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1 Introduction

In recent years relativistic gas dynamics plays an important role in areas of astrophysics,
high energy particle beams, high energy nuclear collisions, and free-electron laser tech-
nology. The equations that describe the relativistic gas dynamics are highly nonlinear.
Several numerical methods for solving relativistic gas dynamics have been reported. All
these methods are mostly developed from the existing reliable methods for solving the
Euler equations of nonrelativistic or Newtonian gas dynamics, see Marti and Miiller [22]
and references therein.

Kunik, Qamar and Warnecke [16, 17| have used for the first time kinetic schemes in order
to solve the relativistic Euler equations. They combined the already developed physical
framework of the relativistic kinetic theory of gases with mathematical and numerical anal-
ysis of the relativistic Euelr equations, see deGroot [11].

In the past decades, tremendous progress has been made in the development of numerical
methods for compressible flow simulations. Most of them are largely based on the upwind
concepts, see [10, 12, 23]. There are mainly two kinds of flux functions derived from the
inviscid Euler equations. The first group is the flux vector splitting (FVS) schemes. Flux
splitting is a technique for achieving upwinding bias in numerical flux function, which is
a natural consequence of regarding a fluid as an ensemble of particles. Since particles can
move forward or backward, this automatically splits the fluxes of mass, momentum and
energy into forward and backward fluxes through the cell interface, i.e.,

Fii=Fr(Wi) + F~(Wisa)

where W; represents mass, momentum and energy densities inside the cell 7. The equi-
valence between the above splitting mechanism and the collisionless Boltzmann equation
was first realized by Harten, Lax and van Leer [12]. Numerically it is observed that the
explicit flux formulation of the KFVS schemes by solving collisionless Boltzmann equation
is identical to the flux function of van Leer [21]. We will discuss the KFVS scheme for the
solution of ultra-relativistic Euler equations. For more discussion on the KFVS schemes
the reader is refered to Xu et. al [35] and Xu [36, 37, 38|.

On the other hand, the FDS schemes based on the exact or approximate Riemann solvers,
such as the Godunov, Roe and Osher methods [9, 24, 28], account for the wave interactions
in the gas evolution process. Especially for the Godunov method, the exact solution of the
Euler equations is used. The wave interaction in the FDS scheme can be clearly observed in
the Roe’s average W, 11 between the left W; and the right state W;, ;. In the smooth flow
region, there is bas1cally no differences among the Godunov, Roe and Osher schemes. For
example, the above three schemes can precisely keep a shear layer in the 2D case once the
shear layer is aligned with the mesh. This fact is consistent with the exact solution of the
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Euler equations. Therefore, the FDS schemes can accuratly capture the Navier-Stokes so-
lutions in the resolved dissipative boundary layer, where the numerical dissipation is much
smaller than the physical dissipation, see Xu [38] for details. However, this advantage
is also accompanied with a disadvantage, the Godunov scheme in strong shock regions
produce spurious oscillations such as carbuncle phenomena and odd-even decoupling in
multi-dimnsional case. FVS schemes do not generate these spurious solutions, since they
are intrinsically solving ”viscous” equations rather than the inviscid Euler equations. An
optimum choice to get a better scheme is to combine both, the FVS and FDS methodology.
This is the main aim of this paper using under consideration the ultra-relativistic case of
the Euler equations.

Even with initial equilibrium states, the collisionless Boltzmann transport equation cannot
keep the local equilibrium property dynamically. Physically, the mechanism for bringing
the distribution function close to equilibrium state simulates the collisions suffered by the
molecules of the gas, the so called collision term in the Boltzmann equation. But the
collisionless Boltzmann equation in the free-transport evolution stage totally ignores the
dynamical process of particle collisions.

Although the KFVS scheme lacks particle collisions in the free-transport evolution stage,
numerically it still can be used in the compressible flow calculations, and the numerical
solution is different from the free particle stream solutions. The basic reason for this is that
an artificial collision term has been implicitly added in the projection stage. For example
at the end of each time step, a Maxwellian distribution function f, inside each cell is
re-initiated, which is equivalent to perform particle collisions instantaneously to make the
transition from non-equilibrium state, i.e. free-flight f, to equilibrium state f;; inside each
cell. The dynamical effect from the two numerical stages (i.e. free-flight and projection)
in the KFVS scheme is qualitatively discribed in the Figure 1, where the free transport in
the gas evolution stage evolves the system away from the Euler solution (f becomes more
and more different from a Maxwellian), the projection stage drives the system towards to
the Euler solution (the instantaneous preparation of equilibrium states), see Xu [38].

Kinetic flux vector splitting schemes (KFVS) have been widely used in solving multidimen-
sional classical Euler equations. Mandal and Despande [21] have applied KFVS to solve the
bump in a channel problem with structured meshes. Weatherill et al. [33] have applied first
order and high order KFVS schemes to several two-dimensional problems with structured
and unstructured meshes. Deshpande et al. [4] have developed the three-dimensional time
marching Euler code called BHEEMA using KFVS method for the aerodynamic design
and analysis of practical configurations. Perthame [25] used kinetic flux splitting scheme
to derive a second order KFVS scheme with the Maxwellian phase density which is second
order accurate in time. This second order in time phase density was first obtained by
Despande [3] to get second order kinetic scheme and is based on Chapman Enskog analy-
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Figure 1: KFVS solution vs Euler solution, where At is a CFL time step.

sis for the solution of Boltzmann equation. Tang and Xu [30] proved the positivity of the
KFVS based collisional Boltzmann scheme (BGK scheme) for the classical Euler equations,
while Lui and Xu [20] proved the entropy inequality for this KFVS based BGK scheme.
Deshpande and Kulkarni [5] also applied the idea of KFVS scheme on moving grids for the
classical Euler equations.

