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Abstract. A class of extended vector fields, called extended divergence-measure
fields, is analyzed. These fields include vector fields in Lp and vector-valued
Radon measures, whose divergences are Radon measures. Such extended vec-
tor fields arise naturally in the study of the behavior of entropy solutions to
the Euler equations for gas dynamics and other nonlinear systems of conserva-
tion laws. A new notion of normal traces over Lipschitz deformable surfaces is
developed under which a generalized Gauss-Green theorem is established even
for these extended fields. An explicit formula is obtained to calculate the nor-
mal traces over any Lipschitz deformable surface, suitable for applications, by
using the neighborhood information of the fields near the surface and the level
set function of the Lipschitz deformation surfaces. As an application, we prove
the uniqueness and stability of Riemann solutions that may contain vacuum
in the class of entropy solutions of the Euler equations for gas dynamics.

1. Introduction

We are concerned with a class of extended vector fields, called extended divergence-
measure fields, or DM-fields for short. These fields include vector fields in Lp, 1 ≤
p ≤ ∞, and vector-valued Radon measures, whose divergences are Radon measures.
The DM-fields arise naturally in the study of the behavior of entropy solutions of
nonlinear hyperbolic systems of conservation laws, which take the form

ut +∇x · f(u) = 0, u ∈ Rm, x ∈ Rn,

where f : Rm → (Rm)n is a nonlinear map. One of its most important prototypes
is the Euler equations for gas dynamics in Lagrangian coordinates:

τt − vx = 0,(1.1)

vt + px = 0,(1.2)

(e +
v2

2
)t + (pv)x = 0,(1.3)

where τ = 1/ρ is the specific volume with the density ρ, and v, p, e are the velocity,
the pressure, the internal energy, respectively; the other two gas dynamical variables
are the temperature θ and the entropy S. For ideal polytropic gases, the system
(1.1)–(1.3) is closed by the following constitutive relations:

(1.4) pτ = Rθ, e = cvθ, p(τ, S) = κτ−γeS/cv ,
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where cv, R, and κ are positive constants, and γ = 1 + cv/R > 1. For isentropic
gases, the Euler equations become

τt − vx = 0,(1.5)

vt + p(τ)x = 0,(1.6)

where p(τ) = κτ−γ , γ > 1.
The main feature of nonlinear hyperbolic conservation laws, especially (1.1)–

(1.3), is that, no matter how smooth the initial data are, solutions may develop
singularities and form shock waves in finite time. One may expect solutions in the
space of functions of bounded variation. This is indeed the case by the Glimm
theorem [15] which establishes that, when the initial data have sufficiently small
total variation and stay away from vacuum for (1.1)–(1.3), there exists a global
entropy solution in BV satisfying the Clausius inequality:

(1.7) St ≥ 0

in the sense of distributions. However, when the initial data are large, still away
from vacuum, the solutions may develop vacuum in finite time, even instantaneously
as t > 0. In this case, the specific volume τ = 1/ρ may then become a Radon
measure or an L1 function, rather than a function of bounded variation. This indi-
cates that solutions of nonlinear hyperbolic conservation laws are generally either in
M(R+×Rn), the space of signed Radon measures, or in Lp(R+×Rn), 1 ≤ p ≤ ∞.
On the other hand, the fact that (1.1)–(1.3), and (1.7) hold in the sense of dis-
tributions implies, in particular, that the divergences of the fields (τ,−v), (v, p),
(e + v2/2, pv), (S, 0), in the (t, x) variables, are Radon measures, in which the first
three are the trivial null measure and the last one is a nonnegative measure as a
consequence of the Schwartz Lemma [21]. This motivates our study of the extended
divergence-measure fields (see Definition 1.1 below).

In this connection, we recall that Wagner [25] has proved that the well known La-
grangian transformation carries entropy solutions of the Euler equations in Eulerian
coordinates to entropy solutions of (1.1)–(1.3), in a one-to-one and onto manner.
However, since solutions of the first which contain vacuum are carried into solutions
of (1.1)–(1.3) which are vector-valued measures, the concept of entropy solutions
for the latter has to be strengthened. We will return to this point in Section 4.

Understanding more properties of DM-fields can advance our understanding of
the behavior of entropy solutions (cf. [5, 6, 7]). One of the fundamental questions
is whether the normal traces can still be defined and the Gauss-Green formula, i.e.,
integration by parts, still works for these extended fields, which are very weak.

We begin with the definition of DM-fields. For open sets A,B ⊂ RN , by the
relation A b B we mean that the closure of A, Ā, is a compact subset of B.

Definition 1.1. Let D ⊂ RN be open. For F ∈ Lp(D; RN ), 1 ≤ p ≤ ∞, or
F ∈M(D; RN ), set

|divF |(D) := sup{
∫

D

∇ϕ · F : ϕ ∈ C1
0 (D), |ϕ(x)| ≤ 1, x ∈ D }.

For 1 ≤ p ≤ ∞, we say that F is an Lp-divergence-measure field over D, i.e.,
F ∈ DMp(D), if F ∈ Lp(D; RN ) and

(1.8) ‖F‖DMp(D) := ‖F‖Lp(D;RN ) + |div F |(D) < ∞.
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We say that F is an extended divergence-measure field over D, i.e., F ∈ DMext(D),
if F ∈M(D; RN ) and

(1.9) ‖F‖DMext(D) := |F |(D) + |div F |(D) < ∞.

If F ∈ DMp(D) for any open set D b RN , then we say F ∈ DMp
loc(RN ); and, if

F ∈ DMext(D) for any open set D b RN , we say F ∈ DMext
loc (RN ).

It is easy to check that these spaces under the norms (1.8) and (1.9), respectively,
are Banach spaces. These spaces are larger than the BV -space. The establishment
of the Gauss-Green theorem, traces, and other properties of BV functions in the
middle of last century (see Federer [13]) has advanced significantly our understand-
ing of solutions of nonlinear partial differential equations and nonlinear problems
in calculus of variations, differential geometry, and other areas. A natural question
is whether the DM-fields have similar properties, especially the normal traces and
the Gauss-Green formula. At a first glance, it seems unclear.

Example 1.1: The field F (x, y) = ( x
x2+y2 , y

x2+y2 ) belongs to DM1
loc(R2). As

remarked in Whitney [26], for Ω = (0, 1)× (0, 1),∫
Ω

divF = 0 6=
∫

∂Ω

F · ν dH1 =
π

2
,

if one understands F · ν in the classical sense, which implies that the classical
Gauss-Green theorem fails. In this paper, we succeed in using the neighborhood
information via the Lipschitz deformation to develop a natural notion of normal
traces, under which our generalized Gauss-Green theorem holds, even for F ∈
DMext(D).

Example 1.2: For any µ ∈M(R) with finite total variation,

F (x, y) = (dx× µ(y), 0) ∈ DMext(I × R),

for any bounded open interval I ⊂ R. A non-trivial example of such fields is pro-
vided by the Riemann solutions of the Euler equations (1.1)–(1.3) for gas dynamics,
which develop vacuum. See (4.12) below.

Some efforts have been made in generalizing the Gauss-Green Theorem. Some
results for several situations can be found in Anzellotti [1] for an abstract formula-
tion for F ∈ L∞, Rodrigues [20] for F ∈ L2, and Ziemer [28] for a related problem
for divF ∈ L1 (see also Baiocchi-Capelo [2], Brezzi-Fortin [4], and Ziemer [29]).
In Chen-Frid [6], we observed an explicit way to calculate the normal traces for
F ∈ DM∞ by the neighborhood information, under which a generalized Gauss-
Green theorem holds.

In this paper, motivated by various nonlinear problems from conservation laws,
we propose a natural notion of normal traces by the neighborhood information via
Lipschitz deformation under which a generalized Gauss-Green theorem is estab-
lished for F ∈ DMext(D) in Section 3, where our main results concerning extended
divergence-measure fields are stated and proved, after establishing some auxiliary
results in Section 2. In particular, we show an explicit way to calculate the normal
traces over any deformable Lipschitz surface, suitable for applications, by using the
neighborhood information of the fields near the surface and the level set function of
the Lipschitz deformation surfaces. We also show a product rule for these extended
fields. Their proofs require some refined properties of Radon measures and the
Whitney extension theory, among others.
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In Section 4, we give an important application of the theory of DM-fields to
the Euler equations (1.1)–(1.3) for gas dynamics and establish the uniqueness and
stability of Riemann solutions of large oscillation that may contain two rarefaction
waves and one contact discontinuity or vacuum states (i.e. measure solutions)
in the class of entropy solutions, which may not belong to either BVloc or L∞,
without specific reference on the method of construction of the solutions. The
proof, motivated by [11] and [7]–[9], is heavily based on our explicit approach to
calculate normal traces over Lipschitz deformable surfaces, in the generalized Gauss-
Green theorem, and the product rule for DM-fields. The same arguments clearly
also yield the uniqueness and stability of Riemann solutions in the class of entropy
solutions for the Euler equations (1.5) and (1.6) for isentropic gas dynamics.

Before closing this introduction, we recall some correlated results. In DiPerna
[11], a uniqueness theorem of Riemann solutions was first established for 2× 2 sys-
tems in the class of entropy solutions in L∞ ∩BVloc with small oscillation. We also
refer to Dafermos [10] for the stability of Lipschitz solutions for hyperbolic systems
of conservation laws. In [8, 9], the uniqueness and stability of Riemann solutions
of large oscillation without vacuum (possibly containing shocks) was proved for
the 3 × 3 Euler equations, in the class of entropy solutions in L∞ ∩ BVloc which
stay away from vacuum. Another related connection is the recent results on the
L1-stability of the solutions in L∞∩BV obtained either by the Glimm scheme [15],
the wave front-tracking method, the vanishing viscosity method, or more generally
satisfying an additional regularity, with small total variation in x uniformly for all
t > 0 (see the recent references cited in Bianchini-Bressan [3] and Dafermos [10]).

