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Abstract

The paper is concerned with an n-persons differential game in one space dimen-
sion. We state conditions for which the system of Hamilton-Jacobi equations for the
value functions is strictly hyperbolic. In the positive case, we show that the weak
solution of a corresponding system of conservation laws determines an n-tuple of
feedback strategies. These yield a Nash equilibrium solution to the non-cooperative
differential game.

1 Introduction

This paper is concerned with the global existence of a Nash equilibrium solution for a
non-cooperative n-persons differential game. The evolution of the system is governed
by a differential equation of the form

a(t) =Y filz,u), (1.1)
i=1

say with initial data
z(1)=1y. (1.2)

Here the real valued map ¢ +— wu;(t) is the control implemented by the i-th player.
Together with (1.1) we consider the cost functionals

T
Ji = Jir g, ) = / hi(w(t), ui(t)) dt + g:(w(T)) (1.3)

consisting of a running cost h; and a terminal cost g;. The goal of the i-th player is to
minimize J;. An n-tuple of feedback strategies

UZ*:UZ*(t,.’L') izl,...,n



is called a Nash equilibrium solution if the following holds. For each i, if the i-th player
chooses an alternative strategy U; while every other player sticks to his previous strategy
U;, j # i, then the cost for the i-th player does not decrease:

Ji(r,y, UL U, U, Uy gy, Up) 2 (g, U US U U, U

2 1 n

(1.4)

Assume that a value function V' = (Vi,...,V},) exists, so that V;(¢,z) is the minimum
cost for the i-th player, when everyone plays optimally but no cooperation is allowed.
Under suitable regularity conditions (see [F1], p.292), the function V' provides a solution
to the system of Hamiltonian equations

0
with terminal data
Vi(T, z) = gi(z). (1.6)
The Hamiltonian functions H; are defined as follows. Assume that, for any given gradient
vectors pi,...,Pn, there exist optimal control values u;-(:v,pj), j=1,...,n, such that
ps - fila, uj(@,pj)) + hj(z, w’(z,p;)) = min{p;- fj(z,w) + hj(z,w)} . (1.7)
Then
m
7j=1
= pi- ) fil@ uwj(wpy) + min{p; - fi(z,w) + hi(w,w)} .

JF#i

In the case of a two-persons, zero-sum differential game, the value function is obtained
from the scalar Bellman-Isaacs equation [F1], [I]. The analysis can thus rely on compari-
son principles and on the well developed theory of viscosity solutions for Hamilton-Jacobi
equations, see for example [BC]. On the other hand, in the case of non-cooperative n-
persons games, one has to study a highly nonlinear system of Hamilton-Jacobi equations.
Little is yet known in this direction, except for particular examples as in [CR, O]. In-
stead, local existence results are known within the class of open-loop strategies [F1, VZ].
They apply to the case where the players cannot use any additional information on the
state z(t) of the system, for ¢ > 0.

In the one dimensional case, differentiating (1.5) w.r.t. z one obtains a system of con-
servation laws for the gradient functions p; = V; ;, namely

piy + Hi(z,p)z = 0. (1.9)

In recent years, considerable progress has been achieved in the understanding of weak
solutions to hyperbolic systems of conservation laws in one space dimension. In particu-
lar, entropy admissible solutions with small total variation are known to be unique and



depend continuously on the initial data [B3, BLY]. Moreover, they can be obtained as
the unique limits of vanishing viscosity approximations [BB].

The aim of the present paper is to investigate the relevance of these new results in
the field of conservation laws toward the existence and stability of Nash equilibrium
solutions, in the context of differential games. In particular, our main goals are:

e To identify the situations where the hyperbolic theory is applicable.

e In the favorable case, to derive the existence and properties of a Nash equilibrium
solution.

The hyperbolicity of the system is clearly a crucial assumption, in order that the Cauchy
problem for the value functions be well posed. In Section 3 we show that hyperbolicity
holds provided that the derivatives of the cost functions g; all have the same sign. In
practice, this means that all players wish to steer the system in the same direction.

Granted that the system is strictly hyperbolic, the known results on systems of conser-
vation laws can be applied. The theorem of Glimm [G], or its more general versions
[BB, ILF, L]. provide then the existence of a global solution to the Hamilton-Jacobi
equations, for terminal data g; whose gradients have sufficiently small total variation.

