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Abstract. We consider scalar conservation laws where the flux function depends discontin-

uously on both the spatial and temporal location. Our main results are the existence and

well–posedness of an entropy solution to the Cauchy problem. The existence is established by
showing that a sequence of front tracking approximations is compact in L1, and that the limits

are entropy solutions. Then, using the definition of an entropy solution taken form [11], we show
that the solution operator is L1 contractive. These results generalize the corresponding results
from [16] and [11].

1. Introduction

In this paper we are concerned with the Cauchy problem for scalar conservation laws where the
flux function depends on both the x and t coordinate. We study the case where this dependence
takes the form f(u, x, t) = f(u, a(x), g(t)), through some functions a and g. Hence, we shall study
the initial value problem {

ut + f(u, a(x), g(t))x = 0, x ∈ R, t > 0,
u(x, 0) = 0, x ∈ R,

(1.1)

where f = f(u, a, g) is a smooth function. We regard the function a(x) and g(t) as coefficients,
and if these are smooth, the classical results of Kružkov [16] and Olĕınik [19] state that the above
initial value problem is well posed in the class of entropy solutions.

In our case, the coefficients are allowed to be discontinuous, and we cannot apply the techniques
of Kružkov and Olĕınik directly to reach their conclusion. The main obstacle is that of the
discontinuity of the spatial coefficient a. The equation where g is constant has recently received
considerable attention. This started by the paper of Temple [21], in which he studied a system
of non-strictly hyperbolic conservation laws. By a Lagrangian transformation, this system is
equivalent to a scalar equation with discontinuous coefficients, see Wagner [24]. If one writes the
scalar conservation law as a system by introducing a as a new component of the solution, we have{

ut + f(u, a, g(t))x = 0
at = 0.

This system has eigenvalues fu and 0, and if fu(u, a, g) = 0 for some (u, a, g), then the system is
non-strictly hyperbolic, and the standard theory for systems, see Glimm [7] and (more recently)
[8, 1], does not apply. In particular, one can show by a concrete example, see e.g., [21], that the
total variation of the approximate solutions produced by the Glimm scheme (and also by front
tracking) is not bounded in terms of the discretization parameters. Such systems are commonly
called resonant. For resonant systems, one cannot show compactness by the usual method of
establishing BV estimates on a sequence of approximate solutions.

To overcome this difficulty, in [21] Temple introduced a nonlinear mapping Ψ = Ψ(u), and used
this mapping to prove that the sequence of approximations produced by the Glimm scheme is
compact. This approach has since been used in a number of papers for related systems, using other
approximations, see Gimse and Risebro [6], Klingenberg and Risebro [14, 15] for front tracking
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approximations, Lin et al. [18] for Godunov type approximations, Towers [22, 23] for monotone
difference schemes and Hong [9] for 2× 2 Godunov schemes.

As an alternative to the use of Ψ to prove compactness, in [12, 10] Karlsen et al. used the Murat–
Tartar compensated compactness approach to prove convergence of numerical approximations.

Regarding uniqueness of weak solutions to (1.1) in the case where a and g not smooth, this
was first studied (for the constant g case) in [15] and [13]. In these papers it was shown that the
solution is unique if it is the limit of solutions to equations where the coefficients are smoothed.
More recently, L1–contractivity was shown for piecewise smooth solutions in the case of convex flux
functions in [23], and in a more general case by Karlsen, Risebro, and Towers [12]. Also, Seguin
and Vovelle [20] proved uniqueness for L∞ solutions for a special case of (1.1) with g = const. and
a(·) taking two values separated by a jump discontinuity. The techniques used in the present paper
are heavily inspired by those used in [11], in which Karlsen, Risebro and Towers show uniqueness
of solutions in the case where g is constant, and where u 7→ f(u, a) is not required to have a single
local maximum. The authors of [23, 12, 20, 11] all use a Kružkov type entropy condition.

The purpose of the present paper is to extend the wellposedness theory for conservation laws
with discontinuous coefficients by including a t dependent coefficient.

Conservation laws with discontinuous coefficients, both in x and t, occur in many models. The
simplest such model is the hydrodynamic traffic flow model, see Ligthill and Whitham [17]. In
this case the x and t dependency model the road conditions, specifically the maximal speed of
any vehicle. Both of these dependencies can vary discontinuously, for instance when modeling a
traffic light. Another model in which such conservation laws occur is a clarifier-thickener model of
continuous sedimentation, see Bürger et al. [4, 2, 3]. In the papers [2, 3] the actual models were
simplified so that g(t) was assumed to be constant.

Now we briefly state our main result, and detail our assumptions. In order for the Riemann
problem to have a bounded solution, it is convenient to assume that there is a finite interval [α, β]
such that f(α, a, g) = f(β, a, g) for all a and g, and we can choose α = 0 and β = 1. This is not
necessary for the solution of the Riemann problem to be bounded, but it is certainly sufficient,
see however [5] for for less restrictive assumptions that yields the same conclusions.

So therefore we assume that f : [0, 1] × R2 7→ R, g : R+ 7→ R and a : R 7→ R are given
functions which satisfy the following:

(A.1) a is piecewise C1 with finitely many jump discontinuities at x = x1, . . . , xM .
(A.2) ‖a‖L∞ <∞, supx6∈{xi}M

1
|a′(x)| <∞ and a ∈ BV (R).

(A.3) f ∈ C2([0, 1]×R2;R), fuu(u, a, g) ≤ −cuu < 0, for some positive constant cuu for all a and
g.