2. Radon Measures and the Whitney Extension

In this section, we establish some auxiliary properties about Radon measures
and the Whitney extension of Lipschitz continuous functions, which are required
for our analysis on the extended divergence-measure vector fields in Section 3. We
begin with some properties about Radon measures. Let Ω, D ⊂ RN be open. For
µε, µ ∈ M(Ω), we denote µε ⇀ µ the weak convergence of µε to µ in M(Ω). The
next three lemmas are standard, but we include their proofs for completeness

Lemma 2.1. Let µε, µ ∈ M(Ω) be signed Radon measures over Ω with µε ⇀ µ.
Then

|µ|(Ω) ≤ lim inf
ε→0

|µε|(Ω).

This can be seen as follows: For any φ ∈ C0(Ω), |φ| ≤ 1,

〈µ, φ〉 = lim
ε→0

〈µε, φ〉 ≤ lim inf
ε→0

|µε|(Ω).

Lemma 2.2. Let µε, µ ∈M(Ω) be such that

µε ⇀ µ, lim
ε→0

|µε|(Ω) = |µ|(Ω).

Then, for every open set A ⊂ Ω,

|µ|(A ∩ Ω) ≥ lim sup
ε→0

|µε|(A ∩ Ω).

In particular, if |µ|(∂A ∩ Ω) = 0, then

|µ|(A) = lim
ε→0

|µε|(A).
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Proof. Set B = Ω−A, which is open. Then

|µ|(A) ≤ lim inf
ε→0

|µε|(A), |µ|(B) ≤ lim inf
ε→0

|µε|(B).

On the other hand,

|µ|(Ā ∩ Ω) + |µ|(B) = |µ|(Ω) = lim
ε→0

|µε|(Ω)

≥ lim sup |µε|(Ā ∩ Ω) + lim inf |µε|(B)

≥ lim sup |µε|(Ā ∩ Ω) + |µ|(B),

which yields the desired result. ¤

Lemma 2.3. Let ωε be a sequence of positive symmetric mollifiers in RN and
µ ∈M(Ω). Set µε = µ ∗ ωε, the mollified measures. Then, for any open set A b Ω
with |µ|(∂A) = 0,

|µ|(A) = lim
ε→0

|µε|(A).

Proof. Since µε ⇀ µ, Lemma 2.1 implies

|µ|(A) ≤ lim inf
ε→0

|µε|(A).

Notice that, for any g ∈ C0(A), |g| ≤ 1,

〈µε, g〉 = 〈µ, gε〉,
where gε = g ∗ ωε. Since |gε| ≤ 1 and spt (gε) ⊂ Aε := {x : dist (x,A) ≤ ε} ⊂ Ω
for ε ¿ 1, then

|〈µε, g〉| ≤ |µ|(Aε),
which implies

|µε|(A) ≤ |µ|(Aε).
Hence,

lim sup
ε→0

|µε|(A) ≤ lim
ε→0

|µ|(Aε) = |µ|(Ā),

which yields
lim sup

ε→0
|µε|(A) ≤ |µ|(A),

since |µ|(∂A) = 0. ¤

In particular, Lemma 2.3 indicates that, if µ ≥ 0 and µ(∂A) = 0, then

µ(A) = lim
ε→0

µε(A).

Proposition 2.1. Let D ⊂ RN be open, µ ∈ M(D), and µε = µ ∗ ωε. Let Ω b D
be open and |µ|(∂Ω) = 0. Then, for any φ ∈ C(D),

lim
ε→0

〈µε, φχΩ〉 = 〈µ, φχΩ〉.

Proof. Write
µε = µε+ − µε−,

where µε± = µ± ∗ωε are nonnegative measures. The condition |µ|(∂Ω) = 0 implies

µ±(∂Ω) = 0.

From Lemma 2.3, we have

lim
ε→0

µε±(Ω) = µ±(Ω).
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Hence

lim
ε→0

µε(Ω) = lim
ε→0

µε+(Ω)− lim
ε→0

µε−(Ω) = µ+(Ω)− µ−(Ω) = µ(Ω).

Let A be open with Ω b A b D. Then, for φ ∈ C(D) and δ > 0, we may
construct a partition of RN by means of parallelepipeds:

Qα = [xα1
1 , xα1+1

1 ]× · · · × [xαN

N , xαN+1
N ], α = (α1, · · · , αN ) ∈ ZN ,

such that

∪Qα∩Ω 6=∅ Qα ⊂ A,

|µ|(∂Qα ∩D) = 0, α ∈ ZN ,

and
|φ(x)− φ(y)| < δ, x, y ∈ Qα.

Let aα = φ(x∗α) for some x∗α ∈ Qα if Qα ∩ Ω 6= ∅, and aα = 0, otherwise. Then

〈µε, φχΩ〉 = 〈µε,
∑

aαχQα∩Ω〉+ 〈µε, (φ−
∑

aαχQα
)χΩ〉,

and

lim sup
ε→0

〈µε, φχΩ〉 ≤ 〈µ,
∑

aαχQα∩Ω〉+ δ|µ|(A)

≤ 〈µ, φχΩ〉+ 2δ|µ|(A).

Analogously,
lim inf

ε→0
〈µε, φχΩ〉 ≥ 〈µ, φχΩ〉 − 2δ|µ|(A).

Since δ > 0 is arbitrary, we complete the proof. ¤

We now discuss some concepts and facts about the extension of Lipschitz con-
tinuous functions defined on a closed set C ⊂ RN to RN , following the theory set
forth by Whitney [27] (see also [23]), which play an important role in Section 3.

Let k be a nonnegative integer and γ ∈ (k, k + 1]. We say that a function f ,
defined on C, belongs to Lip (γ,C) if there exist functions f (j), 0 ≤ |j| ≤ k, defined
on C, with f (0) = f , such that, if

f (j)(x) =
∑

|j+l|≤k

f (j+l)(y)
l!

(x− y)l + Rj(x, y),

then

(2.1)

{
|f (j)(x)| ≤ M,

|Rj(x, y)| ≤ M |x− y|γ−|j|, for any x, y ∈ C, |j| ≤ k.

Here j and l denote multi-indices j = (j1, · · · , jN ) and l = (l1, · · · , lN ) with j! =
j1! · · · jN !, |j| = j1+j2+· · ·+jN , and xl = xl1

1 xl2
2 · · ·xlN

N . By an element of Lip (γ,C)
we mean the collection {f (j)(x)}|j|≤k. The norm of an element in Lip (γ,C) is
defined as the smallest M for which the inequality (2.1) holds. We notice that
Lip (γ,C) with this norm is a Banach space. For the case C = RN , since the
functions f (j) are determined by f (0), this collection is then identified with f (0).

The Whitney extension of order k is defined as follows. Let {f (j)}|j|≤k be an
element of Lip (γ,C). The linear mapping Ek : Lip (γ,C) → Lip (γ, RN ) assigns
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to any such collection a function Ek(f (j)) defined on RN which is an extension of
f (0) = f to RN . The definition of Ek is the following:{

E0(f)(x) = f(x), x ∈ C,

E0(f)(x) =
∑

i f(pi)ϕi(x), x ∈ RN − C,

and, for k > 0,{
Ek(f (j))(x) = f (0)(x), x ∈ C,

Ek(f (j))(x) =
∑′

i P (x, pi)ϕi(x), x ∈ RN − C.

Here P (x, y) denotes the polynomial in x, which is the Taylor expansion of f about
the point y ∈ C:

P (x, y) =
∑
|l|≤k

f (l)(y)(x− y)l

l!
, x ∈ RN , y ∈ C.

The functions ϕi form a partition of unity of RN −C with the following properties:
(i) spt (ϕi) ⊂ Qi where Qi is a cube with edges parallel to the coordinate axes

and
c1 diam (Qi) ≤ dist (Qi, C) ≤ c2 diam (Qi),

for certain positive constants c1 and c2 independent of C;
(ii) each point of RN − C is contained in at most N0 cubes Qi, for certain

number N0 depending only on the dimension N ;
(iii) the derivatives of ϕi satisfy

(2.2)
∣∣∂α1

x1
· · · ∂αN

xN
ϕi(x)

∣∣ ≤ Aα(diam Qi)−|α|.

Here pi ∈ C is such that dist (Qi, C) = dist (pi, Qi), |α| = α1 + · · · + αN , and
the symbol

∑′ indicates that the summation is taken only over those cubes whose
distances to C are not greater than one.

The following theorem, whose proof can also be found in [23], is due to Whit-
ney [27].

Theorem 2.1. Suppose that k is a nonnegative integer, γ ∈ (k, k + 1], and C is a
closed set. Then the mapping Ek is a continuous linear mapping from Lip (γ,C) to
Lip (γ, RN ) which defines an extension of f (0) to RN , and the norm of this mapping
has a bound independent of C.

We will need the following proposition, which seems to be of interest in itself
and is useful in establishing the generalized Gauss-Green theorem in Section 3.

Proposition 2.2. Let C be a closed set in RN and

Cδ := {x ∈ RN : dist (x,C) ≤ δ }, for δ > 0.

Let Ek : Lip (γ,C) → Lip (γ, RN ) with γ ∈ (k, k + 1] be the Whitney extension of
order k. Then, for any φ ∈ Lip (γ, RN ) and any γ′ ∈ (k, γ),

(2.3) ‖Ek(φ|C)− φ‖Lip (γ′,Cδ) → 0, as δ → 0.

Proof. We will prove the proposition in detail only for the cases k = 0 and k = 1
since the case k > 1 can then be obtained by induction.
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For k = 0, E0 is given by E0(f)(x) = f(x) if x ∈ C, and

(2.4) E0(f)(x) =
∞∑

i=1

f(pi)ϕi(x), if x ∈ RN − C,

where pi and ϕi are as above. Now, for any φ ∈ Lip (γ, RN ), we have

E0(φ|C)(x)− φ(x) =
∞∑

i=1

(φ(pi)− φ(x))ϕi(x).