The kinetic schemes developed in [16, 17] are discrete in time but continuous in space,
and thus are unconditionally stable. The initial data in these schemes are the primitive

field variables for the particle density n, the transformed velocity u = v/4/1 — ‘0’—22 and the
temperature 7'. To get the values of the field variables at next time step in the free flight
they use the algebraic combinations of the free-flight moments integrals, while to get field
variables at each maximization time they use continuity conditions which are obtained
from the constitutive relations for the Euler equations. These continuity conditions also
guarantee the conservation laws for mass, momentum and energy.

In this paper we are interested to derive a new BGK-type KFVS scheme in order to solve
ultra-relativistic Euler equations. In this new scheme the particle collisons are added to the
free particle transport mechanism in the following convex combination form of the fluxes,

Fiyy =nF/, + (1= n)F;,,

where F/ is the flux term from the free flight phase density and F* is equilibrium flux ob-
tained from the equilibrium phase density which is relativistic Maxwellian (Jiittner phase
density) in our case. Here 7 is an adjustable parameter and will be analyzed in the com-
ming sections when we derive the scheme. These schemes have been sucessfully applied to
the classical magnetohydrodynamics by Xu [37].

4



In the BGK-type KFVS scheme we start with a cell averaged initial data of the conserva-
tive variables and get back the cell averaged values of the conservative variables at the next
time step. The scheme is multidimensional and will be extended to the two-dimensional

case.

In two-dimensional case the flux splitting is done in a usual dimensionally split man-

ner, that is, the formulae for the fluxes can be used along each coordinate direction. In
order to get second order accuracy we use the MUSCL-type reconstruction in both one
and two-dimensional cases.

In order to formulate the theory in a Lorentz-invariant form, we make use of the notations
for the tensor calculus used in the textbook of Weinberg [34], with only slight modifications:

A)

B)

The space-time coordinates are z*, u = 0,1,2,3, with 2° := ct for the time,
x!, 22, 23 for the position.
The metric-tensor is
+1 , p=v=20,
glw:gl“/: —1 y M=V = 152a3a (11)
0 , p#v.

The proper Lorentz-transformations are linear transformations A% from one
system of space-time with coordinates z* to another system z'“. They must satisfy

=A% gu =A% A°, gog, A% > 1, detA =+1. (1.2)

The conditions A% > 1 and det A = +1 are necessary in order to exclude inversion
in time and space. Then the following quantity forms a tensor with respect to proper
Lorentz-transformations, the so called Levi-Civita tensor:

+1, afvy6 even permutation of 0123,
€aBys = —1, afvyd odd permuation of 0123,
0, otherwise.

Note that in the textbook of Weinberg [34] this tensor as well as the metric tensor
both take the sign opposite to the notation used here.

Einstein’s summation convention:

Any Greek index like «, 3, that appears twice, once as a subscript and once as a
superscript, is understood to be summed over 0,1,2,3 if not noted otherwise. For
spatial indices, which are denoted by Latin indices like ¢, j, k£, we will not apply this
summation convention.



Now we take a microscopic look at the gas and start with the kinematics of a represen-
tative gas atom with particle trajectory x = x(¢), where the time coordinate ¢ and the
space coordinate x are related to an arbitrary Lorentz-frame. The invariant mass of all
structureless particles is assumed to be the same and is denoted by m,. The microscopic
velocity of the gas atom is d’;it), and its microscopic velocity four-vector is given by cg*,
where the dimensionless microscopic velocity four-vector ¢* is defined by

(a)", =wp=v1+a, q=

(1.4)

Note that in the ultra relativistic case ¢° = |q|, see [16, 17] for further details.

The relativistic phase density f(t,x,q) > 0 is the basic quantity of the kinetic theory.
This function may be interpreted as giving the average number of particles with certain
momentum at each time-space point. In the following we make use of the fact that the so
called volume element d®q/qq is invariant with respect to Lorentz-transformations.

Now we give the following definitions for the macroscopic moments and entropy four-vector
and the definition of the macroscopic basic fields which we need for the formulation of the
ultra-relativistic Euler equations, for more details see [16, 17].

(i) Particle-density four-vector:

3
= () = [ fxa) L (15)

R3
(ii) Energy-momentum tensor:

d3
TH =T (t,x) = myc? /3 a“q¢” f(t,x,q) q—oq , (1.6)
R

with pu, v = 0,1, 2,3, ie these are total sixteen quanties.

(iii) Entropy four-vector:

5% = 51, = —ka [ ¢ fltx.0)m (1.7)

RR3 X .

(]0

Here kp = 1.38062 x 10~?*.J/ K is Boltzmann’s constant and y = (%2¢)? with Planck’s con-

stant i = 1.05459x 1073* Jsec. Note that x has the same dimension as f, namely 1/volume.



Tensor algebraic combinations of these moments:

(i) The particle density
n=+/NHN,, (1.8)

(ii) the dimensionless velocity four-vector

1
ut = ﬁ NH y (19)
(iii) the pressure and temperature
1 w
P=3 (uptty — gu) T = kpnT, (1.10)

Remark:

The macroscopic velocity v of the gas can be obtained easily from the spatial part
u = (u!,u?,u3)T of the dimensionless velocity four vector by

u
Vitu?