To obtain an existence result for solutions of differential games, one has to show that, for
each single player, the feedback strategy corresponding to the solution of the Hamilton-
Jacobi system is indeed an optimal one. We remark that, if the value functions V; were
smooth, the optimality would be an immediate consequence of the equations. The main
technical difficulty stems from the non-differentiability of these value functions.

In the literature on control theory, sufficient conditions for optimality have been obtained
along two main directions. On one hand, there is the “regular synthesis” approach
developed by Boltianskii [Bo], Brunovskii [Br|, Sussmann and Piccoli [PS]. In this
case, one typically requires that the value function be piecewise C! and satisfy the H-J
equations outside a finite or countable number of smooth manifolds M;. On the other
hand, one can use the Crandall-Lions theory of viscosity solutions, and show that the
value function is the unique solution of the H-J equation in the viscosity sense [BC].

None of these approaches is applicable in the present situation, because of lack of reg-
ularity. Indeed, each player now has to solve an optimal control problem for a system
whose dynamics (determined by the feedbacks used by all other players) is discontinu-
ous. Our proof of optimality will strongly rely on the special structure of BV solutions
of hyperbolic systems of conservation laws. In particular, we show that the solution
has bounded directional variation along a cone I' bounded away from all characteristic
directions. As a consequence, the value functions V; always admit a directional deriva-
tive in the directions of the cone I'. For trajectories whose speed remains inside I', the
optimality can thus be tested directly from the equations. An additional argument, us-
ing Clarke’s generalized gradients [C], will rule out the optimality of trajectories whose



speed falls outside the above cone of directions.

It is interesting to observe that the entropy admissibility conditions play no role in
our analysis. For example, a solution of the system of conservation laws consisting of a
single, non-entropic shock still determines a Nash equilibrium solution, provided that the
amplitude of the shock is small enough. There is, however, a way to distinguish entropy
solutions from all others, also in the context of differential games. Indeed, entropy
solutions are precisely the ones obtained as vanishing viscosity limits [BB]. They can
thus be derived from a stochastic differential game of the form

n
dr = Zfi(a:,ui) dt + edw,
i=1
letting the white noise parameter ¢ — 0. Here dw formally denotes the differential of a
Brownian motion. For a discussion of stochastic differential games we refer to [F2].

In general, a weak solution of the hyperbolic system of conservation laws uniquely deter-
mines a family of discontinuous feedback controls U} = Uj(t, z). Inserting these controls
in (1.1) we obtain the O.D.E.

&= ifi(:c, U (t, 7). (1.10)

In spite of the right hand side being discontinuous, we show that the solution of the
Cauchy problem is unique and depends continuously on the initial data. Indeed, every
trajectory of (1.10) crosses transversally all lines of discontinuity in the functions f;.
Because of the bound on the total variation, the uniqueness result in [B1] can thus be
applied.

Our analysis will be concerned with the spatially homogeneous case, where the functions
fi, h; do not depend on z. In the last section we shall see what results remain valid in
the non-homogeneous case, and discuss other possible extensions.

2 The basic framework

Consider an n-persons differential game on the real line, having the special form
a'c=f0+2ui, z(t) =y. (2.1)
%

Here the controls u; can be any measurable, real valued functions, while fj is a fixed
real number. The cost functionals take the form

T
T = Ji(s st i) :/T hi(ui(t)) dt + gi(@(T)) . (2.2)



To simplify the problem, for the time being we thus assume that the system has the
simple dynamics (2.1) and that the running costs h; do not depend on the space variable
z. In Section 6 we shall discuss how to extend the results to more general situations.

A key assumption, used throughout the paper, is that the cost functions h; are smooth
and strictly convex, with a positive second derivative:

62

at every point w. Each player seeks a feedback strategy u; = U} (¢,z) which minimizes
his own cost. Call V; = Vj(7,y) the value function for i-th player, and consider the
spatial derivative p; = V; ;. The Hamiltonian functions H; are defined as

Hi(p1,...,pn) = i - (fo +Zu}k’(pj)) + hi(u; (pi) , (2.4)
J

where the controls uj = u}(p;) provide the solutions to the following minimization
problems:
pjuj + hj(u;) = ngn{pj cw+hi(w)} = ¢i(p)- (2.5)