Clearly,

(2.5) sup
x∈Cδ

|E0(φ|C)(x)− φ(x)| ≤ c sup
y∈C,x∈Cδ

|x−y|≤c0δ

|φ(y)− φ(x)| → 0, as δ → 0.

Here and in what follows in this proof c0 and c are positive constants, which do not
depend on either δ > 0 or C, whose values may change at each appearance.

Set g = E0(φ|C)− φ. We now show that

(2.6) |g(x)− g(y)| ≤ M(δ)|x− y|γ′ , x, y ∈ Cδ,

where M(δ) → 0 as δ → 0. Indeed,

g(x)− g(y) =
∑

x∈Qi

(φ(pi)− φ(x))ϕi(x)−
∑

y∈Qi

(φ(pi)− φ(y))ϕi(y).

We split each of these sums into two, respectively:∑
x∈Qi

=
∑

x∈Qi

y/∈Qi

+
∑

x∈Qi

y∈Qi

,
∑

y∈Qi

=
∑

y∈Qi

x/∈Qi

+
∑

x∈Qi

y∈Qi

,

and denote ∑0
=

∑
x∈Qi

y∈Qi

,
∑1

=
∑

x∈Qi

y/∈Qi

,
∑2

=
∑

y∈Qi

x/∈Qi

.

We have ∑0(
(φ(pi)− φ(x))ϕi(x)− (φ(pi)− φ(y))ϕi(y)

)
=

∑0
(φ(y)− φ(x))ϕi(x) +

∑0
(φ(pi)− φ(y))(ϕi(x)− ϕi(y)).

Since, if x, y ∈ Qi ∩ Cδ, |x − y| ≤ c0δ, for a given constant c0 > 0, we obtain, for
the first sum, ∣∣∣∣∑0

(φ(x)− φ(y))ϕi(x)
∣∣∣∣ ≤ cδγ−γ′ |x− y|γ′ ,

and, for the second sum,∣∣∣∣∑0
(φ(pi)− φ(y))(ϕi(x)− ϕi(y))

∣∣∣∣ ≤ c
∑0

|pi − y|γ(diamQi)−1|x− y|

≤ c |x− y|γ ≤ c δγ−γ′ |x− y|γ′ .

Now, for
∑1, we have∑1

(φ(pi)− φ(x))ϕi(x) =
∑1

(φ(pi)− φ(x))(ϕi(x)− ϕi(qi)),
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with qi = ∂Qi ∩ [x, y], where [x, y] is the straight line segment connecting x to y.
Therefore,∑1

|φ(pi)− φ(x)||ϕi(x)− ϕi(qi)| ≤ c
∑1

|pi − x|γ(diam Qi)−1|x− qi|

≤ c
∑1

|x− qi|γ ≤ c δγ−γ′ |x− y|γ′ .

The sum
∑2 is treated similarly. We have then proved (2.6) which, together with

(2.5), gives (2.3) for k = 0.

For k = 1, we have E1(f)(x) = f(x) for x ∈ C, and

E1(f)(x) =
∞∑

i=1

Pf (x, pi)ϕi(x), for x ∈ RN − C,

where

Pf (x, y) = f(y) +
N∑

j=1

∂xj
f(y)(xj − yj),

and the functions ϕi, conveniently renumbered together with the Qi containing
spt (ϕi), satisfy dist (Qi , C) ≤ 1. Since φ ∈ Lip (γ, RN ), γ > 1, we clearly have

(φ|C)j(y) = ∂xj
φ(y), for y ∈ C.

Hence

E1(φ|C)(x)− φ(x) =
∞∑

i=1

(Pφ(x, pi)− φ(x))ϕi(x).

Setting g1 = E1(φ|C)− φ, we have

|g1(x)| ≤
∞∑

i=1

|Pφ(x, pi)− φ(x)||ϕi(x)|

≤ c
∑

x∈Qi

|x− pi|γ |ϕi(x)| ≤ c δγ → 0, as δ → 0.

Also,

∂xk
g1(x) =

∑
x∈Qi

∂xk
(Pφ(x, pi)− φ(x))ϕi(x) +

∑
x∈Qi

(Pφ(x, pi)− φ(x))∂xk
ϕi(x)

= h1(x) + h2(x),

where

h1(x) :=
∑

x∈Qi

(∂xk
φ(pi)−∂xk

φ(x))ϕi(x), h2(x) :=
∑

x∈Qi

(Pφ(x, pi)−φ(x))∂xk
ϕi(x).

Hence,

|∂xk
g1(x)| ≤ c

∑
x∈Qi

|pi − x|γ−1 + c
∑

x∈Qi

|x− pi|γdiam (Qi)−1

≤ c δγ−1 → 0, as δ → 0.

We now show

|∂xk
g1(x)− ∂xk

g1(y)| ≤ M(δ)|x− y|γ′−1,

with M(δ) → 0 as δ → 0. First we obtain

|h1(x)− h1(y)| ≤ M(δ)|x− y|γ′−1, with M(δ) → 0, as δ → 0,
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exactly as in the case k = 0. Now,

h2(x)− h2(y) =
∑

x∈Qi

(Pφ(x, pi)− φ(x))∂xk
ϕi(x)−

∑
x∈Qi

(Pφ(x, pi)− φ(y))∂xk
ϕi(y)

=
∑

x∈Qi

R(x, pi)∂xk
ϕi(x)−

∑
y∈Qi

R(y, pi)∂xk
ϕi(y),

where we put R(x, y) = Pφ(x, y)− φ(x). Again, we split each of the last two sums
above into two, respectively:∑

x∈Qi

=
∑0

+
∑1

,
∑

y∈Qi

=
∑0

+
∑2

,

as in the first part of the proof, and compute∣∣∑0
R(x, pi)∂xk

ϕi(x)−
∑0

R(y, pi)∂xk
ϕi(y)

∣∣
≤

∣∣∑0
(R(x, pi)−R(y, pi))∂xk

ϕi(x)
∣∣ +

∣∣∑0
R(y, pi)(∂xk

ϕi(y)− ∂xk
ϕi(x))

∣∣
≤ c

∑0
|x− y|γ(diam Qi)−1 + c

∑0
|y − pi|γ(diam Qi)−2|x− y|

≤ c δγ−γ′ |x− y|γ′−1.

For the remaining sums, we have∣∣∑1
R(x, pi)∂xk

ϕi(x)
∣∣ =

∣∣∑1
R(x, pi)(∂xk

ϕi(x)− ∂xk
ϕi(qi))

∣∣
≤ c

∑1
|x− pi|γ(diamQi)−2|x− qi|

≤ c δγ−γ′ |x− y|γ′−1,

where qi is as that in the first part of the proof; and the sum
∑2

R(y, pi)∂xk
ϕi(y) is

treated similarly. This concludes the proof in the case k = 1. As indicated above,
the case k > 1 follows similarly by induction. ¤

3. Normal Traces and Generalized Gauss-Green Theorem

In this section, we prove our main results concerning extended DM-fields, in-
cluding a generalized Gauss-Green theorem, a new notion of normal traces, and a
product rule for DM-fields. We begin with the definition of deformable Lipschitz
boundaries.

Definition 3.1. Let Ω ⊂ RN be an open bounded subset. We say that ∂Ω is a
deformable Lipschitz boundary, provided that

(i) ∀x ∈ ∂Ω, ∃ r > 0 and a Lipschitz map γ : RN−1 → R such that, after rotating
and relabeling coordinates if necessary,

Ω ∩Q(x, r) = {y ∈ RN : γ(y1, · · · , yN−1) < yN } ∩Q(x, r),

where Q(x, r) = {y ∈ RN : |xi − yi| ≤ r, i = 1, · · · , N };
(ii) ∃Ψ : ∂Ω× [0, 1] → Ω such that Ψ is a homeomorphism bi-Lipschitz over its

image and Ψ(ω, 0) = ω for all ω ∈ ∂Ω. The map Ψ is called a Lipschitz deformation
of the boundary ∂Ω.

The following lemma is a direct corollary of the boundedness of F and divF over
Ω as Radon measures. Since the theory of DM∞-fields has been addressed in [5],
henceforth we focus on DM∗-fields, where ∗ stands for either p ∈ [1,∞) or ext.
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Lemma 3.1. Let F ∈ DM∗(Ω) with Ω an open set whose boundary ∂Ω has a Lip-
schitz deformation Ψ with ∂Ωs = Ψs(∂Ω), s ∈ [0, 1]. Then there exists a countable
set T ⊂ (0, 1) such that

|F |(∂Ωs) = |divF |(∂Ωs) = 0, for any s ∈ (0, 1)− T .

We now establish the generalized Gauss-Green theorem for DM∗-fields, by in-
troducing a suitable definition of normal traces over the boundary ∂Ω of a bounded
open set Ω with Lipschitz deformable boundary.

Theorem 3.1 (Generalized Gauss-Green Theorem for DM∗-fields). Assume F ∈
DM∗(Ω). Let Ω ⊂ RN is a bounded open set with Lipschitz deformable boundary.
Then there exists a continuous linear functional F · ν|∂Ω over Lip (γ, ∂Ω), γ > 1,
such that, for any φ ∈ Lip (γ, RN ),

(3.1) 〈F · ν|∂Ω, φ〉 =
∫

Ω

φdivF +
∫

Ω

∇φ · F .

Let h : RN → R be the level set function of ∂Ωs, that is,

h(x) :=




0, for x ∈ RN − Ω,

1, for x ∈ Ω−Ψ(∂Ω× [0, 1]),
s, for x ∈ ∂Ωs, 0 ≤ s ≤ 1.