From this formula we can immediately read off that |v| < ¢, i.e. the absolute value of

the velocity is bounded by the speed of light. Note also that u® = v/1 4+ u? is the Lorentz

factor ——L——. These definitions are valid for any relativistic phase-density f = f(¢,x, q).
V1-v2/c? T

v=c (1.11)

The most interesting aspect of the kinetic schemes is that instead of dealing with a system
of nonlinear hyperbolic partial differential equations (for example relativistic Euler equa-
tions), we consider the collisionless transport equation of the kinetic theory of gases for
developing upwind schemes. This relativistic linear transport equation without collision
term

9 _y (1.12)

is a linear transport equation for the scalar f. This equation gives the follwing conservation
laws for the particle number, momentum and energy in differential form
ONH —0 oTH
orr ozH

=0 pr=0,1,23 (1.13)
Further, when the basic unknown f in (1.12), the distribution function, is replaced by
the relativistic Jiittner distribution function, see [16, 17|, then the collisionless transport

equation (1.12) is in general no longer valid, whereas the conservation laws (1.13) are still
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satisfied and will reduce to the relativistic Euler equations. Apart from this if we take into
account shock discontinuity then we need the weak form of conservation laws and entropy
inequality as given below,

fN”(t, x)do, = 0, j(T‘“’(t, x)do, = 0, 7{5’”(25, x)do, > 0, (1.14)
o9 o9 o9
Here the covariant vector do, is a positively oriented surface element on the boundary 052.

It can be written in covariant form as

3 ox Ozt Ox

) out Oui Ou™

dox, = Exaw du’ du? du™ ,

bjym=

where ¢ = %(u!, u?,u?) is a positively oriented parameterization of the boundary 9.

In the following we will only consider dimensionless physical quantities corresponding to
k=1, h=1and c=1.

2 The Ultra-Relativistic Euler Equations

The three dimensional ultra-relativistic Euler equations derived in [16], can be written as

W <~ OFF(W)

It + oz =0, (2.1)
k=
where
NO nv1+ u?
W= | T | = | 4puv1+u? |,
T 3p + 4pu?
(2.2)
Nk nu
Frav)y= [ T% | = | pd&* + dputu?
T 4puF/1 + u?

where 1 = 1, 2,3 and the pressure p = nT.

In order to get the primitive variables n, u* and p from the conserved variables W we use



3
1

plt,%) = 5 | <1+ 4™ =33 (107 | |
3 k=1

TOk
uF(th,x) = . k=1,2,3, (2.3)
Vap(tE,x)[p(t, x) + T
NO
n(ty,x)

U P

Let us consider an initial distribution function fy(x,q) > 0. We wish to build a time
approximation of (2.1) in the following way. We are given the initial data n(0,x), u(0,x),
T(0,x) and we define the ”equilibrium function” associated to these data by using the
dimensionless relativistic Jiittner distribution function in the ultra-relativistic limit [16],
which is given as

n u,q”
fJ(naTa u, q) = 7 T3 exp <_ T )

eXp( lq (m d )) . (2.4)

d

BRI

T
Using this distribution function we have
d3q
nut = N“(O,X) = (]“ fJ(X, q) Tl (25)
R3 q
14 v 14 14 d3q
—pg" + dputu’ = TH(0,x) = a'q¢" f1(x,q) Tal’ (2.6)
R3
and the macroscopic entropy four-vector
nt d3q
—N¥1In — +yNt =5%0,x) = — [ ¢" fs(x,q) In fr(x,q) —- (2.7)
p R3 q
Then we solve the linear transport equation
0 f ¢ of
ot Z o 5%
f(0,x,9) = fo(x,q). (2.8)

The connection between the Boltzmann function f and macroscopic flow variables is
3

N#(t, %) = / ot q) 24
R3 |(1|

(2.9)

Y v d°q
™ (t,X)=/ ¢ f(t,x,q) —,
R3 ‘Q|



with macroscopic entropy four-vector

t d?
st = = [ ¢ f(exq m (1029 1 (2.10)
R® X ql
which is first order (in At) approximaion of the solution to (2.1) for ¢t < At.
The exact solution of the linear transport equation (2.8) is given by
f(t,x,q) =fo(:v—t%,q)- (2.11)
Using (2.11) in (2.9) and (2.10) we get
q d%g
N“t,X :/ qﬂf X_t_aq—a
(02 = J Gt Vg
(2.12)
q . d
T (t,x :/ "¢’ folx —t—,d)7—,
N S
p p a &
Stt,x)=— [ ¢"(foln fo)(x—t—,q)—, (2.13)
R® lal” ™ la

where f; is ultra-relativistic initial phase density at time t = 0

fO(Y7q) = fJ(’l’L(O,}’),T(O,}’),U(O,Y),Q) . (214)

Now we can simplify the volume integrals (2.12) and (2.13) for the free flight moments.
We can see in (2.14) that the fields n(¢,y), T(¢,y) and u(¢,y) are not depending on |q]
but only on the unit vector w = (w!, w? w®)? = &+ This fact enables us to reduce the
three-fold volume integrals to the two-fold surface integrals by applying polar coordinates,
see [16] for more details. Furthermore if we introduce instead of the unit vector w the new

variables —1 < ¢ <1land —7 < ¢ < 7 by

w' = ¢, w? =4/1—-Esingp, w? =+/1—-Ecosp, (2.15)
then the simplified free-flight moments integrals for the one- and two-dimensional cases are

given below, for more explanation see [16].

One dimensional moment integrals

Here we only consider solutions which depend on ¢ and z = 2! and satisfy n = n(t,z), u =
(u(t,z),0,0), p = p(t,z). In this case the quantities n, T, u in the free flight phase density
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are not depending on the variable . This fact enables us to carry out the integration with
respect to ¢ directly. Thus the two-fold surface integrals reduces to simple £ —integrals.
For abbreviation we introduce

) S TN 7 )
(i) -y Y (2.16)

D(y, ) = T2 (Tt () — Euly))!