(A.4) f(0, ·, ·) ≡ f(1, ·, ·) ≡ 0, and there is a unique value u∗ such that fu(u∗, ·, ·) ≡ 0.
(A.5) ∂f/∂g ≥ 0 and ∂f/∂a ≥ 0.
(A.6) g ∈ BV (R+).

Next, let Ψ(u, a, g) be defined by

Ψ(u, g, a) = sign (u− u∗)
f (u∗, a, g)− f (u, a, g)

f(u∗, a, g)
.(1.2)

We demand that the initial data is such that u0 ∈ L1(R; [0, 1]) and

|Ψ(u0, a, g)|BV <∞.(1.3)

We use the following definition of a weak entropy solution of (1.1):

Definition 1.1. Let T > 0, and let u : ΠT = 〈0, T 〉 ×R 7→ [0, 1] be a measurable function. We
call u an entropy weak solution of (1.1) if the following conditions hold:

(D.1) u ∈ L1(ΠT ), and the map 〈0, T 〉 3 t 7→ u(·, t) ∈ L1(R) is Lipschitz continuous.
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(D.2) The following entropy inequality holds for all constants c and all non-negative test functions
ϕ,∫∫

ΠT

|u− c|ϕt+F (u, x, t, c)ϕx dtdx−
M∑

m=0

xm+1∫
xm

T∫
0

sign (u− c) fa(c, a(x), g(t))a′(x)ϕdtdx

+
M∑

m=1

T∫
0

∣∣f(c, a
(
x+

m

)
, g(t))− f(c, a

(
x−m
)
, g(t))

∣∣ dt ≥ 0,

(1.4)

where we have set x0 = −∞, xM+1 = ∞, and F is given by

F (u, x, t, c) = sign (u− c) [f (u, a(x), g(t))− f (c, a(x), g(t))] , t > 0, x ∈ R.

(D.3) u(·, t) → u0 in L1(R) as t ↓ 0.
(D.4) |Ψ(u(·, t), a, g(t))|BV <∞ for all t ∈ 〈0, T 〉.

The inequality (1.4) implies that any entropy solution is a weak solution, as setting c = 1 and
c = 0 will show. The condition (D.4) implies that the limits

lim
x→x±m

Ψ(u, a, g)

exist for almost all t. Since u 7→ Ψ(u, a, g) is invertible, and the inverse is continuous, the limits

lim
x→x±m

u(x, t)

also exist for almost all t. This will be needed to show uniqueness. Our main result is

Main Theorem. Assume that f , a and g satisfy the above assumptions, (A.1) – (A.6). If u0

and v0 are two functions that satisfy (1.3), then there exist corresponding entropy solutions u and
v taking initial values u0 and v0 respectively. These entropy solutions satisfy

‖u(·, t)− v(·, t)‖L1(R) ≤ ‖u0 − v0‖L1(R) .

The rest of this paper is organized as follows. In the next section, Section 2 we define a sequence
of approximate solutions by the front tracking method. This is based on the front tracking method
defined in [14]. In Section 3 we proceed to establish interaction estimates which allows us to deduce
that the total variation of Ψ is bounded for the front tracking approximations. Then we can use
Helly’s theorem, and show that any limit is an entropy solution in the above sense. In Section 4
we use an adaptation of arguments taken from [11] to show that the entropy solution operator
is L1 contractive. In this way our main theorem is proved. Finally, we conclude with a section
showing the front tracking scheme used on a concrete example.

2. The front tracking scheme

We start this section by defining a front tracking scheme for the case where g(t) ≡ Const. This
scheme is slightly different from the front tracking scheme defined for this case in e.g. [14]. The
reason for this difference is that our front tracking scheme also must work when g is not constant.

Therefore we first consider the initial value problem,{
ut + f(u, a)x = 0 for x ∈ R, t > 0,
u(x, 0) = u0(x) for x ∈ R,

(2.1)

where f and a are as described above. The Riemann problem for (2.1) is the initial value problem
where

u0(x) =

{
ul x ≤ 0,
ur x > 0,

a(x) =

{
al x ≤ 0,
ar x > 0,

and its solution is detailed in [14]. This solution consists of at most one u-wave separating the
u-values ul and u′l, followed by a so–called a-wave separating the states (u′l, al) and (u′r, ar). This
wave is a contact discontinuity having zero speed. The solution is then completed by a u-wave
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separating u′r and ur. The first u-wave has non-positive speed, and the second non-negative. The
intermediate states can u′l and u′r are unique, provided (1.4) holds. Furthermore u′l,r can equal
ul,r.

Let
z(u, a) = sign (u∗ − u) (f(u, a)− f(u∗, a)) and α(a) = f(u∗, a).

Since a 7→ f(u∗, a) is non-decreasing, a 7→ α(a) is invertible. In the (z, α) plane, a waves are
straight lines of slope ±1. An a-wave connecting two points (z1, α1) and (z2, α2) have slope 1 if z1
and z2 are non-positive, and slope −1 if these values are non-negative. If z1 and z2 have different
sign, there is no a-wave connecting these points. Since u-waves connect points with the same a
values, these are horizontal lines in the (z, α) plane. Now fix a (small) number δ > 0, and set
αi = iδ, and zj = jδ, for integers i and j. We define uδ

0 and aδ as piecewise constant functions,
with a finite number of jump discontininuities, such that∥∥a− aδ

∥∥
L1(R)

→ 0,∥∥u0 − uδ
0

∥∥
L1(R)

→ 0

 as δ → 0.(2.2)

Label the (finite number of) values of uδ and aδ u1, . . . , uM , and a1, . . . , aN respectively. Let αj

be the jth member of the ordered set

{αk}M ′

k=m′ ∪ {α(ak)}M
k=1 ,

where m′ and M ′ are chosen such that

0 < m′ ≤ min
x
α(aδ(x)) < max

x
α(aδ(x)) ≤M ′.

