbee limiter (with
minmod limiter WAFT is keeping symmetry).

In the following figures we present results for the 400× 400 grid for the implosion problem at
early and late stage. The early stage is at time T = 0.045 while the late one is at T = 2.5.
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Implosion Early

CFLF CFLFh

WAFT WAFC

CLAW PPM

Figure 30: Results for the implosion problem by six schemes. Color pressure map is overlayed by
36 density contours (0.125 to 1 step 0.025) and velocity arrows. The computations were done on
the square (x, y) ∈ (0, 0.3) × (0, 0.3) with 400 × 400 grid to time T = 0.045 and is presented on
the square (0, 0.22)× (0, 0.22) .
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Implosion Early

WENO5 CWENO3

LL JT

0.2 0.4 0.6 0.8 1

Figure 31: Results for the implosion problem by remaining four schemes with pressure colorbar.
Color pressure map is overlayed by 36 density contours (0.125 to 1 step 0.025) and velocity arrows.
The computations were done on the square (x, y) ∈ (0, 0.3)× (0, 0.3) with 400× 400 grid to time
T = 0.045 and is presented on the square (0, 0.22)× (0, 0.22) .
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Implosion Late

CFLF CFLFh

WAFT WAFC

CLAW PPM

Figure 32: Results for the implosion problem by six schemes. Color pressure map is overlayed by
31 density contours (0.35 to 1.1 step 0.025) and velocity arrows. The computations were done on
the square (x, y) ∈ (0, 0.3)× (0, 0.3) with 400× 400 grid to time T = 2.5.
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Implosion Late

WENO5 CWENO3

LL JT

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

Figure 33: Results for the implosion problem by remaining four schemes with pressure colorbar.
Color pressure map is overlayed by 31 density contours (0.35 to 1.1 step 0.025) and velocity arrows.
The computations were done on the square (x, y) ∈ (0, 0.3)× (0, 0.3) with 400× 400 grid to time
T = 2.5.
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4.8 Explosion

The explosion problem proposed in [10] is a circularly symmetric 2D problem with initial circular
region of higher density and higher pressure. In particular we set the center of the circle to the
origin, its radius to 0.4 and compute on a quadrant (x, y) ∈ (0, 1.5)×(0, 1.5). Density and pressure
are ρi = 1, pi = 1 inside the circle and ρo = 0.125, po = 0.1 outside. The gas is initially at rest and
its gas constant is γ = 1.4. This problem (evolution of unstable contact at later times) is sensitive
to perturbations of the interface and as noted in [10] for the cells which are crossed by the initial
interface circle one needs to use area weighted initial density and pressure.

Here 5 you can see an animation of 400 × 400 cells computation by the WAFT scheme to
time T = 3.5 with frame interval ∆T = 0.1. This animation uses area averaged initial data for
those cells crossed by the circle. The frames have pressure colormap with density contours on
the left and density colormap with pressure contours on the right to distinguish unstable circular
contact. The color scale is different for each frame so that the same colors on different frames do
not correspond to the same value.

Here 6 you can see an animation of 400 × 400 cells computation by the WAFT scheme till
T = 3.5 with frame interval ∆T = 0.1. This animation does not have the smoothed initial interface.
The frames have pressure colormap with density contours on the left and density colormap with
pressure contours on the right to distinguish the unstable circular contact. The colormaps use
for each frame a different interval of pressure and/or density values, so that the same colors in
different frames do not correspond to the same value.

This proceeds as described in [10]. The initial data at the contact have been smoothed by
area weighting as suggested in [10], nevertheless it appears that an instability develops. There is
a shock reflecting from the center that passes through the contact and seems to have no effect.

There are numerical boundary effects at the upper right corner that we were not able to
eliminate. Different schemes resolve density and pressure in different intervals, the most visible
difference being for CWENO3.

These runs below are for grids 400 by 400 cells at time T = 3.2. A color pressure map is
overlayed by density contours and velocity arrows.

5http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/explosion/
6http://www-troja.fjfi.cvut.cz/~liska/CompareEuler/animations/explosion-noweight/
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Explosion

CFLF CFLFh

WAFT WAFC

CLAW PPM

Figure 34: Results for the explosion problem by six schemes. Color pressure map is overlayed by
27 density contours (0.08 to 0.21 step 0.005) and velocity arrows. Computations were done on the
square (x, y) ∈ (0, 1.5)× (0, 1.5) with 400× 400 grid till time T = 3.2.
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Explosion

WENO5 CWENO3

LL JT

0.06 0.07 0.08 0.09 0.1 0.11 0.12

Figure 35: Results for the explosion problem by remaining four schemes with pressure colorbar.
Color pressure map is overlayed by 27 density contours (0.08 to 0.21 step 0.005) and velocity
arrows. Computations were done on the square (x, y) ∈ (0, 1.5)× (0, 1.5) with 400× 400 grid till
time T = 3.2.
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5 Final remarks

We have taken a collection of schemes that are representative of most of the basic approaches
to approximating the Euler equations by finite difference methods - including the use of central
differencing, eigenvector decomposition, dimensional splitting, Runge-Kutta time stepping, limit-
ing, hybridization, and Riemann solvers. We have applied these to a suite of problems in one and
two dimensions. It is clear that some methods appear to work better than others on a specific
problem, but no one scheme has shown itself to be superior on all of them, which should come
as no surprise. Some schemes are much faster than others, but not too much should be read into
this since in many cases we had to manipulate the data to fit into our framework.

We present this to the computational fluid dynamics community with the hope that it will
contribute to the still vigorous research being done there.
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