Here we have supressed for simplicity the fixed time-argument ¢ in the fields, which will
not lead to confusions. The reduced integrals for the moments can be written as

N(t,z) \ [ @(z—1tE¢)

Wto) = | T | = / EU(x—t6.8) | de, (2.17)
T%(t, ») % U(z —1€,€)
N'(t,z) \ [ EPB(z—tE¢)

Fl(t,2)= | T™(t,z) | = / EW(x —t&,€) | de. (2.18)
T (t, z) 5\ §¥(z—1,¢)

§@a0=—/%u—ro®u—7¢®da

(2.19)

Si(t,z) = — / Ene — 7€) (x — 7€, €) de

where

Two Dimensional moment integrals

In this case we consider the solutions which depend on ¢, x = 2! and y = 22 and satisfy
n=n(tz,y), u= (u(t,z,y),ust, x,y),0), p=p(t,x,y). Instead of the unit vector w, we
use again the new variables in (2.15). For abbreviation we introduce with y € R?  where
we have again supressed for simplicity the fixed time-argument ¢

1 2 1 n(Y)
O(y,w,w’) = — ’
(y ) AT (/1 + (02 +ud)(y) — ui(y) wh — ug(y) w?)3
Wy ) = e)

4r (1 + @ +iB)(y) — ui(y) w' — us(y) w?)*
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Then the moment integrals take again a simplier form, namely

NO(t,z,y) 1 O(x — tw', y — tw?, w', w?)
T t, z,y) wl U (z — tw!,y — tw? w', w?)
W(ta z, y) = TOQ(t, x, y) = // w? \If(x _ twl’ y — tw2 w 2) dédy, (2 20)
T(t, z,y) —m -1 U(r —twh,y — tw?, wh, w?)
N'(t,z,y) .1 w' ®(x — tw',y — tw?, w', w?)
T (t,z,y) (wh? ¥ (z — tw', y — tw?, w', w?)
f — 'L, Y — Y 3 3
Fl(t,z,y) T12(t, z,) // wlw? U(z — twl, y — th, w?, w2) dédy,
T (t, z,y) -l w U (z — tw',y — tw? w', w?)
(2.21)
N2(t,z,y) _— w? ®(z — tw', y — tw?, w', w?)
TY(t,z,y) ww? ¥(r — tw',y — tw?, w', w?)
f — 'L, Y — 'Y ’ )
G'(t,z,y) T22(t,x,y) // w? Q\P(x—twl,y—th,wl,wQ) dédy .
T(t, z,y) -l w2 (r — tw',y — tw?, w', w?)

The above one- and two-dimensional free-flight moments integrals will be used in order
to derive a flux splitting scheme for the one- and two-dimensional ultra-relativistic Euler
equations.

3 One-dimensional BGK-type KFVS Scheme

Here we want to solve the one dimensional Euler equations

ow  OF (W)
=0 3.1
o oz ’ (3-1)
where
N° nv1+ u? Nt nu
W= | T | = 4puv/14+0u2 |, FW)=| TV | = p + 4pu? . (3.2)
T 3p + 4pu? To! dpur/1 + u?
We start with a piecewise constant initial data W ;(0) over the cells [z;_ 1,T; +1] of a given
mesh size Az = z;,1 —x,;_1, and we have to compute Wi (At) over the same cells. We take
the natural CFL condltlon At = ﬁ in order to ensure that neighbouring light-cones will

not interact, see Figure 2. Note that in the theory of the classical Euler-equations one has
to assume a bound for the characteristic speeds which depend on the choice of the initial
data in order to obtain a CFL-condition. This is not necessary in our case, since every
signal speed is bounded by the velocity of light.
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Figure 2: Illustration of the conservative kinetic scheme .

Using Figure 2, the one dimensional weak form of conservation laws (1.14); over the

domain [0, At] X [z;_1,2; 1] gives

j(W(t, D)z — F(W(tz)dt =0 —>
on

Titd At

/ (W (At,z) — W(0,x)] dx—i—/ [F(T,:EH%) —F(T,xi%) dr =0.
. 1 0

U3

Let us define the integral mean values by

— 1
1

1

Dividing the above balance equations by Az, we get the following conservative formula
At

Ti(A) = T(0) — — / [P(r2iy) ~ P(rn,y)] dr, (3.3)

Ead)

with



Here F/(7,z Ti1 1) is given by (2.18) while we have to derive F¢(r,z Z+2) Also we will ana-
lyze the parameter 1 when we complete the derivation of the scheme for the 1D case.

From (2.18) we have

At At 1
! — _
/ F(r,3,,) dr = / / [(oeyy —7€,€) de dr, (3.4)
0 01
where
1 En(y)
2 (\/1+g?(y))—(§;t(y))3
3 £ (nT
f(ya 6) 2 \/1+u2 —tu(y )
§ (nT)(y)

N
$
+
S

S

y)*

The CFL condition states that £-integration is limited to & such that |£|7 < Az. This
means that z;,1 — {7 remains in a neighbour cell to z;, 1, see Figure 2. This implies that
the field variables n, u, 71" in the splitted flux integrals will not depend on the £ —integration,
therefore equation (3.4) gives

At
1
Fl = [l dT—/f:vz, d€+/f$z+1,
0
=F*

+Fy. (3.5)

where for each cell I;

2
£ (ule) + /T ()

+ p(zi) 2 ’
FE= | A (dulm) + T @) , (3.6)

| 2 (~ue0sy/Tr @) (2uleo)+y/Fed ()’ |

4 1+u?(z;)

where p = nT'. This is exactly the kinetic flux vector splitting scheme for the ultra-
relativistic Euler equations.