For ease of notation, set
aj = α−1 (αj) .

Next for each αj , we define zj,k to be the kth member of the ordered set

{zi}N ′(j)
i=−N ′(j) ∪ {z (ui, aj)}M

i=1 ,

where N ′(j) is such that

z−1
(
z−N ′(j), aj

)
= 0, and z−1

(
zN ′(j), aj

)
= 1.

We also set
uj,k = z−1 (zj,k, aj) , and fj,k = f (uj,k, aj) .

Then, for each j, let the approximate flux function fδ(u, a) be the piecewise linear interpolant,

fδ (u, aj) = fj,k + (u− uj,k)
fj,k+1 − fj,k

uj,k+1 − uj,k
, for u ∈ [uj,k, uj,k+1].(2.3)

We have chosen the grid so that the entropy solution to the initial value problem

ut + fδ
(
u, aδ

)
x

= 0, t > 0, x ∈ R

u(x, 0) = uδ
0(x), x ∈ R,

(2.4)

can be constructed by front tracking for any time t. We call this front tracking solution uδ.
Furthermore uδ will take values that are grid points, i.e., for any point (x, t) such that uδ and aδ

is constant at (x, t),
z
(
uδ (x, t) , aδ(x)

)
= zj,k, for some j and k.

In particular, this means that

fδ
(
uδ, aδ

)
= f

(
uδ, aδ

)
, almost everywhere.

For an elaboration and proof of these statements, see [14]. The construction used here differs from
the construction in [14] in that we have added grid points corresponding to the discretization of
the initial function u0 and the coefficient a, instead of choosing discretization that take values on
the fixed grid in the (z, α) plane.



TIME DEPENDENT DISCONTINUOUS COEFFICIENTS 5

Now we can define the front tracking approximation in the case where g is not constant, c.f. (1.1).
Let gδ be a piecewise constant approximation to g, such that∥∥gδ − g

∥∥
L1(R+)

→ 0, as δ → 0,∣∣gδ
∣∣
BV (〈0,T ])

≤ |g|BV (〈0,T ]) .
(2.5)

Define tn such that gδ is constant on each interval In = 〈tn, tn+1]. Assuming that we can define
front tracking for t < tn, we can then use uδ(·, tn) as initial values for a front tracking approxima-
tion defined in [tn, tn+1〉. In order to do this we must use a “new” mapping z, since z = z(u, a, g),
and redefine the grid on which we operate. However, we keep the grid points corresponding to
uδ(·, tn). In this way, the grid used in the interval In+1 will contain more points than the one used
in In, but since there are only a finite number of intervals In such that tn ≤ T , for a fixed δ, we use
a finite number of grid points for t ≤ T . If, for t ∈ In, fδ(·, ·, gδ(t)) denotes the approximate flux
function constructed above using f(·, ·, gδ

∣∣
In) and uδ(·, tn), then we have that the front tracking

construction uδ will be an entropy solution of

uδ
t + fδ

(
uδ, aδ(x), gδ(t)

)
x

= 0, t > 0, x ∈ R

uδ(x, 0) = uδ
0(x), x ∈ R.

(2.6)

We call the discontinuities in uδ fronts, and we have three types, u-fronts, a-fronts and g-fronts
(that have infinite speed!).

3. Compactness

In this section we show that the sequence
{
uδ
}

δ>0
is compact in L1, by estimating the variation

of Ψ(uδ, aδ, gδ). For each time t, such that gδ is constant at t, we can view uδ as consisting of a
sequence of fronts, u-fronts and a-fronts.

We defined the map Ψ by (1.2), and we define the associated Temple functional of a front w by

T (w) =


|∆Ψ| if w is a u-front,

2 |∆a| g if w is an a-front, and Ψr < Ψl,
4 |∆a| g if w is an a-front, and Ψr > Ψl.

(3.1)

For sequence of fronts, define T additively. Next, for the front tracking approximation uδ, we
define the interaction estimate Q by

Q(t) = T (t)
∣∣gδ(·)

∣∣
BV ([t,T ])

,(3.2)

where with a slight abuse of notation we write T (t) = T (uδ(·, t)). With these definitions, we can
state the following lemma.

Lemma 3.1. There exist a positive constant C, depending only on f , a and g, such that for all
t > 0, we have that the “Glimm functional”

G(t) = T (t) + CQ(t),(3.3)

is nonincreasing in time.

Proof. In each interval In, we know from [14] that T is non-increasing, and the lemma holds. To
prove the lemma we must study interactions between u-fronts and g-fronts, and between a-fronts
and g-fronts.

We start by considering the interaction between a single a-front and a single g-front. The states
involved are depicted in Figure 1. We label the “incoming” a-wave (front) as a, and the outgoing
a-wave as a′, the left moving outgoing u-wave as u− and the right moving outcoming u-wave as
u+. See Figure 1.