Then, if F ∈ DMp(Ω), 1 ≤ p < ∞,

〈F · ν|∂Ω, ψ〉 = − lim
s→0

1
s

∫
Ψ(∂Ω×(0,s))

E(ψ)∇h · F dx(3.2)

= − lim
s→0

1
s

∫
Ψ(∂Ω×(0,s))

E(ψ) |∇h|F · ν dx(3.3)

for any ψ ∈ Lip (∂Ω), where E(ψ) is any Lipschitz extension of ψ to all RN and
ν : Ψ(∂Ω×[0, 1]) → RN is such that ν(x) is the unit outer normal to ∂Ωs at x ∈ ∂Ωs,
defined for a.e. x ∈ Ψ(∂Ω × [0, 1]). Formula (3.2) also holds if F ∈ DMext(Ω),
for any ψ ∈ Lip (γ, ∂Ω), γ > 1, and E(ψ) ∈ Lip (γ, ∂RN ) any extension of ψ to
RN , provided that the set of non-Lebesgue points of ∇h(x) on Ψ(∂Ω × (0, 1)) has
|F |-measure zero. Finally, for F ∈ DMp(Ω) with 1 < p < ∞, F · ν|∂Ω can be
extended to a continuous linear functional over W 1−1/p, p(∂Ω) ∩ C(∂Ω).

Proof. We divide the proof into four steps.
Step 1. We first treat the more general case F ∈ DMext(Ω). For ψ ∈ Lip (γ, ∂Ω),

let E(ψ) be the Whitney extension of ψ of order k = 1. Then, by the classical
Gauss-Green formula, we have

(3.4)
∫

∂Ω

F ε · ν ψ dHN−1 =
∫

Ω

E(ψ) div F ε +
∫

Ω

∇E(ψ) · F ε.

where F ε = F ∗ ωε with the standard mollified sequence ωε.
To begin with, we first focus on F ∈ DMext(D), for Ω b D b RN , satisfying

(3.5) |F |(∂Ω) = |div F |(∂Ω) = 0.

The right-hand side of (3.4) defines a uniformly bounded family of continuous
linear operators lε over Lip (γ, ∂Ω). Moreover, for each ψ ∈ Lip (γ, ∂Ω), the limit
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limε→0 lε(ψ) exists and equals∫
Ω

E(ψ) div F +
∫

Ω

∇E(ψ) · F,

as a consequence of (3.5) and Proposition 2.1. Hence, we may define

〈F · ν|∂Ω, ψ〉 = lim
ε→0

lε(ψ), ∀ψ ∈ Lip (γ, ∂Ω).

Now, for any φ ∈ Lip (γ, RN ), we let ε → 0 in the Gauss-Green formula:∫
∂Ω

F ε · ν φ dHN−1 =
∫

Ω

φdivF ε +
∫

Ω

∇φ · F ε,

and obtain the identity (3.1).

For the general case that F ∈ DMext(Ω) without the assumption (3.5), we consider
a Lipschitz deformation of ∂Ω, Ψ : ∂Ω× [0, 1] → Ω. Let s ∈ (0, 1) be such that

(3.6) |F |(∂Ωs) = |div F |(∂Ωs) = 0.

Since we have HN−1(∂Ωs) < +∞, Federer’s extension of the Gauss-Green formula
(see [13]) holds for φF ε over Ωs. Thus, we know from the previous analysis that
F · ν|∂Ωs

is defined as a continuous linear functional over Lip (γ, ∂Ωs), whose norm
is bounded, independent of s ∈ (0, 1). Now, for ψ ∈ Lip (γ, ∂Ω), we have

(3.7) 〈F · ν|∂Ωs
, (E(ψ)|∂Ωs)〉 =

∫
Ωs

E(ψ) divF +
∫

Ωs

∇E(ψ) · F.

Again, the right-hand side of (3.7) defines a uniformly bounded family of continuous
linear functionals ls over Lip (γ, ∂Ω), for s ∈ (0, 1)−T , where T is defined in Lemma
3.1. Furthermore, lims→0 ls(ψ) exists for any ψ ∈ Lip (γ, ∂Ω), as a consequence of
the Dominated Convergence Theorem applied to both integrals on the right-hand
side of (3.7). Hence, we may define

〈F · ν|∂Ω, ψ〉 = lim
s→0

ls(ψ),

which is then a continuous linear functional over Lip (γ, ∂Ω). Finally, for any φ ∈
Lip (γ, RN ), we obtain (3.1) by taking the limit as s → 0 in the formula:

〈F · ν|∂Ωs
, (φ|∂Ωs)〉 =

∫
Ωs

φdivF +
∫

Ωs

∇φ · F,

observing that

|〈F · ν|∂Ωs
, (φ|∂Ωs)− (E(φ|∂Ω)|∂Ωs)〉|
≤ c ‖(φ|∂Ωs)− (E(φ|∂Ω)|∂Ωs)‖Lip (γ′,∂Ωs)

≤ c ‖φ− E(φ|∂Ω)‖Lip (γ′,Ψ(∂Ω×[0,s])) → 0, as s → 0,

for 1 < γ′ < γ, as a consequence of Proposition 2.2.

Step 2. We now consider the more regular case that F ∈ DMp(Ω), 1 ≤ p < ∞.
Let F ε be as above. Again, for any φ ∈ Lip (RN ), we have

(3.8)
∫

∂Ωs

φF ε · ν dHN−1 =
∫

Ωs

φdivF εdx +
∫

Ωs

∇φ · F ε dx.
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Now we integrate (3.8) in s ∈ (0, δ), 0 < δ < 1, and use the coarea formula (see,
e.g. [12, 13]) in the left-hand side to obtain
(3.9)

−
∫

Ψ(Ω×(0,δ))

φF ε · ∇h dx =
∫ δ

0

{∫
Ωs

φdiv F ε dx

}
ds +

∫ δ

0

{∫
Ωs

∇φ · F ε dx

}
ds.

Let ε → 0. Observing that, by Proposition 2.1, the integrand of the first integral
converges for a.e. s ∈ (0, δ) to the corresponding integral for F , we obtain

(3.10) −
∫

Ψ(Ω×(0,δ))

φF ·∇h dx =
∫ δ

0

{∫
Ωs

φdiv F

}
ds+

∫ δ

0

{∫
Ωs

∇φ · F dx

}
ds.

We then divide (3.10) by δ, let δ → 0, and observe that both terms in the right-
hand side converge to the corresponding integrals inside the brackets over Ω, by the
dominated convergence theorem. Hence, the left-hand side also converges, which
yields

(3.11) − lim
δ→0

1
δ

∫
Ψ(Ω×(0,δ))

φF · ∇h dx =
∫

Ω

φdivF +
∫

Ω

∇φ · F dx.

Now, for ψ ∈ Lip (∂Ω), let E(ψ) ∈ Lip (RN ) be a Lipschitz extension of ψ preserving
the norm ‖ · ‖Lip := ‖ · ‖∞ + Lip (·) (see, e.g., [12, 13]). We then define

(3.12) 〈F · ν|∂Ω, ψ〉 = − lim
s→0

1
s

∫
Ψ(∂Ω×(0,s))

E(ψ)∇h · F dx.

Because the right-hand side of (3.11) does not depend on the particular deformation
Ψ for ∂Ω, we see that the normal trace defined by (3.12) is also independent of the
deformation.

We still have to prove that the normal trace as defined by (3.12) also does not
depend on the specific Lipschitz extension E(ψ) of ψ. This will be accomplished
if we prove that the right-hand side of (3.11) vanishes for φ|∂Ω ≡ 0. Denote it by
[F, φ]∂Ω, that is,

[F, φ]∂Ω := 〈divF, φ〉Ω + 〈F,∇φ〉Ω.

We claim that [F, φ]∂Ω = 0 if φ|∂Ω ≡ 0. In fact, we may approximate such φ by a
sequence φj ∈ C∞0 (Ω), with ‖φj‖∞ ≤ ‖φ‖∞, such that φj → φ locally uniformly in
Ω and ∇φj → ∇φ in Lq(Ω)N , with 1

p + 1
q = 1. Hence, [F, φ]∂Ω = limj→∞[F, φj ] =

0, as asserted. In particular, for 1 ≤ p ≤ ∞, the values of the normal trace,
〈F · ν|∂Ω, φ|∂Ω〉, depend only on the values of φ over ∂Ω.

Step 3. The fact that formula (3.2) also holds if F ∈ DMext(Ω), for any ψ ∈
Lip (γ, ∂Ω), γ > 1, provided that the set of non-Lebesgue points of ∇h(x) on
Ψ(∂Ω× (0, 1)) has |F |-measure zero, is clear from the above proof for DMp-fields,
1 ≤ p ≤ ∞.

Step 4. As for the last assertion, we recall a well-known result of Gagliardo [14]
which indicates, in particular, that, if ∂Ω is Lipschitz (that is, satisfies (i) of Def-
inition 3.1) and ψ ∈ W 1−1/p, p(∂Ω), then it can be extended into Ω to a function
E(ψ) ∈ W 1,p(Ω), and

(3.13) ‖E(ψ)‖W 1,p(Ω) ≤ c‖ψ‖W 1−1/p, p(∂Ω),

for some positive constant c independent of ψ. ¿From the definition of E(ψ) given
in [14], it is easy to verify that, when ψ ∈ C(∂Ω), E(ψ) ∈ C(Ω) and ‖E(ψ)‖L∞(Ω) ≤
‖ψ‖L∞(∂Ω). Hence, using these facts and (3.11), we easily deduce the last assertion.
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¤

Remark 3.1. When F ∈ DM∞(D), the normal trace F ·ν|∂Ω is in fact in L∞(∂Ω,HN−1)
as the weak-star limit of (F ·νs)◦Ψs in L∞(∂Ω,HN−1) for any Lipschitz deformation
Ψs:

F · ν|∂Ω = w∗ − lim (F · νs) ◦Ψs, L∞(∂Ω,HN−1),
which is independent of Ψs; and the weak-star topology for this limit is optimal
to define F · ν|∂Ω in general (see Chen-Frid [5]). However, for F ∈ DM∗(D), the
normal traces F · ν|∂Ω may no longer be functions in general. This can be seen in
Example 1.1 for F ∈ DM1

loc(R2) with Ω = (0, 1)× (0, 1), for which

F · ν|∂Ω =
π

2
δ(0,0) − dH1|∂Ω,

where H1 is the one-dimensional Hausdorff measure on ∂Ω.