Now we are going to derive the equilibrium part of the flux F i . As discussed in the

introduction all FVS schemes based on positive (negative) partlcle velocities suffer from
the same weakness. The particle free transport across cell interfaces unavoidably intro-
duces a large numerical dissipation, and the viscosity and heat conduction coefficients are
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proportional to the CFL time step. In order to reduce the over-diffusivity in flux splitting
schemes, particles collisions have to be added in the transport process. Following the idea
of Xu [37], the aim is to obtain an equilibrium state Wf +1 at the cell interface by combining
the left and right moving beams. Using this equilibrium state, we get an equilibrium flux
funtion FY, ! through the flux function definition (3.2)s.

As a simple particle collisional model, we can imagine that the particles from the left-
and right-hand sides of a cell interface collapse totally to form an equilibrium state. In
order to define the equilibrium state at the cell interface, we need first to figure out the
corresponding macroscopic quantities Wf +1 there, which are the combination of the total
mass, momentum and energy of the left and right moving beams. Now using (2.17) we
have

N’ NONT /N0 T
Wip=|T" | =T | +[ 7| . (3.7)

TOO ) TOO ) TOO "

i+s5 ¢ g

where for each cell I;

n(z;) (2\ / 1+u2(xi):Fu(zi))

O E 412 (@) (uen) T/ THd (@)
3
700 | = | p) ((eEE3Y146260) ($uty/1eE) | (3.8)
700 4 1+u?(z;)
i p(mi)(3+4u2(mi):|:3u(mi) 1+u2(mi))

2 (l—l—u2 (zi)Fu(zi)y/14+u? (31)) ’

Now we use the following relation in order to get the averaged values of the primitive
variables from the above averaged conservative variables in (3.7),

—01 —0
1 =00 —00 —01 T N
p=-|-T +\/4(T )2 — 3(T )2} U= p=—— . (3.9)
3 [ =00 V1 2
Vaplp+T ] T

Then from these ”averaged” macroscopic flow quantities in the equation (3.9), we can
construct the equilibrium flux function

At nu
1 . )
Fa=x ¥ (r,zip1)dr=| p+4pu : (3.10)
’ 0 dpuv/1 + u?

its
Using (3.5) and (3.10) in (3.3) we finally get the following upwind kinetic scheme

W, (At) = W,(0) |y (3.11)

N[
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with

:nF.f

F.
i+

i+ + (1 - 77)1?:4_% ’ (312)

W=
N[=

where 7 is an adaptive parameter. For a first order scheme n can be fixed, such as 0.7
or 0.5, in the numerical calculations. Theoretically, the parameter n should depend on
the real flow situations: in the equilibrium and smooth flow regions, the use of n ~ 0 is
physically reasonable, and in discontinuity region, n should be close to 1 in order to have
enough numerical dissipation to recover the smooth shock transition. A possible choice for
7 in high order scheme is to consider it as a function of the pressure difference, such as the
switch function in the JST scheme [7]. We follow the MUSCL-type approach to extend
the current scheme to high order. For the high-order scheme, the interpolated pressure
jump p; and p, around a cell interface can naturally be used as a switch function for the

parameter 7, such as
n= 1 — EXp <_|pl _pr|)
p+p )

where o can be some constant, see Xu [38]. In order to get back the premitive vsriables
n, u, T in (3.11) we use again (3.9).

3.1 Second Order Extension of the Scheme in 1D

In order to get the second order accuracy we have the following three steps.

(I): Data Reconstruction. Starting with a piecewise-constant solution in time and
space, »_ W;(0)x;(z), one reconstruct a piecewise linear (MUSCL-type) approxima-
tion in space, namely

(x — x3)

A | X (z). (3.13)

W(0,z)=> [W,-(O) + W

Here, y;(z) is the characteristic function of the cell, I; := {£ | |¢—=;| < 42}, centered
arround z; = 1Az, and W} abbreviates a first-order discrete slopes.

The extreme points x = 0 and z = Az, in local coordinates correspond to the
intercell boundaries in general coordinates T and z, +1s respectively, see Figure 3.
The values W; at the extreme points are

2 2

_ 1 — 1
WE =W,;(0) — §W-$, WE=W,(0) + §W;” (3.14)

and are usually called boundary extrapolated values.
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A possible computation of these slopes, which results in an overall nonoscillatory
schemes (consult [31]), is given by family of discrete derivatives parameterized with
1 <0 <2 ie., for any grid function {W;} we set

= Wiy1 —W;, and MM denotes the

0
Wiw = MMe{m_l,m,M+1} =MM <0AWZ+%7 E(AVV;_% + AI/I/H_%), QAVV,L_

D=

Here, A denotes the central differencing, AW,

1
. . .. 2
min-mod nonlinear limiter

ming{z;} ifx; >0 Vi,

MMA{zy,xq,..} =< max;{z;} ifz; <0 Vi, (3.15)
0 otherwise .
X rA%\c\Wiﬁl
Lit1-
TivdT
T | — Wi(At)
T 1t
Ti—1 1
Wiy
t

Figure 3: Second Order Reconstruction

This interpolant, (3.13), is then evolved exactly in time and projected on the cell-
averages at the next time step.

(IT): Evolution. For each cell I;, the boundary extrapolated values WX, WE in (3.14)
are evolved for a time 1At by

17



(I11):

4

A 1 At
whk=wl+ Az [F(WZL) - F(VViR)} ,
(3.16)

A 1 At
R _yyk_ + 20
Wit =W, +2Ax

where F' is the force term from in the Euler equations (3.2),.

[F(W) = FW)]

Note that this evolution step is entirely contained in each cell I;, as the intercell fluxes
are evaluated at the boundary extrapolated values of each cell. At each intercell
position 7 + % there are two fluxes, namely W and I/Vz-fjrl, which are in general
distinct. This does not really affect the conservative character of the overall method,

as this step is only an intermediate step [31].