At a point of minimum the first derivative vanishes. For every p; we thus have

i+ 9 (p;) = 0. (2.6
J

The Hamiltonian functions in (2.4) can also be written as

Hi(p1,- -+ ,pn) = pi (fo + ZU;"(pj)) + i (pi)- (2.7)
J#i

The corresponding Hamilton-Jacobi equation for V; takes the form
Vie + H(Vig, -+, Vagz) = 0. (2.8)

To determine the value functions V;, the above system has to be solved backward in
time, with data given at the terminal time ¢t =T

Vi(T, z) = gi(x), i=1,---,n. (2.9)

In turn, the gradients p; = V; ; of the value functions satisfy the system of conservation
laws
0

0
api—l—%Hi(pl,"'apn) _O (210)

with the terminal data
pi(T,x) = gé(x) . (2.11)



Computing the Jacobian matrix A(p) of this system, with entries A;; = 0H;/0p;, we
find

Aii = fo+ Y ui(pj) = %, (2.12)
J

Ouj(p;) 3¢,
Aij=pi—1 =p; 4 i # j. 2.13
6P, TP i#J (2.13)

Indeed, by (2.6) the functions ¢; = pjuj(p;) + hj(u}(p;)) defined at (2.5) satisfy

YV _ ¢ A R T i R 2.14
Op; U P Op;  Ouj Opj K (2.14)

It will be convenient to write second derivatives as hj = d%h;/ au?, = %¢;/ Bp%
Differentiating w.r.t. p; the identity (2.6) we find

ou’
4R 25) - G () = 0. (2.15)

Using (2.14) and (2.15) one obtains
ou’
" J
'(p;) = p;) = — . . 2.16

Of course, this relation is well known from the theory of Legendre transforms.

3 Hyperbolicity conditions

In order that the Cauchy problem (2.10)-(2.11) be well posed, the system of conservation
laws should be hyperbolic. It is thus important to determine in which cases the Jacobian
matrix A(p) has n distinct real eigenvalues. According to (2.12)-(2.13), this matrix takes
the form

T pigy pids - pidy
Pl & padh - padp
Ap)= | P3¢t psdy & - padp | (3.1)
pnqslll pn¢l2/ pn¢g U T
We recall that, by (2.16) and (2.3), all second derivatives ¢ are strictly negative. The
next lemma provides sufficient conditions on pq, ..., p, for which the system of conser-

vation laws (2.10) is hyperbolic.

Lemma 1 Assume that all p; have the same sign, i.e. either pj > 0 for all j, or p; <0
for all 7. Moreover, assume that there are no distinct indices i # j # k such that

pidi = Dpid; = PPy (3.2)

6



Then the matriz A(p) in (3.1) is strictly hyperbolic. Namely, it has n real distinct
eigenvalues, all different from .

Proof. To fix the ideas, consider the case where p; > 0 for all ¢ = 1,---,n. The case
where p; < 0 is entirely similar.

Let B = A — zI, where I is the n x n identity matrix, and call A(A) the eigenvalues of

a matrix A. Since
A(B) = AA) — 1. (3.3)

it suffices to show that B has n distinct real eigenvalues, all different from zero.

First we show that B has no zero eigenvalue. This is clear because

0 pdy -+ pigy 01 - 1
p2¢,11 0 - p2¢” n ]_ 0 “ee ]_
det(B) = ) . o= Hpi i )
: : . : i—1 Dol .o
Padl pngy -+ 0 110
n
= ()" =D ]t # 0
=1
As customary, the bars |- | around a matrix are used here to denote its determinant.

The eigenvalues of B are the zeros of the characteristic polynomial det(B — AI). We
observe that

A
— 5o 1 1
— A . 1 n
det(B — \I) = P20 I pidi -
=1
. W
By assumption, the numbers ¢; = —p;¢! are all strictly positive. Up to a permutation

of indices, which does not affect the determinant, we can assume that 0 < ¢; < ¢ <
-++ < ¢p,. The polynomial det(B — AI) has the same zeros as g(A) = det B()), where

% 1 .- 1
A
_ N 1 2 .. 1
By=| . . (3.4)
1 1 2



For some constant M > 0 sufficiently large, we clearly have sign(g(\)) = +1 for A > M
and sign(g(\)) = (—1)" for all A < —M. Moreover, when A = 0 we have sign(g(0)) =

(_1)n71.

Two cases need to be considered, depending on whether all ¢; are distinct, or two of

them coincide.