Remark 3.2. As mentioned in the proof of Theorem 3.1, if F ∈ DMp(Ω), for
1 ≤ p ≤ ∞, the values of the normal trace, 〈F · ν|∂Ω, φ|∂Ω〉, depend only on the
values of φ over ∂Ω. In contrast, for F ∈ DMext(Ω), the values of 〈F · ν|∂Ω, φ|∂Ω〉
also depend, in principle, on the values of the first derivatives of φ over ∂Ω, since
φ|∂Ω must be viewed as elements of Lip (γ, ∂Ω), for some γ > 1.

Finally, we establish the following useful product rule.

Theorem 3.2 (Product Rule). Let F = (F1, · · · , FN ) ∈ DM∗(D). Let g ∈ C(D)
be such that ∂xj

g(x) is |Fj |-integrable, for each j = 1, · · · , N , and the set of non-
Lebesgue points of ∂xj

g(x) has |Fj |-measure zero. Then gF ∈ DM∗(D) and

(3.14) div (gF ) = g divF +∇g · F.

Proof. For any φ ∈ C1
0 (D), we have

(3.15) 〈div (gF ), φ〉 = −〈F, g∇φ〉 = −〈F,∇(gφ)〉+ 〈F, φ∇g〉.
Therefore, it suffices to show that

(3.16) 〈F,∇(gφ)〉 = −〈div F, gφ〉.
Set gε = g ∗ ωε. We have

−〈div F, gεφ〉 = 〈F,∇(gεφ)〉 =
N∑

j=1

〈Fj , ∂xj
(gεφ)〉(3.17)

=
N∑

j=1

{〈Fj , φ∂xj
gε〉+ 〈Fj , g

ε∂xj
φ〉}.

Let ε → 0. Then the right-hand side converges to
N∑

j=1

{〈Fj , φ∂xj
g〉+ 〈Fj , g∂xj

φ〉} = 〈F,∇(gφ)〉,

by the assumption on the set of non-Lebesgue points of ∂xj
g, while the left-hand

side of (3.17) converges to −〈div F, gφ〉 by the Dominated Convergence Theorem,
which implies (3.16). Then (3.14) follows. ¤
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Remark 3.3. The continuity assumption of g(x) in Theorem 3.3 can be relaxed.
In particular, when F ∈ DM∞(D), it requires only that g ∈ BV (D; R) to have
gF ∈ DM∞(D).

Remark 3.4. The results in this section for the extended vector fields over RN

extend to a general context over Riemannian manifolds. In particular, if aij(x)
are smooth functions on the open set D ⊂ RN and the N × N matrix (aij)(x) is
symmetric, positive definite, the results can easily be generalized to the extended
vector fields F = (F1, · · · , FN ) in Lp(D; RN ), 1 ≤ p ≤ ∞, or M(D; RN ), satisfying
the condition: ∑

i,j

aij∂iFj ∈M(D).

This is clear from the fact that no specific property of the Euclidean metric has
been used in our analysis.

4. Applications to the Euler Equations for Gas Dynamics

In this section, as a direct application of the theory developed in Section 3,
we establish the uniqueness and stability of Riemann solutions that may contain
vacuum for the Euler equations for gas dynamics in Lagrangian coordinates. We
will address more applications of the theory in forthcoming papers.

Denote R2
+ = (0,∞) × R and R2

+ = [0,∞) × R. We consider τ ∈ M+(R2
+)

satisfying τ ≥ cL2 for some c > 0, where Lk is the k-dimensional Lebesgue measure.
Let v ∈ L∞(R2

+) and τ0 ∈ M+(R) with τ0 ≥ cL1. We assume that τ, v, and τ0

satisfy

(4.1)
∫∫

R2
+

(φtτ − v φx dt dx) +
∫

R
φ(0, x) τ0(x) = 0,

for any φ ∈ C1
0 (R2).

Definition 4.1. Let τ and τ0 be as above. We say that a function φ(t, x) defined
on R2

+ is a τ -test function if it satisfies the following:

(1) spt (φ) is a compact subset of R2
+ and φ is continuous on R2

+;
(2) φt and φx are τ -measurable; and φt is τ -integrable over R2

+, that is, the
integrals

∫∫
R2

+
(φt)±τ exist and at least one of them is finite;

(3) lim
t→0
x→a

φ(t, x) = φ(0, a) for τ0–a.e. a ∈ R.

Theorem 4.1. Let τ, v, and τ0 be as above. Then
(1) the nonnegative measure τ admits a slicing of the form τ = dt⊗µt(x) with

µt ∈M+(R) for L1-a.e. t > 0. More precisely, for all φ ∈ C0(R2
+),∫∫

φ(t, x) τ =
∫ (∫

φ(t, x)µt(x)
)

dt.

(2) the points (t, x) ∈ R2
+ such that µt(x) > 0, with the exception of a set of

H1-measure zero, form a countable union of vertical line segments, called
vacuum lines. In particular, τ(l) = 0 for any non-vertical straight line
segment l.

(3) the identity (4.1) holds for any τ -test function φ(t, x).

The proof of Theorem 4.1 is given in Section 5. As a corollary, we have
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Corollary 4.1. Let τ, v, and τ0 be as above. Let p̄(t, x) be a nonnegative function
over R2

+, continuous on R2
+, such that φ p̄ is a τ -test function for any φ ∈ C1

0 (R2),
p̄t ≤ 0, τ -a.e., and p̄x ∈ L1

loc(R2
+). Then, for any nonnegative function ζ ∈ C1

0 (R),

(4.2) lim sup
t→0+

∫
ζ(x) p̄(t, x)µt(x) ≤

∫
ζ(x) p̄(0, x) τ0(x).

Proof. First we have from Theorem 4.1 that (4.1) holds for φ = p̄ψ with ψ ∈
C1

0 (R2). Then we choose ψ = ψε(t, x) := σε(t− t0)ζ(x) with ζ(x) ≥ 0, t0 > 0, and

0 ≤ σε ∈ C1
0 (R),

σε(t− t0) → χ(−∞,t0)(t),

δε(t− t0) = − d

dt
σε(t− t0) ⇀ δt0 , as ε → 0,

where δt0 is the Dirac measure concentrated at t0, and the convergences are in
L1(R) and M(R), respectively. We obtain from (4.1) that

0 =
∫∫

t>0

((ψεp̄)tµt dt− (ψεp̄)xv dt dx) +
∫

(ψεp̄0) τ0

= −
∫

δε

(∫
ζ p̄ µt

)
dt +

∫∫
p̄tψ

ε µt dt−
∫∫

(ψε p̄)xv dt dx +
∫

(ψε p̄0) τ0.

Now, using that p̄t ≤ 0, τ -a.e., we obtain

−
∫

δε

(∫
ζ p̄ µt

)
dt + C0

∫∫
0≤t≤t0

|x|≤|spt (ζ)|

(|p̄x|+ |ζ ′|) dt dx +
∫

(ψε p̄0) τ0 ≥ 0.

Assuming that t0 is a Lebesgue point of g(t) =
∫

ζ p̄ µt and letting ε → 0 yield

(4.3)
∫

ζ p̄ µt0 ≤ C

∫∫
0≤t≤t0

|x|≤|spt (ζ)|

(|p̄x|+ |ζ ′|) dt dx +
∫

ζ p̄0 τ0.

Now, taking the lim sup as t0 → 0 in both sides of (4.3), we finally arrive at
(4.2). ¤

We now consider the solutions of the Euler equations (1.1)–(1.3) for gas dy-
namics in the sense of distributions such that τ is a nonnegative Radon measure,
with τ ≥ cL2 for some c > 0, and v(t, x) and S(t, x) are bounded τ -measurable
functions, along with our understanding that the constitutive relations (1.4) for
(τ, p, e, θ, S)(t, x) hold L2-almost everywhere out of the vacuum lines, in the set
where τ is absolutely continuous with respect to L2, and both p(t, x) and e(t, x)
are defined as zero on the remaining set with measure zero in R2

+, including the
vacuum lines.

We consider the Cauchy problem for (1.1)–(1.3):

(4.4) (τ, v, S)|t=0 = (τ0, v0, S0)(x),

where τ0(x) is a nonnegative Radon measure over R, τ0 ≥ cL1 for some c > 0, v0(x)
and S0(x) are bounded τ0-measurable functions, and e0(x) = e(τ0(x), S0(x)) a.e.
out of the countable points {xk} such that τ0(xk) > 0, the initial vacuum set.
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Set ΠT = (0, T ) × R and Π∗T = (−∞, T ) × R for T > 0. Let D and F be
functions or measures over ΠT . Let D0 be a function or a measure over R. By weak
formulation on ΠT for the Cauchy problem:

Dt + Fx = 0,(4.5)

D|t=0 = D0,(4.6)

we mean that, for a suitable set of test functions φ(t, x) defined on Π∗T ,

(4.7)
∫∫

ΠT

(φtD + φxF ) +
∫

R
φ(0, x)D0 = 0.

Analogously, if the identity “ = ” in (4.5) is replaced by “ ≥ ” or “ ≤ ”, the
weak formulation of the corresponding problem (4.5) and (4.6) is (4.7) with “ = ”
replaced by “ ≤ ” or “ ≥ ”, respectively, for a suitable set of nonnegative test
functions defined on Π∗T .

Denote W = (τ, v, S), f(W ) = (−v, p(τ, S), 0), η(W ) = e(τ, S) + v2

2 , q(W ) =
vp(τ, S), and

α(W, W ) = η(W )− η(W )−∇η(W ) · (W −W ),

β(W, W ) = q(W )− q(W )−∇η(W ) · (f(W )− f(W )).

Observe that ∇η(W ) = (−p̄,−v̄, θ̄).

Definition 4.2. We say that W (t, x) is a distributional entropy solution of (1.1)–
(1.3), and (4.4) in ΠT if τ is a Radon measure on ΠT with τ ≥ cL2 for some
c > 0, v and S are bounded τ -measurable functions such that the weak formulation
of (1.1)–(1.3), (1.7), and (4.4) is satisfied for all test functions in C1

0 (Π∗T ), and
S(t, · ) ⇀ S0( · ), as t → 0, in the weak-star topology of L∞(R).