Finally we use the conservative formula (3.11) in order to get the conservative vari-
ables at next time step

(3.17)
with

Fioy=nF[ + 1 —n)F,,, (3.18)

A

where szjrl = FH(WE) + F~(W},), and F* is given by (3.6).
2

7

Similarly to calculate F? 1, we have
2

€

Wi =WHE+ (W)L,
using (3.16) W* can be calculated from (3.8), then
Fﬁu% = Fe(WH%) :

In order to get back the fields n, uy, us, T we use the relations (3.9).

Two-Dimensional BGK-type KFVS Scheme

Here we want to solve the two-dimensional Euler equations

ow N OF (W) N O0G(W)
ot ox dy

~0, (4.1)
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where

NO nv1+ u? Nt nuy

W= T | | 4pulv/1+u? FW) = T | p+4pu?
= T02 - 4p U2 /1 + 112 ) - T12 - 4p Up Uy )
T 3p + 4pu? T 4puiv/1 +u?
N? n Uy
T2 4p ug ug

T92 4p usv/'1 + u?

where u = /1 + u? + u3. We start again with a piecewise constant initial data of the con-
servative variables W, ;(0). Using the weak conservation laws (1.14); » in two-dimensional
case over the volume [0, At] x [xi_%,xH%] X [yj_%,yﬂ%], we get

_ — At At
Wij(At) = Wi;(0) - [FH—%,J' - Fi—;,j} Ay [Gz‘,j+§ - Gi,j—é] , (43)
where
Titd Yi+d
— 1
W,.i(t) = t,z,y)dxdy,
fiopYich
_ f e _ f e
Fipgy=nFl,+A=nF,, G =060+ 1 -n)Gi;,,.
Here
At At
1 1
f _ f ) f _ f )
Fz‘+§,j =N F (T,xﬂ_%,y])dT, Gi’j+% =N G (T,xz,ijr%)dT,
0 0

where the flux moments F/(r, :UH%,yj) and G/ (1, z;, yj+%) are given in (2.21).

If the CFL condition At < %min(Am, Ay) is satisfied, then we can utilize the kinetic flux
vector splitting (KFVS). Since after flux splitting the fields n, ui, us and 7 in (2.20)
and (2.21) are not depending on the integration variables £ and ¢, therefore we can solve
analytically these moments integrals for the fluxes. This gives

f _ — f _ —
Fiiyg = F5+ Fiiag Gy = Gl + Figa- (4.4)
where from (2.21)
N\ * N2\
Tll T12
F:; = T12 ) G* = T22
TOl TOZ
,J ,J
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Here for the fluxes F;; * we split the integrals with respect to variable ¢ and take the
integration with respect to variable ¢ as a whole. While for the fluxes Gi , we split the
integrals with respect to variable ¢ and integrate the integrals with respect to & as a whole.
Thus we get the following relations for the fluxes Ff] and ij for each cell I; ;

w n(14+2u?)
( = 44/1+u} \
p(1+4u ) + puq(3+4u?)
n 2 24/ 1+u?
F;,j = 2pu1u2 + qu(3+12u%—|§—8uf) ;
4(14u?)2
\ D T+ u T u? Uy + (3—|—12u1+83u1)
4(1+ui)2 ) ij
(4.5)
nug | n(1+2u3)
( 2 + \/l—i—uz \
2pus Uy + pu2(3+12u1+8u1)
+ ' 4(1+u2)7
G i p(1+4ul) + puz(3—|—4u2)
2 24/ 1+u2
pV1+uZ | 2u, £ 7(3“2“2%3“2)

where u = /u? + u3.

As discussed in the introduction and in one dimensional case, all FVS schemes based on
positive (negative) particle velocities suffer from the same weakness. The particle free
transport across the cell interfaces unavoidably introduces a large numerical dissipation,
and the viscosity and heat conduction coefficients are proportional to the CFL time step.
In order to reduce the over-diffusivity in flux splitting schemes, particle collisions have to
be added in the transport process.

As a simple particle collisional model, we can imagine that the particles at the cell interface
moving in positive and negative z— and y— directions collapse totally to form an equilib-
rium state. In order to define the equilibrium state at the cell interface, we need first to
figure out the corresponding macroscopic quantities Wf +1 and Wz PrE! there, which are
the combination of the total mass, momentum and energy of the moving *beams in negative
and positive direction of x- and y-axis. Now using (2.20) we have

=0

N NO\ T NO N\~
=01

— . T . TOl TOl

Wi, = 702 =1 o2 T po2 ,
—00 TOO o TOO ' '
T i+ % ,j 2,7 1+ 1’.7
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where for each cell I; ;

( ny14u? (1 + “1(3*‘2“?)
o " 2 2(14u?)2
]\21 P /71 T Quy + (3412u? +8u1)
T02 _ 4(1+u%)?
TOO m 2+ u1 15+20u1—|—8u1)
T irj a(1+u) 3
\ p(3—|—4u2) 4 pul(12—|—15(u%—|—u2)—|—8u‘11 2—|—2ul(3u%—|—10u2))
2 4(1+ud)
Similarly
N N N
e T T 70!
N TOQ = T02 + 702 )
=00 00 00
T g+l T ij T iyj+1
where for each cell I, ;
( n(z;)vV1+u? 14+ u2(3+2u2)
- 2 2(1+u3)?
]\21 m <2 I 15+20u2+8u2)
T02 — (1+u2)2
T00 VIFW [ 2uy + (3+12ud+8uf)
T i 4(1+u3)?
p(3+4u?) n pus (12+15(ud+u?)+8ufu?+2u3(3u3+10u?))
\ 2 A(14u2)? )
2

where u = /u? + u2.

i’j

i’j

(4.6)

(4.7)

Now we use the following relation in order to get the averaged values of the primitive

variables from the above averaged conservative variables

_1
P=3

)

T 4 \/4(700)2 -3 [T+ @y
TOl TO2 NO

U =—F—, U= —F/————————, N =
Vaplp + T \Vaplp + T
21

V1+ui+u

(4.8)



Then from these ”averaged” macroscopic flow quantities in the equation (4.8), we can
construct the equilibrium flux functions

At nuy
e 1 . _ p+ dpu?
Zwi.f.%,j - A_t / F (Ta xH—%a y]) dr = 4p U Us ’ (49)

0 dpui/1+ui + uj .y

At n Uz
1 4p uy ug
ZjJr% = E/FE(T,xi,yﬂ%)dT: p+dpu? . (4.10)

0 dpus/T+ui+u3 /.