In this case we claim that

T (u−) + T (a′) + T (u+)− T (a) ≤ C |∆g| |∆a|(3.4)
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for some constant C depending on f and its derivatives, but not on δ. To show this, we first
observe that since

|T (a′)− T (a)| ≤ 2 |∆a| |∆g| ,

it suffices to show that

T (u−) + T (u+) ≤ C |∆g| |∆a| .(3.5)

First observe that since an a wave cannot cross the line z = 0, either both ul and ur are less than

x

t

g+

ar g−al

a

ul ur

ul
′ ur

′

u+

u− a′

Figure 1. The states used in an interaction between an a-wave and a g-wave

or equal to u∗, or both are greater than or equal to u∗. If this is not so, then the “a-wave” is in
fact a stationary u-wave followed by an a-wave, or vice versa. If this is so, we can perturb uδ be
an arbitrarily small amount by shifting the stationary u-wave a small distance and then treat the
interaction of the g-wave and the u wave separately.

We now let

G (al, ar, gl, gr) = T
(
u−
)

+ T
(
u+
)
.

For simplicity, we regard al and g− as fixed, and the emerging waves as functions of a = ar and
g = g+. Trivially we have that

G(al, al, g
−, g) = G(al, a, g

−, g−) = 0,

and (3.5) follows if G is continuous and

∂2G

∂a∂g

is bounded, since

G(al, ar, g
−, g+) =

ar∫
al

g+∫
g−

∂2G

∂a∂g
(al, a, g

−, g) dgda.

First we assume that both ul and ur are less than or equal to u∗. In this case, if

f (ul, al, g) ≤ f (u∗, a, g) ,(3.6)

then there are no left moving waves u−, while if

f (ul, al, g) > f (u∗, a, g) ,(3.7)

there will be emerging u-waves of both positive and negative speed. These two case are depicted
in Figure 2. So we find that
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f

uu∗

al

al

g−

g−ar

arg
+

g+

ulur

f

uu∗

al

al

g−

g−ar

arg
+

g+

ulur

Figure 2. The possible results of an interaction if ul,r ≤ u∗. Left: (3.6) holds.
Right: (3.7) holds.

G
(
al, a, g

−, g
)

=
sign (ul − ur)
f (u∗, a, g)

[f (ul, al, g)− f (ur, a, g)]χ{f(ul,al,g)≤f(u∗,a,g)}

+

{
1

f (u∗, al, g)
[f (ul, al, g)− f (u∗, a, g)]

+
1

f (u∗, a, g)
[f (u∗, a, g)− f (ur, a, g)]

}
χ{f(ul,al,g)>f(u∗,a,g)}.

From this expression it is straightforward to check that G is sufficiently regular, and (3.5) holds.
The case where ul,r ≥ u∗ is similar, if

f (ur, a, g) ≤ f (u∗, al, g) ,(3.8)

there is only one outgoing u-wave, with negative speed. If

f (ur, a, g) > f (u∗, al, g) ,(3.9)

there are two outgoing u-waves. See Figure 3. In this case we have

f

uu∗

alg−

g−ar

arg
+

alg
+

ul ur

f

uu∗

alg−

g−ar

arg
+

alg
+

ul ur

Figure 3. The possible results of an interaction if ul,r ≥ u∗. Left: (3.8) holds.
Right: (3.9) holds.
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G
(
al, a, g

−, g
)

=
sign (ul − ur)
f (u∗, al, g)

[f (ul, al, g)− f (ur, a, g)]χ{f(ur,a,g)≤f(u∗,al,g)}

+

{
1

f (u∗, a, g)
[f (ur, a, g)− f (u∗, al, g)]

+
1

f (u∗, al, g)
[f (u∗, al, g)− f (ul, al, g)]

}
χ{f(ur,a,g)>f(u∗,al,g)}.

Also in this case G is sufficiently regular for (3.5) to hold and thereby (3.4). This finishes the
study of the interaction of a and g-fronts

Now we consider the interaction of a single u-wave and a single g-wave. The situation is depicted
in Figure 4. For this interaction we claim that

x

t

ul ur

ul ur
g+

g−

Figure 4. The states used in an interaction between a u-wave and a g-wave

∣∣Ψ (ur, a, g
+
)
−Ψ

(
ul, a, g

+
)∣∣− ∣∣Ψ (ur, a, g

−)−Ψ
(
ul, a, g

−)∣∣
≤ C

∣∣g+ − g−
∣∣ ∣∣Ψ (ur, a, g

−)−Ψ
(
ul, a, g

−)∣∣ .(3.10)

Since Ψ(u∗, ·, ·) = Ψu(u∗, ·, ·) = 0, we can write

Ψ
(
ur, a, g

+
)
−Ψ

(
ul, a, g

+
)
−Ψ

(
ur, a, g

−)+ Ψ
(
ur, a, g

−)
=

ur∫
ul

(
Ψu

(
σ, a, g+

)
−Ψu

(
σ, a, g−

))
dσ

=

ur∫
ul

σ∫
u∗

(
Ψuu

(
η, a, g+

)
−Ψuu

(
η, a, g−

))
dη dσ

=

ur∫
ul

σ∫
u∗

g+∫
g−

Ψuug (η, a, g) dg dη dσ.(3.11)

We also find that

Ψ
(
ur, a, g

−)−Ψ
(
ul, a, g

−) =

ur∫
ul

Ψu

(
σ, a, g−

)
dσ

=

ur∫
ul

(
Ψu

(
σ, a, g−

)
−Ψu

(
u∗, a, g−

))
dσ

=

ur∫
ul

σ∫
u∗

Ψuu

(
η, a, g−

)
dη dσ.(3.12)



TIME DEPENDENT DISCONTINUOUS COEFFICIENTS 9

We also have that

Ψuu(u, a, g) = sign (u− u∗)
−fuu(u, a, g)
f(u∗, a, g)

≥ cuu

Cu∗

|Ψuug(u, a, g)| =
∣∣∣∣fuu(u, a, g)fg(u∗, a, g)− fuug(u, a, g)f(u∗, a, g)

f2(u∗, a, g)

∣∣∣∣ ≤ C1,

for some constant C1. To fix ideas assume that ul ≤ ur, so that also

Ψ
(
ul, a, g

±) ≤ Ψ
(
ur, a, g

±) .
To show (3.10), we consider different cases.