Observe that the weak formulation implies that µt ⇀ τ0 in M(R), and v(t, · ) ⇀
v0( · ), and E(t, · ) ⇀ E0( · ) in the weak-star topology of L∞(R), as t → 0, where
E = e + v2/2. We also remark that these convergences can be strengthened to the
convergences in L1

loc(R) in the case that τ is a bounded measurable function, as an
easy consequence of the DM∞ theory (cf. [5]).

As shown by Wagner [25], by means of the transformation from Eulerian to La-
grangian coordinates, bounded measurable entropy solutions of the Euler equations
in Eulerian coordinates transform into distributional entropy solutions of (1.1)–(1.3)
and (4.4), satisfying the additional restriction that the weak formulation of (1.2),
(1.3), and (1.7) holds for test functions with compact support in ΠT such that
φt = g, φx = h τ , where g, h ∈ L∞(ΠT , τ). It is also shown through an example
in [25] that distributional entropy solutions without the additional restriction may
have no physical meaning.

Now we consider the Riemann solution W (t, x) associated to the Riemann prob-
lem for (1.1)–(1.3) with initial condition

(4.8) W 0(x) =

{
WL, x < 0,

WR, x > 0,

where WL and WR are two constant states in the physical domain {W = (τ, v, S) :
τ > 0}. First, we address the case that W (t, x) is a bounded self-similar entropy
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solution of (1.1)–(1.3) which consists of at most two rarefaction waves, one corre-
sponding to the first characteristic family and another corresponding to the third
one, and possibly one contact discontinuity on the line x = 0. Then, W (t, x) has
the following general form:

(4.9) W (x, t) =




WL, x/t < ξ1,

R1(x/t), ξ1 ≤ x/t < ξ2,

WM , ξ2 ≤ x/t < 0,

WN , 0 < x/t < ξ3,

R3(x/t), ξ3 ≤ x/t < ξ4,

WR, x/t ≥ ξ4.

In what follows we use the notation W p = (τ, S), W
p

= (τ̄ , S).

Theorem 4.2. Let W (t, x) be the Riemann solution (4.9), and let W (t, x) be any
distributional entropy solution of (1.1)–(1.3) and (4.4) with W0 ∈ L∞(R; R3). Then
there exist positive constants C and K0, and a function ω ∈ L∞(ΠT ), positive a.e.
in ΠT , such that, for any X > 0 and a.e. t > 0,

(4.10)
∫
|x|≤X

(
|v(t, x)− v̄(t, x)|2 + |W p

a.c.(t, x)− W̄ p(t, x)|2ω(t, x)
)

dx

≤ C

∫
|x|≤X+K0t

(
|v0(x)− v̄0(x)|2 + |W p

0 (x)−W
p

0(x)|2ω(0, x)
)

dx.

Proof. We divide the proof into four steps.
Step 1. Consider the measure

$ := α(W, W )t + β(W,W )x.

Given any X > 0 and t > 0, let t0 ∈ (0, t) and

Ωt0,t = {(σ, x) : |x| < X + K0(t− σ), t0 < σ < t},
for K0 > 0 to be suitably chosen later.

First, by the Gauss-Green formula (Theorem 3.1), we have

$(Ωt0,t) = 〈(α, β) · ν|∂Ωt0,t
, 1〉

Now, let ζi, i = 1, · · · , 4, be nonnegative functions in C∞0 (R2) such that
4∑

i=1

ζi = 1, over ∂Ωt0,t,

ζ1 = 1, over {(0, x) : |x| < X + K0(t− t0) },
ζ2 = 1, over {(t, x) : |x| < X },
(spt (ζ3) ∪ spt (ζ4)) ∩ (({t} × R) ∪ ({t0} × R)) = ∅.

We choose ζ3 and ζ4 so that spt (ζ3) intersects the left lateral side of Ωt0,t but not
the right, and spt (ζ4) intersects its right lateral side but not the left. We have

$(Ωt0,t) = 〈(α, β) · ν|∂Ωt0,t
, ζ1 + ζ2 + ζ3 + ζ4〉.

In what follows, we will use the notations:

ĝ =
∫ 1

0

(1− σ)g(στ + (1− σ)τ̄ , σS + (1− σ)S) dσ,
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for any function g = g(τ, S), and

g̃ =
∫ 1

0

g(στ + (1− σ)τ̄ , σS + (1− σ)S) dσ.

Step 2. We now prove the following five estimates.
1. 〈(α, β) · ν|∂Ωt0,t

, ζ3〉 ≥ 0 and 〈(α, β) · ν|∂Ωt0,t
, ζ4〉 ≥ 0.

Indeed, let z∗ = (t∗, x∗) be the center of Ωt0,t. We consider the following defor-
mation of ∂Ωt0,t:

Ψ(z, s) := z + εs(z∗ − z), z ∈ ∂Ωt0,t, s ∈ [0, 1],

where ε is chosen so small that

(spt (ζ3)∪ spt (ζ4))∩({(t− εs(t− t∗), x) : x ∈ R} ∪ {(t0 + εs(t∗ − t0), x) : x ∈ R}) = ∅,

for s ∈ [0, 1]. Then

〈(α, β) · ν|∂Ωt0,t
, ζ3〉 = lim

s→0

1
s

∫∫
Ψ(∂Ωt0,t×(0,s))

(K0α− β)|∇h| ζ3dσdx ≥ 0,

by choosing K0 such that K0α ≥ β, which is possible by what follows.
2. Given δ > 0 and bounded sets B1 ⊂ Vδ := {(τ, v, S) : τ > δ} and B2 ⊂ R2,

there exists a constant K0 = K0(δ,B1, B2) > 0 such that K0α(W,W ) ≥ β(W,W ),
for any W ∈ B1 and W ∈ Vδ with (v, S) ∈ B2.

In fact, we first have

α(W, W ) =
1
2
(v − v̄)2 + êττ (τ − τ̄)2 + 2êτS(τ − τ̄)(S − S) + êSS(S − S)2,

β(W, W ) = (v − v̄)(p− p̄).

If W (t, x) and W (t, x) belong to a bounded set B in Vδ, we can find K0 depending
only on B such that K0α ≥ β. Now, since (τ̄ , v̄, S) ∈ B1 and (v, S) ∈ B2, it suffices
to show that, for τ sufficiently large, we have β(W, W ) ≤ α(W,W ). Notice that

β ≤ 1
2
(v − v̄)2 +

1
2
p̃2

τ (τ − τ̄)2 + p̃τ p̃S(τ − τ̄)(S − S) +
1
2
p̃2

S(S − S)2

≤ 1
2
(v − v̄)2 + p̃2

τ (τ − τ̄)2 + p̃2(S − S)2.

On the other hand,

α ≥ 1
2
(v − v̄)2 +

êττ

2(K + 1)
(τ − τ̄)2 +

1
2
(êSS −

K + 1
K

(̂
e2
τS

eττ

)
)(S − S)2,

for any K > 0. Now, p̃2
τ decays faster than êττ = −p̂τ as τ →∞, p̃2

S decays faster
than êSS as τ →∞, and, for K sufficiently large,

êSS −
K + 1

K

(̂
e2
τS

eττ

)
> c êSS ,

for some c > 0 sufficiently small, since γ > 1, as one can easily check from (1.4).
Hence, β(W, W ) ≤ α(W,W ) for τ larger than a certain τ∗. Then the assertion

follows.
3. Similarly, we have 〈(α, β) · ν|∂Ωt0,t

, ζ4〉 ≥ 0.
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4. As for ζ2, we have

〈(α, β) · ν|∂Ωt0,t
, ζ2〉 = lim

s→0

1
s

∫∫
Ψ(∂Ωt0,t×(0,s))

(α, β) · ∇h ζ2dσdx

≥ lim
s→0

1
ε(t− t∗)s

t∫
t−εs(t−t∗)

dσ

∫
|x|≤X−εK1

T
2

{η(W )− η(W )− v̄(v − v̄) + p̄(τa.c. − τ̄) + θ̄(S − S)} dx

=
∫

|x|≤X−εK1
T
2

σ=t

{η(Wa.c.)− η(W )− v̄(v − v̄) + p̄(τa.c. − τ̄) + θ̄(S − S)} dx

=
∫

|x|≤X−εK1
T
2

σ=t

(
1
2
|v − v̄|2 + Q(W p

a.c.(t, x)−W
p
(t, x))

)
dx,

if t is a Lebesgue point of

g(s) =
∫
|x|≤X−εK1

T
2

α(Wa.c.,W )(s, x) dx,

where Q is the quadratic form associated with the symmetric matrice

A =
[
êττ êτS

êτS êSS

]
.

5. For ζ1, we have

〈(α, β) · ν|∂Ωt0,t
, ζ1〉 = lim

s→0

1
s

∫∫
Ψ(∂Ωt0,t×(0,s))

(α, β) · ν ζ1|∇h| dσ dx

≥ − lim
s→0

1
s

∫ t0+εs(t∗−t0)

t0

∫
|x|≤X+K0(t−t0)

α(W,W )
1

ε(t∗ − t0)
dσ dx

= −
∫

|x|≤X+K0(t−t0)
σ=t0

{η(W )− η(W )− v̄(v − v̄) + p̄(µt0 − τ̄)− θ̄(S − S)},

where we have also used that µσ ⇀ µt0 as σ → t0 + 0, for a.e. t0 > 0, with µt as in
Theorem 4.1, and that p̄ is continuous on [t0, t]× R.