Using (4.4), (4.9) and (4.10) in (4.3) we finally get the following upwind kinetic scheme

— — At[

At
Wig(A) = Wiy(0) = 5 L] = o

P % (Giges = Gigt] (4.11)

2+ % aj - i— 2 7j
with

—npf _ o ~f
Fopyg=nFia,;+ A =mF ;5 Gigey = nGie1 T 1 =mGi 1

(4.12)

again 7 is an adaptive parameter and can be taken fixed, for example 0.5 or 0.7. It can
also be calculated from the left and right state pressure at the cell interface by using the

relation
n=1-Exp <—a7|pl —pr\) .
D + Dr

The value of n should be such that it allow a smooth transition of shocks, while resolve
the contact discontinuities sufficiently. In order to get back the fields n, u;, us, 1" from the
conservative variable at next time we use the relations (4.8).

4.1 Second Order Extension of the Scheme in 2D

Here we present the second-order MUSCL-type approach for the two-dimensional case.
Keeping in view the MUSCL approach discussed in the previous section for the one-
dimensional case, we have again the following three steps.

(I): Data Reconstruction and Boundary Extrapolated Values. Starting with a

piecewise-constant solution in time and space, Wi,j((]), one reconstruct a piecewise
linear (MUSCL-type) approximation independently in x- and y-directions by selecting

22



(IT):

(I11):

selecting respective slope vectors (differences) W7 and W¥. Boundary extrapolated
values are

Wit = Wiy(0) = gWiy, Wig™ =Wii(0) + Wi,
(4.13)
_ 1 o 1
Wi =Wiy(0) = Wiy, Wi = Wi(0) + Wi

A possible computation of these slopes, is given by family of discrete derivatives
parameterized with 1 < 6 < 2, for example

. — 0 _

W2 = MM {HAWH;J, - (AW AW, ;J) ,HAWZ.;J} ,
0 _

WY = MM {0AWU+ Lo (AW 1+ AT ) ,HAWM_%} .

Here A denotes central differencing,

AWip1 5 =Win; — Wi, AW, i1 =Wijn =Wy,

and M M denotes the min-mod nonlinear limiter

MM{xy,xq,...} =< max;{z;} ifx; <0 Vi, (4.14)
0 otherwise .

Evolution of Boundary Extrapolated Values. The boundary extrapolated val-
ues are evolved at a time &t by using

1 At LX RX LY RY
5 AL [F(W5Y) = FOWEN)] + 2 Ay GWE) = GWED)] , (4.15)

for | = LX, RX, LY, RY. Here the values of F' and G are obtained from the Euler
equations (4.2)a3.

Wi 1 At

Solution at the Next Time Step. At each intercell position one solves

— — At At
Wij(At) = Wis(0)= 3 | Fivs = Fi+;,j] Ay [Gi,j—k% - Gz’,j-i—%] ,
with
Fi+%,j = 771*—;];%,]- +(1- 77)er+ rE Gi,j+% = nGZ{jJF% +(1- )Gfﬁ ’ (4.16)
where

Fl, = P @) + F-(@55,), GL,\ =G @) +G (o)
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where F'* and G* are given by (4.5).

Similarly to calculate Ff+ i and G we have

e
1 N )
9. =.7+§

W;—%,j = (WJr)fJX + (W_)fﬁ] ) W;,j—l—% = (W+)fjg¥ + (W_)zL]Yﬂ )
using (4.15) W#* can be obtained from (4.6) for Wii1; and by (4.7) for W, ;,1, then
we have

Fe, . =FYW

i+3,]

G =G Wigp).

irya) Giges

In order to get back the fields n, u;, ug, T we use the relations (4.8).

5 Conclusions

In this paper we have derived BGK-type KFVS scheme for the ultra-relativistic Euler equa-
tons. The numerical flux function is constructed with consideration of particle transport
across the cell interface and particle ”collisions” are implemented in the transport process
to reduce the numerical dissipation, especially at the contact discontinuity. The parameter
7, which determines the weights between the free transport and equilibrium fluxes takes
constant values in the current study.

It is well known that, oftenly the requirement for robustness and accuracy in the design of
a numerical scheme are in conflict with each other. If a scheme is robust, it is unnecessarily
diffusive and if a scheme is accurate, it loses robustness. In order to get a correct represen-
tation of flow motion in the discritized space and time, a consistent dissipative mechanism
must be added in the gas evolution stage. An optimum choice in our case is to take a
combination of both free-flights and collisions. In shock region we need more dissipation
for smooth transition of shock while at the contact discontinuity we need more collisions
(equilibrium case) to get a good resolution of the contact discontinuity. In this paper we
have used a convex combination of the collisional and and collisionless fluxes with 7 as an
adaptive parameter. The results from the test cases shows that this procedure worked well.

From the numerical case studies it was found that both KFVS and BGK-type KFVS
schemes for the ultra-relativistic Euler equations give comparable results to the Godunov
and central schemes. Also we found that BGK-type KFVS scheme for gives better resolu-
tion at the contact discontinuity as compared to the KFVS scheme.