Case 1: u∗ ≤ ul ≤ ur. By (3.11) we have∣∣Ψ (ur, a, g
+
)
−Ψ

(
ul, a, g

+
)∣∣− ∣∣Ψ (ur, a, g

−)−Ψ
(
ul, a, g

−)∣∣
≤ C ′

∣∣g+ − g−
∣∣ ur∫
ul

σ∫
u∗

dη dσ

= C ′
∣∣g+ − g−

∣∣(∣∣u2
r − u2

l

∣∣
2

− u∗ (ur − ul)

)
,

for some constant C ′ depending on the partial derivatives of f . By (3.12) we also have that

Ψ
(
ur, a, g

−)−Ψ
(
ul, a, g

−) ≥ cuu

Cu∗

ur∫
ul

σ∫
u∗

dη dσ,

so (3.10) follows with C = C ′Cu∗/cuu.
Case 2: ul ≤ ur ≤ u∗. In this case,∣∣Ψ (ur, a, g

+
)
−Ψ

(
ul, a, g

+
)∣∣− ∣∣Ψ (ur, a, g

−)−Ψ
(
ul, a, g

−)∣∣
≤ Ĉ

∣∣g+ − g−
∣∣ ur∫
ul

u∗∫
σ

dη dσ

= Ĉ
∣∣g+ − g−

∣∣ [u∗ (ur − ul)−
∣∣u2

r − u2
l

∣∣
2

]
,

for some constant Ĉ, and also by (3.12)

Ψ
(
ur, a, g

−)−Ψ
(
ul, a, g

−) ≥ cuu

Cu∗

ur∫
ul

u∗∫
σ

dη dσ.

Hence (3.10) follows as in the first case.
Case 3: ul ≤ u∗ ≤ ur. Now we write∣∣Ψ (ur, a, g

+
)
−Ψ

(
ul, a, g

+
)∣∣− ∣∣Ψ (ur, a, g

−)−Ψ
(
ul, a, g

−)∣∣
≤ C2

∣∣g+ − g−
∣∣  u∗∫

ul

σ∫
u∗

dη dσ +

ur∫
u∗

u∗∫
σ

dη dσ


= C2

∣∣g+ − g−
∣∣(u2

r − 2 (u∗)2 + u2
l

2
− u∗ (ur − 2u∗ + ul)

)
.

Also, by (3.12) we can estimate

Ψ
(
ur, a, g

−)−Ψ
(
ul, a, g

−) ≥ cuu

Cu∗

 u∗∫
ul

σ∫
u∗

dη dσ +

ur∫
u∗

u∗∫
σ

dη dσ

 .
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So again (3.10) follows.
If ul > ur we can use the same arguments as in Case 1 or 2 above to show (3.10). Since T (t) ≥∣∣aδ
∣∣
BV

, the lemma now follows.

Let Tn = T
∣∣
In and gn = gδ

∣∣
In . Since T is non-increasing in each interval In, from Lemma 3.1,

we have that
Tn+1 ≤ Tn

(
1 + C

∣∣gn+1 − gn
∣∣) .

By the Grönwall inequality it follows that

T (t) ≤ T 1(0+) exp

(∑
n

∣∣gn − gn−1
∣∣)

≤ lim
s↓0

T (s) exp (|g|BV )

≤ (|Ψ(u0, a, g(0))|BV + 4 |a|BV |g(0)|) e|g|BV .(3.13)

where the sum in the first line above is over those n such that tn < t.
From this it immediately follows that the total variation of Ψ(uδ, aδ, gδ(t)) is bounded indepen-

dently of δ and t. Furthermore

−1 ≤ Ψ
(
uδ(x, t), aδ(x), gδ(t)

)
≤ 1.

By Helly’s theorem, for each fixed t ∈ [0, T ],

Ψ
(
uδ(·, t), aδ, gδ(t)

)
→ ψ, almost everywhere as δ ↓ 0,

and by the Lebsgues dominated convergence theorem also in L1(R). Furthermore, by a diagonal
argument, we can achieve this convergence for a dense countable set {tγ} ⊂ [0, T ]. For tγ in this
set, define

u(·, tγ) = Ψ−1 (ψ, a, g (tγ)) .

Hence also uδ(·, tγ) → u(·, tγ). For any t ∈ [0, T ] we have that∥∥uδ1(·, t)− uδ2(·, t)
∥∥

L1(R)
≤
∥∥uδ1(·, tγ)− uδ1(·, t)

∥∥
L1(R)

+
∥∥uδ1(·, tγ)− uδ2(·, tγ)

∥∥
L1(R)

+
∥∥uδ2(·, tγ)− uδ2(·, t)

∥∥
L1(R)

,

where tγ is such that uδ(·, tγ) → u(·, tγ). By Lemma 3.2, t 7→ uδ(·, t) is L1 Lipschitz continuous,
so the first and third terms above can be made arbitrarily small by choosing δ1 and δ2 small, and
the middle term can be made small by choosing tγ close to t. Hence we have that uδ converges to
some function u in L1(R× [0, T ]). For the reader’s convenience we show that:

Lemma 3.2. There exists a positive constant C, independent of t, s and δ such that∥∥uδ(·, t)− uδ(·, s)
∥∥

L1(R)
≤ C |t− s| .(3.14)

Proof. We start by noting that since∣∣Ψ (uδ(x, t), aδ(x), gδ(t)
)
−Ψ

(
uδ(y, t), aδ(y), gδ(t)

)∣∣
≥
∣∣f (uδ(x, t), aδ(x), gδ(t)

)
− f

(
uδ(y, t), aδ(y), gδ(t)

)∣∣ ,
it follows that the total variation of f is bounded by some constant C, and C is independent
of t and δ. Next, assume that 0 ≤ s < t ≤ T , and let αh be a smooth approximation to the
characteristic function of the interval [s, t], so that

αh → χ[s,t], and α′h → δs − δt,

as h ↓ 0, where δs denotes the Dirac delta function centered at s. Choose a test function ϕ(x)
such that |ϕ| ≤ 1, and set ϕh(x, t) = ϕ(x)αh(t). Since uδ is a weak solution we have that∫∫

ΠT

uδ∂tϕh + f
(
uδ, aδ, gδ

)
∂xϕh dtdx = 0,
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and sending h ↓ 0 we find that∫
R

ϕ(x)
(
uδ(x, t)− uδ(x, s)

)
dx =

t∫
s

∫
R

ϕx(x)f
(
uδ, aδ, gδ

)
dtdx.

Now ∥∥uδ(·, t)− uδ(·, s)
∥∥

L1(R)
= sup

|ϕ|≤1

∫
ϕ(x)

(
uδ(x, t)− uδ(x, s)

)
dx

= sup
|ϕ|≤1

t∫
s

∫
R

ϕx(x)f
(
uδ, aδ, gδ

)
dxdσ

≤
t∫

s

∣∣f (uδ(·, σ
)
, aδ, gδ(σ)

∣∣
BV

dσ

≤ (t− s)C.

Next, we shall show that the limit u is an entropy solution, first we study how uδ differs from an
entropy solution in each interval 〈xm, xm+1〉. Assume that yk are the discontinuity points of aδ

inside this interval, such that

xm = y0 < y1 < · · · < yK = xm+1,

and we have that a = ak for x ∈ 〈yk, yk+1〉. Since uδ is an entropy solution inside each interval
〈yk, yk+1〉,

yk+1∫
yk

T∫
0

∣∣uδ − c
∣∣ϕt + F δ(uδ, x, t, c) dtdx−

T∫
0

F δ(uδ, x, t, c)
∣∣∣x=y−k+1

x=y+
k

dt ≥ 0,(3.15)

where

F δ(u, x, t, c) = sign (u− c)
(
fδ(u, aδ(x), gδ(t))− fδ(c, aδ(x), gδ(t))

)
.

If we set yl,r
k = y∓k , and observe that since uδ is a weak solution,

f
(
uδ
(
t, yl

k

)
, ak, g

δ
)

= f
(
uδ (t, yr

k) , ak+1, g
δ
)

=: fk,

for almost all t. Summing (3.15) for k = 0, . . . ,K − 1, we obtain

xm+1∫
xm

T∫
0

∣∣uδ − c
∣∣ϕx + F δ

(
uδ, x, t, c

)
ϕx dtdx−

T∫
0

ϕF δ(uδ, x, t, c)
∣∣∣x=x−m+1

x=x+
m

dt(3.16)

−
T∫

0

K−1∑
k=1

ϕ(xk, t)
[
sign (ur

k − c) (fk − fr
k (c))− sign

(
ul

k − c
) (
fk − f l

k(c)
)]
dt(3.17)

≥ 0,

where we have used the notation

ul,r
k = uδ(y∓k , t), f l,r

k (c) = fδ(c, aδ(y∓k ), gδ).

Since at each discontinuity yk, uδ is the solution of a Riemann problem, either both ul
k and ur

k are
less than or equal to u∗ or both are greater than or equal to u∗. Using this we can label those
discontinuities where both u values are less than or equal to u∗ as L, and the remaining ones as
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G. Hence we can write the integrand in (3.17) as (for brevity we use a notation where ϕ(xk, t) is
invisible, it will reappear later)

−
∑
L

sign
(
ul

k − c
) (
f l

k(c)− fr
k (c)

)
+
[
sign (ur

k − c)− sign
(
ul

k − c
)]

(fk − fr
k (c))(3.18)

−
∑
G

sign (ur
k − c)

(
f l

k(c)− fr
k (c)

)
+
[
sign

(
ul

k − c
)
− sign (ur

k − c)
] (
f l

k(c)− fk

)
.(3.19)

Since fδ
u(u, ·, ·) > 0 for u < u∗, if ul

k ≤ c ≤ ur
k, the second term in (3.18) equals

2 (fr
k (ur

k)− fr
k (c)) ≥ 0,

and if ur ≤ c ≤ ul, the second term equals

−2 (fr
k (ur

k)− fr
k (c)) ≥ 0.