Step 3. On the other hand,

$(Ωt0,t) =
4∑

i=1

$(l̃i ∩ Ωt0,t) + $(l ∩ Ωt0,t) + $(Ω1 ∩ Ωt0,t)

+ $(Ω3 ∩ Ωt0,t) + $
(
Ωt0,t − (∪4

i=1 l̃i ∪ l ∪ Ω1 ∪ Ω3)
)
,

where Ω1 and Ω3 are the left and right rarefaction regions, l̃i, 1 ≤ i ≤ 4, are the
lines bounding the rarefaction regions Ω1 and Ω3, and l is the line {x = 0} where
W (t, x) has a contact discontinuity.

We first observe that, on Ωt0,t − (∪4
i=1 l̃i ∪ l ∪ Ω1 ∪ Ω3), the measure $ reduces

to −θ̄∂tS which is nonpositive. Now, we have

$ = −div (F1 + F2 + F3),
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where

F1 = v̄(v − v̄, p− p̄), F2 = −p̄(τ − τ̄ , v̄ − v), F3 = θ̄(S − S, 0),

and div := div t,x. Applying the product rule (Theorem 3.2), we get

divF1 = v̄t(v − v̄) + v̄x(p− p̄), divF2 = −p̄t(τ − τ̄) + p̄x(v − v̄).

Hence,

div F1(l̃j ∩ Ωt0,t) = div F1(l ∩ Ωt0,t) = 0, j = 1, · · · , 4,

since div F1 is absolutely continuous with respect to L2. Also,

div F3(l̃j ∩ Ωt0,t) ≥ 0, j = 1, · · · , 4.

On the other hand, since F3 ∈ DM∞(Ωt0,t) and ν|l = (0, 1), we have

div F3(l ∩ Ωt0,t) = [〈F3 · ν|l, 1〉] = 0,

where the square-bracket denotes the difference between the normal traces from the
right and the left, which make sense for F3 ∈ DM∞ because the normal traces of
DM∞ fields are functions in L∞ over the boundaries.

Concerning F2, we have

div F2(l̃j ∩ Ωt0,t) = 0, j = 1, · · · , 4,

since p̄t is τ -integrable and τ(l̃j) = 0, j = 1, · · · , 4. On the other hand, p̄t vanishes
on l so that

div F2(l ∩ Ωt,t0) = 0.

Finally, using the product rule (Theorem 3.2), the fact that W (t, x) and W (t, x)
are distributional solutions of (1.1)–(1.3) and (4.4), and S(t, x)t = 0, we obtain, for
j = 1, 3,

$(Ωj ∩ Ωt0,t) = −
∫∫

Ωj∩Ωt0,t

{(v̄(v − v̄))t + (v̄(p− p̄))x − (p̄(τ − τ̄))t + (p̄(v − v̄))x + (θ̄(S − S))t}

(4.11)

= −
∫∫

Ωj∩Ωt0,t

{v̄t(v − v̄) + v̄x(p− p̄)− p̄t(τ − τ̄) + p̄x(v − v̄) + θ̄t(S − S) + θ̄St}

≤ −
∫∫

Ωj∩Ωt0,t

{v̄x(p− p̄)− p̄τ v̄x(τ − τ̄)dxds + θ̄τ v̄x(S − S)}

≤ −
∫∫

Ωj∩Ωt0,t

v̄x

(
p− p̄− p̄τ (τa.c. − τ̄)− p̄S(S − S)

)
dxds +

∫∫
Ωj∩Ωt0,t

v̄xp̄ττsing

≤ 0,

since p̄τ < 0 and v̄x is bounded and v̄x(t, x) ≥ 0 everywhere over Ω1 and Ω3, and
∇2

W p p > 0.
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Step 4. Putting all these estimates together, we have∫
|x|≤X

(
|v(t, x)− v̄(t, x)|2 + |Wa.c.(t, x)−W (t, x)|2ω(t, x)

)
dx

≤ 2
∫

|x|≤X+K0(t−t0)
σ=t0

{η(W )− η(W )− v̄(v − v̄) + p̄(µt0 − τ̄)− θ̄(S − S)}.

Now, applying Corollary 4.1, we finally get (4.10). ¤

Corollary 4.2. Let W (t, x) and W (t, x) satisfy the conditions of Theorem 4.2 and
W0(x) = W 0(x). Then τ(t, x) is absolutely continuous with respect to L2 in ΠT

and W (t, x) = W (t, x) a.e. in ΠT .

Proof. From Theorem 4.2, we have

Wa.c.(t, x) = W (t, x), a.e. in ΠT .

Hence, τsing must satisfy the weak formulation of

τt = 0, τ |t=0 = 0,

for the test functions in C1
0 (Π∗T ). In particular, there exists y ∈ BVloc(ΠT ) such

that
∂xy = τsing, ∂ty = 0.

Therefore,
τsing = dt⊗ νt(x),

where νt(·) = dy
dx (t, ·), a.e. t ∈ (0, T ). Since y does not depend on t, we have that

νt also does not depend on t, say, νt(x) = ν0(x) and

τsing = dt⊗ ν0.

Furthermore, since νt ⇀ 0 as t → 0, we conclude

ν0 ≡ 0.

¤

We now consider the case that the Riemann solution, with the initial condition
(4.8), has a vacuum line at x = 0. In this case, the Riemann solution W̄ (t, x) has
the following form:
(4.12)

W (x, t) =




WL, x/t < ξL,

R1(x/t), ξL ≤ x/t < 0,

((v̄1 + v̄2)/2, (v̄2 − v̄1)tdt⊗ δ0(x), (SL + SR)/2), x = 0,

R3(x/t), 0 < x/t ≤ ξR,

WR, x/t > ξR.

Here R1(x/t) and R3(x/t) are as above the rarefaction waves of the first and third
characteristic families, respectively, v̄1 = limξ→0− v̄(ξ), v̄2 = limξ→0+ v̄(ξ), and
δ0(x) is the Dirac measure over R concentrated at 0. It is easy to check that
W (t, x) is a distributional solution of (1.1)–(1.3) and (4.4). The values of v̄ and S

on the line x = 0 could be taken as any other constants instead of v̄1+v̄2
2 and SL+SR

2 ,
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respectively, while the formula of τ̄ at x = 0, (v̄2 − v̄1)tdt ⊗ δ0(x), is dictated by
the fact that (1.1) must hold in the sense of distributions.

Theorem 4.3. Let W (t, x) be a Riemann solution containing vacuum as described
in (4.12). Let W (t, x) be a distributional entropy solution of (1.1)–(1.3) and (4.4)
in ΠT with W0 ∈ L∞(R; R3). Then there exist positive constants C and K0, and a
function ω ∈ L∞(ΠT ), positive a.e. in ΠT , such that, for all X > 0 and a.e. t > 0,

(4.13)
∫
|x|≤X

(
|v(t, x)− v̄(t, x)|2 + |W p

a.c.(t, x)− W̄ p(t, x)|2ω(t, x)
)

dx

≤ C

∫
|x|≤X+K0t

(
|v0(x)− v̄0(x)|2 + |W p

0 (x)−W
p

0(x)|2ω(0, x)
)

dx.

Proof. Let F1, F2, and F3 be as in the proof of Theorem 4.2. We observe that,
since p̄ = 0 for x = 0, we have

F2 = −p̄(τ − τ̄a.c., v̄ − v),

so that the analysis for F2 remains the same. Also, nothing needs to be changed
concerning F3. As for F1 = v̄(v − v̄, p− p̄), we have a new aspect which is the fact
that v̄(t, x) is discontinuous at l. Then we have

divF1(lt0,t) = [〈F1 · ν|lt0,t
, 1〉]

where lt0,t = l ∩ Ωt0,t and again ν|l = (0, 1). Let p−(t, x) and p+(t, x) denote the
functions in L∞(l), given by the theory of DM∞ fields developed in [5], such that

〈p−, ζ〉 = 〈(v, p) · ν|l, ζ〉l,
〈p+, ζ〉 = 〈(v, p) · (−ν)|l, ζ〉l, for any ζ ∈ C0(l).

Hence, we have

divF1(lt0,t) = v2

∫ t

t0

p+(s) ds− v1

∫ t

t0

p−(s) ds.

On the other hand,

p+(s) = p−(s), a.e. s > 0, and v2 > v1,

where the first follows from (1.2) and the second is a consequence of the construction
of the Riemann solution containing vacuum. Therefore, we conclude

divF1(lt0,t) ≥ 0.

The remaining of the proof follows exactly as in Theorem 4.2. ¤

Again, we have the following corollary.

Corollary 4.3. Let W (t, x) and W (t, x) satisfy the hypotheses of Theorem 4.3 and
W0(x) = W 0(x). Then (v, S)(t, x) = (v̄, S)(t, x), L2-a.e. in ΠT , and τ = τ̄ in
M(ΠT ).

Proof. From Theorem 4.3, we deduce that Wa.c(t, x) = W a.c(t, x), L2-a.e. in ΠT .
Thus, as in the proof of Corollary 4.2, we deduce that τsing must be concentrated
at {x = 0}. Then τsing must be equal to (v̄2 − v̄1)tdt ⊗ δ0(x) as a consequence of
(1.1) in the sense of distributions. ¤
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5. Proof of Theorem 4.1

In this section, we give a detailed proof of Theorem 4.1. The arguments are
strongly motivated by those in Wagner [25].

Proof. We divide the proof into ten steps.
Step 1. There exists y ∈ BVloc([0,∞)× R) such that

(5.1) ∂xy = τ, ∂ty = v,

in the sense of distributions for t > 0.
Indeed, let ωε be a positive symmetric mollifier in R2, and set τε = τ ∗ ωε and

vε = v ∗ ωε, where we have extended τ and v as zero for t < 0. Define

(5.2) yε(t, x) =
∫ x

0

τε(t, s) ds +
∫ t

0

vε(σ, 0) dσ.

Then yε ∈ BV ∩ C1(R2
+). We easily check that yε(t, x) satisfies

∂xyε = τε, ∂ty
ε = vε, t > ε.