Although we have restricted our attension to one- and two-dimensional cases in the current
paper, the extension of the current method to three space dimensions is analogous.
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6 Numerical Test Cases

Here we present some one- and two-dimensional numerical examples. We compare the
results of BGK-type KFVS scheme with exact solution, Godunov scheme, KFVS scheme
and central scheme. The results shows that both BGK-type and KFVS schemes give com-
parable results to the Godunov and central schemes.

Problem 1: In this test problem we consider the time evolution of an initial discontinuous
state of a fluid moving in opposite directions. The intial data are

(mup) = { (1:0:10,3.0) if 2 <05,
PIT(1.0,-0.5,2.0)  ifz > 0.5.

This problem consist of a left shock, a contact and a right shock. The results at £ = 0.5
are shown in Figures 4 and 5 for 400 mesh points.

Problem 2: In this test problem we consider the time evolution of an initial discontinuous
state of a fluid at rest. The intial data are

(mupy—{ (5:0,00,100) if £ < 0.5,
% P)=0(1.0,0.0,0.5) ifz>0.5.

This problem involves the formation of an intermediate state bounded by a shock wave
propagating to the right and a transonic rarefaction wave propagating to the left. The
fluid in the intermediate state moves at a mildly relativistic speed (v = 0.58¢) to the right.
Flow particles accumulate in a dense shell behind the shock wave compressing the fluid
and heating it. The fluid is extremely relativistic from thermodynamic point of view, but
only mildly relativistic dynamically. Figures 6 and 7 shows the results at ¢ = 0.5 for 400
mesh points.

Problem 3: The intial dare are

( ) = (1.0,—0.5, 2.0) if £ <0.5,
"%P)= (1.0,0.5,2.0) if 2> 0.5.

This problem has a solution consisting of two strong rarefactions and a trivial stationary
contact discontinuity. Figures 8 and 9 shows the solution profiles at ¢ = 0.5. We use 400
mesh points in the spatial domain. In the figures we can see a downward peak at the mid-
dle of the contact discontinuity in the Godunov solution. This type of intability usually
happens in the Godunov scheme as discussed in the intrdoduction.
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Problem 4: Perturbed relativistic shock tubbe flow

The initial conditions are specified as (np,ur,pr) = (1.0,0.0,1.0) for 0 < z < 0.5 and
(ng,ur,pr) = (ng,0.0,0.1) for 0.5 < z < 1.0. Here the right state is a purturbed density
field of sinusoidal wave, ng = 0.125 — 0.0875 sin(50(z — 0.5)). We run this test for the 400
mesh points. The computed solutions are plotted at ¢ = 0.5. The results are shown in Fig-
ure 10. Since the continuity equation in the Euler equations decouples from the other two
equations for the pressure and velocity, therefore we do not see the effect of perturbation
in the pressure.

Problem 5: Two Interacting Relativistic Blast Waves

We consider here the interaction of two relativistic blast waves. The intial data are

(1.0, 0.0, 100.0) if0<z<0.1,
(n,u,p) = { (1.0,0.0,0.06) if 0.1 <z < 0.9,
(1.0,0.0,10.0) if0.9 <z < 1.0.

The reflective boundary conditions are applied at both x = 0.0 and z = 1.0. The results

are given in Figure 11 for the particle density n, velocity v = \/117 and pressure p. The

number of mesh points are 700 and the output time is ¢ = 0.75.

Problem 6: Implosion in a box.

In this example we consider a two-dimensional Riemann problem inside a square box of
sides length 2, with reflecting walls. Initially the velocities are zero. The pressure is 10 and
density is 4 inside a small square box of sides length 0.5 in the center of the large box, while
pressure and density are unity elsewhere. The results are shown at ¢ = 3.0 in Figures 12, 13,
while at t = 12.0 in Figures 14 and 15. In all the results we have used 400 x 400 mesh points.

Problem 7: Cylindrical Explosion Problem.

Consider a square domain [0,2] x [0, 2]. The initial data are constant in two regions sep-
arated by a circle of radius 0.4 centered at (1,1). Inside the circle density is 5.0 and the
pressure is 10.0 , while outside the density is 1.0 and pressure is equal to 0.5. The velocities
are zero everywhere. The solution consits of a circular shock wave propagating outwards
from the origin, followed by a circular contact discontinuity propagating in the same di-
rection, and a circular rarefaction wave travelling towards the origin. The results ar shown
in Figure 16 and Figure 17 for 400 x 400 mesh points at ¢ = 0.4.
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Figure 8: Comparison of the first order schemes at ¢ = 0.5.
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Figure 11: Two interacting relativistic blast waves
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Figure 12: First and second order schemes for the implosion in a box at ¢ = 3.0.
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Figure 13: BGK-type KFVS scheme applied to implosion in a box at t = 3.0.

31



particle density pressure

1.3 T T 1.8 T : T
= First Order Central Scheme — First Order Central Scheme
woo First Order KFVS Scheme 1.7¢ « First Order KFVS Scheme H
1.2 = =« First Order BGK-type KFVS Scheme || = =« First Order BGK-type KFVS Scheme
1.6f 1

9 . . .
0 0 0.5 1 1.5 2
position position
particle density pressure
15 T T T T T
= 2nd Order Central Scheme = 2nd Order Central Scheme
1.4f wwo 2nd Order KFVS Scheme f 1.6- «n 2nd Order KFVS Scheme H
= 2nd Order BGK-type KFVS Scheme ==+ 2nd Order BGK-type KFVS Scheme

05 . . . . . .
0 0.5 1 15 2 O'80 0.5 1 15 2

position position

Figure 14: First and second order schemes for the implosion in a box at t = 12.0.
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Figure 16: Comparison of the schemes applied to cylinderical explosion at t = 0.2.
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