Similarly we find that the second term in (3.19) is always non-negative. Hence

(3.17) ≤ −
T∫

0

K−1∑
k=1

sign
(
ul,r

k − c
) (
fδ(c, ak+1, g

δ)− fδ(c, ak, g
δ)
)
dt

= −
T∫

0

K−1∑
k=1

sign
(
ul,r

k − c
) fδ(c, ak+1, g

δ)− fδ(c, ak, g
δ)

∆yk
dt∆yk,

where ∆yk = yk+1 − yk, and we use ul
k for discontinuities in L and ur

k for discontinuities in G.
Since a is continuously differentiable in 〈xm, xm+1〉 and aδ → a, gδ → g and uδ → u as δ ↓ 0, we
find that

lim
δ↓0

(3.17) ≤ −
T∫

0

xm+1∫
xm

sign (u− c) f(c, a, g)xϕdxdt.(3.20)

By the same arguments, we find that for each discontinuity xm

F δ
(
uδ
(
x+

m, t
)
, x+

m, t, c
)
− F δ

(
uδ
(
x−m, t

)
, x−m, t, c

)
= sign (ur

m − c) (fm − fr
m(c))− sign

(
ul

m − c
) (
fm − f l

m(c)
)

≥
∣∣f l

m(c)− fr
m(c)

∣∣ ,
Finally, adding (3.16) – (3.17) for m and using the above, we find that∫∫

ΠT

|u− c|ϕt + F (u, x, t, c)ϕx dtdx−
∑
m

xm+1∫
xm

T∫
0

sign (u− c) fa(u, a, g)a′(x)ϕdtdx

+
∑
m

T∫
0

∣∣f(c, a(x+
m, g(t))− f(c, a(x−m), g(t))

∣∣ϕ(xm, t) dt

≥ lim
δ↓0

∑
m

[
(3.16) + (3.17)

]
≥ 0.

Hence the limit u is an entropy solution of (1.1), since by the Lemma 3.2 also u(·, t) → u0 as t ↓ 0.
Summing up, we have shown

Theorem 3.1. Assume that the assumptions (A.1), (A.2), (A.3), (A.4), (A.5) and (A.6) hold.
Then the sequence of front tracking solutions defined in Section 2 converges in L1(ΠT ) to an
entropy weak solution of (1.1).
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4. Uniqueness

In this section we prove the following theorem:

Theorem 4.1. Assume that the assumptions (A.1), (A.2), (A.3), (A.4), (A.5) and (A.6) hold.
Let u = u(x, t) and v = v(x, t) be two entropy weak solutions of

ut + f(u, a, g)x = 0, in the strip ΠT ,

for some T > 0, satisfying the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R.

Then we have that

‖u(t, ·)− v(t, ·)‖L1(R) ≤ ‖u(s, ·)− v(s, ·)‖L1(R) ,(4.1)

for each 0 ≤ s ≤ t < T .

Proof. We use the convention that u = u(y, s) and v = v(x, t). Assume that ϕ is a non-negative
test function of the variables (x, t, y, s) such that

ϕ(x, t, y, s) = 0, for (x, t, y, s) ∈ (〈0, T 〉 × [xm − hm, xm + hm])2, for m = 1, . . . ,M ,(4.2)

and for some positive numbers h1, . . . , hM . Because the support of ϕ is bounded away from the
discontinuities in a, we can proceed (for a while) as in Kružkov’s paper [16]. Since u and v are
entropy solutions,

−
∫∫
ΠT

|v − u|ϕt + F (v, x, t, u)ϕx dtdx+
∫∫
ΠT

sign (v − u) fa(u, a(x), g(t))a′(x)ϕdtdx ≤ 0,(4.3)

−
∫∫
ΠT

|u− v|ϕs + F (u, y, s, v)ϕy dsdy +
∫∫
ΠT

sign (u− v) fa(v, a(y), g(s))a′(y)ϕdsdy ≤ 0.(4.4)

Next we observe that

F (v, x, t, u)ϕx−sign (v − u) fa(u, a(x), g(t))ϕ

= sign (v − u) (f(v, a(x), g(t))− f(u, a(y), g(s)))ϕx

− sign (v − u) ∂x [(f(u, a(x), g(t))− f(u, a(y), g(s)))ϕ] ,

and

F (u, y, s, v)ϕy−sign (u− v) fa(v, a(y), g(s))ϕ

= sign (u− v) (f(u, a(y), g(s))− f(v, a(x), g(t)))ϕy

− sign (u− v) ∂y [(f(v, a(y), g(s))− f(v, a(x), g(t)))ϕ] .

Using these observations in (4.3) and (4.4) we find that

−
∫∫
ΠT

|v − u|ϕx + sign (v − u) [f(v, a(x), g(t))− f(u, a(y), g(s))]ϕx

+ sign (v − u) ∂x [f(u, a(x), g(t))− f(u, a(y), g(s))]ϕdtdx ≤ 0,(4.5)

−
∫∫
ΠT

|u− v|ϕy + sign (u− v) [f(u, a(y), g(s))− f(v, a(x), g(t))]ϕy

+ sign (u− v) ∂y [f(v, a(y), g(s))− f(v, a(x), g(t))]ϕdsdy ≤ 0.(4.6)
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Integrating these two with respect to dsdy and dtdx and adding the results, we find∫∫∫∫
Π2

T

|v − u| (ϕt + ϕs) + sign (v − u) [f(v, a(x), g(t))− f(u, a(y), g(s))] (ϕx + ϕy)

+ sign (v − u)
[
∂x ((f(u, a(x), g(t))− f(v, a(y), g(s))ϕ)

+ ∂y ((f(v, a(x), g(t))− f(v, a(y), g(s)))ϕ)
]
dtdx dsdy ≤ 0.

(4.7)

Let ψ(z, r) be a non-negative test function with support bounded away from the jumps in a, and
let δρ be a standard approximate Dirac delta function in one variable. Now choose

ϕ(x, t, y, s) = ψ

(
x+ y

2
,
t+ s

2

)
δρ

(
x− y

2

)
δρ

(
t− s

2

)
.