Now, ‖yε‖BV (Ω) ≤ MΩ, for any open set Ω b R2
+, where MΩ is a positive constant

independent of ε. Hence, by the compact embedding of BV (Ω) into L1(Ω), there
exists y ∈ BVloc(R2

+) such that

yε(t, x) → y(t, x), in L1
loc(R2

+),

by passing to a subsequence if necessary. Clearly, y(t, x) satisfies (5.1) in the sense
of distributions in R2

+.
Step 2. The measure τ(t, x) admits a slicing of the form τ = dt⊗ µt, where, for

L1-a.e. t > 0, µt ∈M+(R).
Let y(t, x) be a solution of (5.1). Since y ∈ BVloc(R2

+), then, for a.e. t > 0,
y(t, ·) ∈ BVloc(R). Hence,

τ = dt⊗ dy

dx
(t, ·).

Step 3. The points (t, x) ∈ R2
+ such that µt(x) > 0, with the possible exception

of a set of H1-measure zero, form a countable union of vertical line segments.
Again, since y ∈ BVloc(R2

+), then, for a.e. x ∈ R, y(·, x) ∈ BVloc(R+). Hence,
∂ty admits a slicing as

∂ty =
dy

dt
(·, x)⊗ dx = v(·, x)dt⊗ dx.

That is, for a.e. x ∈ R, y(·, x) is a Lipschitz function on [0,∞) whose derivative is
v(·, x). On the other hand, the jump set of y(t, x), with the possible exception of a
set of H1-measure zero, is a countable union of C1 curves {lk}k∈N, by the structure
theory of BV functions (see, e.g., [12, 13]). We then conclude that the lines lk must
be vertical, because, otherwise, we would have a subset A ⊂ R of positive measure
such that, for x ∈ A, dy

dt (·, x) would be a singular measure, rather than an L∞

function v(·, x), which proves the assertion.
Observe that µt ⇀ τ0 as t → 0+, which follows from standard arguments by

choosing suitable test functions in (4.1).
Step 4. Let x0 ∈ R be such that τ0(x0) = µt(x0) = 0, a.e. t > 0, and x0 is

a Lebesgue point of
∫ t

0
v(σ, ·) dσ, for all rational t > 0 and hence all fixed t > 0.
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Then there exists a solution of (5.1) satisfying

(5.3) lim
t→0+

y(t, x) =
∫ x

x0

τ0, for a.e. x ∈ R.

Consider a mollifier ωε, with ε = (ε1, ε2), of the form ωε(t, x) = δε1(t)δε2(x),
where δεj , j = 1, 2, are standard positive symmetric mollifiers in R. If yε(t, x) is
defined by (5.2), with 0 replaced by x0, then sending ε1 to 0 first and next letting
ε2 → 0 yield

lim
ε2→0

lim
ε1→0

yε(t, x) =
∫ x

x0

µt +
∫ t

0

v(σ, x0) dσ, a.e. (t, x) ∈ R2
+.

Hence,

y(t, x) =
∫ x

x0

µt +
∫ t

0

v(σ, x0) dσ,

provides the desired solution because of Step 4.

Now, since, for each t ≥ 0, y(t, x) is a strictly increasing function of x, there
exists a well-defined monotone increasing continuous function x(t, y) such that

(5.4) x(t, y(t, x)) = x, (t, x) ∈ R2
+,

where we have defined y(t, x) on the vacuum lines by, say, (y(t, x+0)+y(t, x−0))/2.
Let Q and T be the transformations of R2

+, Q(t, x) = (t, y(t, x)) and T (t, y) =
(t, x(t, y)) so that T (Q(t, x)) = (t, x). Observe that, given an open rectangle R =
(t1, t2) × (a, b) ⊂ R2

+, if a and b are such that y(t, a) and y(t, b) are continuous
functions of t, then Q(R) is an open set in R2

+, which implies that T is continuous
in R2

+. Let
T0(x) = lim

t→0+
y(t, x), Q0(y) = lim

t→0+
x(t, y).

Step 5. T#L2 = τ and T0#L1 = τ0, with notation from [13].
In fact, for a.e. t > 0, y(t, x) is a strictly increasing BVloc function of the variable

x, and τ = dt⊗ µt(x) with µt(x) = dy
dx (t, ·). Now, T (t, y) = (t, x(t, y)) and, for any

open interval (a, b) and for each fixed t > 0,

x(t, ·)−1(a, b) = (y(t, a + 0), y(t, b− 0)) = τ(a, b).

Hence, the measure T#L2 equals dt⊗µ̃t, where µ̃t is the Stieltjes measure associated
with y(t, x), that is, µ̃t = µt, which implies T#L2 = τ . Similarly, we obtain
T0#L1 = τ0.

Step 6. The map T is proper and onto.
The fact that T is onto follows from the fact that it is the inverse of Q which

is defined everywhere in R2
+. Now, since Q(t, x) is a continuous function of t, for

a.e. x ∈ R, given any compact K ⊂ R2
+, we may find a rectangle [t1, t2] × [a, b]

containing K such that Q(t, a) and Q(t, b) are continuous functions of t. Hence,
the set

{(t, y) | y(t, a) ≤ y ≤ y(t, b), t1 ≤ t ≤ t2 }
is compact and contains T−1(K), which is then also compact by the continuity of
T .

Let ρ = Q#L2. Let ρ̃ be the density of L2 with respect to τ in R2
+ and let τ̃ be

the density of τa.c. with respect to L2 so that ρ̃τ̃ = 1, L2-a.e. in R2
+. The following

result was proved by Wagner ([25], p.132).
Step 7. ρ = ∂yx = ρ̃ ◦ T .
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Indeed, ρ = Q#L2 admits a slicing of the form ρ = dt ⊗ µ̃t, where µ̃t is the
Stieltjes measure associated with the inverse of y(t, ·), which is x(t, y), and hence
µ̃t = ∂yx. Furthermore, The Lipschitz continuity of x(t, y) yields

ρ = ∂yx,

where as usual we have identified absolutely continuous measures with their densi-
ties, with respect to the corresponding Lebesgue measure. Also, we have

T#ρ = T#Q#L2 = L2 = ρ̃τ̃ = ρ̃τ = ρ̃T#L2.

Now, for all φ ∈ C0((0,∞)× R),

〈ρ, φ〉 = 〈T#ρ, φ ◦Q〉,
while

〈ρ̃ ◦ T, φ〉 = 〈ρ̃T#L2, φ ◦Q〉,
which implies

ρ = ρ̃ ◦ T,

where we have used that ρ = 0 a.e. over T−1(V ) and V is the union of the vacuum
lines, because of the first part of the assertion.

Now, let ρ0 = Q0#L1 and v(t, y) = v(T (t, y)).
Step 8. For all φ ∈ C1

0 (R2), we have

(5.5)
∫∫

t>0

(ρφt + ρvφy) dt dy +
∫

t=0

φ(0, y)ρ0(y) dy = 0.

Observe that ρ and ρ0 are uniformly bounded since ρ = ρ̃ ◦T , ρ̃τ̃ = 1, and τ̃ ≥ c
for some c > 0. The same holds for ρ0. Now, for any φ ∈ C1

0 (R2), we have∫∫
t>0

(φt + φyv)ρ dt dy +
∫

t=0

φ(0, y)ρ0(y) dy

=
∫∫

t>0

(φt ◦Q + φy ◦Qv ◦Q) dt dx +
∫

t=0

φ(0, Q0(x)) dx

=
∫∫

t>0

(φt ◦Q + vφy ◦Q) dt dx +
∫

t=0

φ(0, Q0(x)) dx

=
∫∫

t>0

∂t(φ ◦Q) dt dx +
∫

t=0

φ(0, Q0(x)) dx = 0,

where we have used that v ◦Q = v. In particular, we have

(5.6) ρt + (ρv)y = 0,

in the sense of distributions. Now, let x0 ∈ R be such that y(t, x0) is a Lipschitz
continuous function on [0,∞) and, for a.e. t, y(t, x0) is a Lebesgue point for both
ρ(t, y) and v(t, y).

Step 9. There exists a solution x̄(t, y) of

(5.7) ∂yx = ρ, ∂tx = −ρv,

such that x̄(t, y(t, x0)) = x0. In particular, x̄(t, y) = x(t, y).
Indeed, let ρε = ρ ∗ ωε and (ρv)ε = (ρv) ∗ ω∗, where ωε is a standard mollifier.

Set

xε(t, y) =
∫ y

y(t,x0)

ρε(t, s) ds + x0.
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Then xε(t, y) is a Lipschitz function satisfying

∂yxε = ρε(t, y),

∂tx
ε = −(ρv)ε(t, y)− ρε(t, y(t, x0))v(t, y(t, x0)) + (ρv)ε(t, y(t, x0)).

Also,
|xε(t, y)− x0| ≤ M |y − y(t, x0)|.

Hence, xε(t, y) converges in L1
loc(R2

+) to a Lipschitz function x̄(t, y) which satisfies

|x̄(t, y)− x0| ≤ M |y − y(t, x0)|.
Thus, we have x̄(t, y(t, x0)) = x0. Since

|ρε(t, y(t, x0))v(t, y(t, x0))− (ρv)ε(t, y(t, x0))| → 0, as ε → 0,

for a.e. t > 0, we conclude that x̄(t, y) satisfies (5.7). Now, since ∂yx(t, y) = ρ(t, y)
and x(t, y(t, x0)) = x0, we must have x(t, y) = x̄(t, y).

Step 10. Equation (4.1) holds for any τ -test function φ(t, x).
Indeed, for any τ -test function φ(t, x), we have∫∫

t>0

(φtτ − vφx dt dx) +
∫

t=0

φ(0, x)τ0

=
∫∫

t>0

(φt − v ρ̃φx)τ +
∫

t=0

φ(0, x)τ0

=
∫∫

t>0

(φt ◦ T − φx ◦ T ρ v) dt dy +
∫

t=0

φ ◦ T0 dy

=
∫∫

t>0

∂

∂t
(φ ◦ T ) dt dy +

∫
t=0

φ ◦ T0 dy

= −
∫

R
lim
δ→0

φ ◦ T (y, δ) dy +
∫

t=0

φ ◦ T0 dy = 0.
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