Since the discontinuities in a does influence the above inequality (4.7), we can repeat the arguments
in [16] to show that∫∫

ΠT

|v(x, t)− u(x, t)|ψx + F (v(x, t), a(x), g(t), u(x, t))ψx dtdx ≥ 0.(4.8)

Next, we have to consider the discontinuity points of a. To this end let χh(x) denote the charac-
teristic function of the interval 〈−h, h〉, and set

µh = 1− δh/2 ∗ χh, Θh(x) =
M∑

m=1

µh (x− xm) .

Now Θh → 1 in L1(R) as h ↓ 0. Let ϕ be a non-negative test function and set

ψh = ϕ ·Θh.

Then ψh is an admissible test function in (4.8). By the Lebesgue dominated convergence theorem,
we have that

lim
h↓0

∫∫
ΠT

|u− v| ∂tψh dtdx =
∫∫
ΠT

|u− v|ϕx dtdx(4.9)

lim
h↓0

∫∫
ΠT

F (v, x, t, u)∂xψh dtdx =
∫∫
ΠT

F (v, x, t, u)ϕx dtdx

+

T∫
0

M∑
m=1

F (v, x, t, u)
∣∣x=x+

m

x=xm−
ϕ(xm, t) dt.(4.10)

Hence, with this choice of test function, (4.8) reads∫∫
ΠT

|v(x, t)− u(x, t)|ϕx+F (v(x, t), a(x), g(t), u(x, t))ϕx dtdx

≥ −
T∫

0

M∑
m=1

F (v, x, t, u)
∣∣x=x+

m

x=xm−
ϕ(xm, t) dt.

(4.11)

Now we shall prove that

T∫
0

M∑
m=1

F (v, x, t, u)
∣∣x=x+

m

x=xm−
ϕ(xm, t) dt ≤ 0.(4.12)
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Next choose some t ∈ 〈0, T 〉 such that g is continuous at t, and a discontinuity point of a xm. Set

fu = lim
x→x+

m

f(u(x, t), a(x), g(t)) = lim
x→x−m

f(u(x, t), a(x), g(t)),

and

fv = lim
x→x+

m

f(v(x, t), a(x), g(t)) = lim
x→x−m

f(v(x, t), a(x), g(t)).

Furthermore, we use the notation ul,r = limx→xm∓
u(x, t), vl,r = limx→x∓m

v(x, t) (these limits
exist due to ((D.4))), and set

fl,r(u) = f(u, al,r, g), and Fl,r(u, c) = sign (u− c) (fl,r(u)− fl,r(c)).

Now, (4.12) will follow if we show that

A = Fl (ul, vl)− Fr (ur, vr)

= [sign (ul − vl)− sign (ur − vr)] (fu − fv) ≥ 0.
(4.13)

Now for any entropy solution w with left and right limits wl and wr we have that the following
implications hold

al < ar ⇒

{
fw ≤ fr(c) for wl ≤ c ≤ wr,
fw ≥ fl(c) for wr ≤ c ≤ wl,

(4.14)

ar < al ⇒

{
fw ≤ fl(c) for wl ≤ c ≤ wr,
fw ≥ fr(c) for wr ≤ c ≤ wl.

(4.15)

From (4.13), A = 0 if sign (ul − vl) = sign (ur − vr), therefore we only have to consider the cases
where this is not so. If sign (ul − vl) 6= sign (ur − vr) either {vl, vr} ⊂ [min(ul, ur),max(ul, ur)],
or {ul, ur} ⊂ [min(vl, vr),max(vl, vr)]. In all these cases we can easily use (4.14) or (4.15) to show
that A ≥ 0. As an example, assume that vl < ul,r and ul,r < vr. Then, since v is an entropy
solution

A = 2(fu − fv) =

{
fr (ur)− fv ≥ 0 if al < ar, by (4.14),
fl (ul)− fv ≥ 0 if al > ar, by (4.15).

The other cases are considered similarly. Now we have established that for each non-negative test
function ϕ, ∫∫

ΠT

|u− v|ϕt + F (u(x, t), a(x), g(t), v(x, t))ϕx dtdx ≥ 0,

and it is then standard procedure, see e.g., [16], to show that this implies L1 contraction.

5. An example

To demonstrate that the front tracking construction also has some potential as a practical
numerical method, in this section we show an example of how the front tracking construction
works on a concrete example. We use the simple flux function

f(u, a, g) = 4agu(1− u),(5.1)

and
a(x) =

(
1 + 8χ{x<0.25} |x|

)
+ 2 cos2(πx)

g(t) = 0.6 + 0.55 cos
(
2πt

(
χ{0.15<t<0.65} + 1

))
u0(x) = 0.5(1− 0.8 sin(πx)).

(5.2)

In the example we present, we have used periodic initial data in the interval x ∈ [0, 1], δ = 1/20
and ∆t = 0.025. In Figure 5 we show the initial data uδ

0 and the approximate coefficients aδ) and
gδ. In the next figure (Figure 6 we show the front tracking solution at t = 0.5 and the fronts for
0 ≤ t ≤ 0.5. The a-fronts are depicted as broken horizontal lines, the g-fronts as vertical broken
lines and the u-fronts as solid lines.
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Figure 5. The initial function uδ
0 (left), the coefficient aδ (middle) and gδ (right).
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Figure 6. The front tracking solution uδ(x, 0.5) (left) and the fronts (right).
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