First case. Assume that alLthe ¢;’s are distinct, say 0 < ¢1 < 2 < -+- < ¢y Let us
compute the determinant of B()) at the point A = ¢;. In this case, the i-th row of B(\)
is identically 1, and we can subtract it from all the other rows, thus obtaining

- R | |
1 ¢ C1 i
1 2 .1 0 g
aV) = 1 1 *-. 1 | ¢:i-throw - 1
1 1 CC—; 0 Cc_;
i N
Since
. {a 1, ifi>j
—=1] = . .
Sen <cj ) { 1, ifi<
we conclude that 4
sign(g(A)) = (-1)"", when X =¢;.
neven
+ - - + — + - +
1 1 1 1 1 1 1 )
0 ¢y ) €3 ¢y a1 Cn
n odd
- + + - + - - + +
1 1 1 1 1 1 1 i
0 1 © €3 C4 ‘a1 Cn

0
0

Figure 1: The sign of det(B)(\) at various points. This shows the location of the real

eigenvalues.



As shown in Figure 1, the function A — ¢(\) thus changes sign inside each one of the
intervals

]—O0,0[, ]61,62[, ,]Cz'—l,ci[, y ]Cn—lacn[-
By continuity, there exist n distinct real zeroes, with
M<O0<ap <A< < <G <A<g< <A<y

Notice that we must have [A;| = 3%, |\;| because the trace of B is zero.

Second case. Assume that two (but not three consecutive ones) of the numbers ¢;
coincide, say ¢; = ¢;41. We claim that the polynomial g(X) still has n distinct zeros, and
the (i + 1)-th zero is A\jy1 = ¢; = ¢iy1.

When A\ = ¢; = ¢;11, the matrix E(A) has both the i-th and the (i+1)-th row identically
equal to 1. Hence the determinant is zero. This shows that A\;11 = ¢; = ¢;41 is a zero of

q(A).

To prove that it is a single root, we need to check that the derivative ¢'()\) does not
vanish at A = ¢;. A direct computation yields

1 A

o 1 o ? o 1 0
S0 = 0o 2 .- . 1 Lo o 12 0

S B B

0 1 - 2 10 - 2 11 - L

= det B1()\) + det Bo(A\) + -+ + det B, ().

When A = ¢; = ¢;11 we have det Bj(A) = 0 for all j # i,4 + 1, because the i-th and
(¢+1)-th rows of the matrix B; are identical (all entries are 1 except the j-th entry which
is 0). Moreover, det B;(\) = det B;1()\) because B;(A) can be obtained from B;;1(\) by
first exchanging i- and (¢ + 1)-th rows and then exchanging i-th and (i 4+ 1)-th columns.
Now we compute det B;(\). The entries of the (i + 1)-th row are all 1 except the i-th
entry which is zero. We subtract this row from all the other rows and obtain

& ... 001 - 1
1 .
. _ < :i-th row
det Bi(A) = 0 1 .-+ 1 | «:(i+1)-throw
1 0 1 .



. Clz +:i-th row
N 1 e 001 .- 1 <: (i + 1)-th row
0 .- 0 0 .- f_,i_

1 .
- = ] (ﬁ — 1) £0
“ jii-1 \%

Observing that ¢'(¢;) = 2 - det B;(c;) # 0, we conclude that A = ¢; is a single root.

It now remains to prove that we still have n distinct real zeros, i.e., the coincidence
of the two numbers ¢; and ¢; 1 does not destroy any of the other sign changes in the
polynomial g(A). In particular, there is still a zero inside each interval ]c;_1,¢;[ and
|¢i+1,¢it2[. From the previous computation we have that

sign(q'(ci)) = (—1)"_%_1 ;
sign(q(ci—1)) = (—1)nﬂ.+1 ;
sign(g(ciye)) = (-1)"7"7°.

Therefore, ¢'(c;) and ¢q(c;—1) have the same sign, while ¢'(¢;) and ¢(c;12) have opposite
signs. Looking at Figure 2 it is clear that there is one root within the interval |¢;—1, ¢,
another inside the interval |cj;1,cit2[, while A = ¢; = ¢;41 is still another root.

d@)
A).

! T I »
Ci1 NS \%+2 *

B).

| | |
1 1 )
Ci/ = cy

Figure 2: Checking that A = ¢; = ¢;41 is a single root.

In the special case i =1 (or i = n — 1), it can be checked in the same way that ¢; = ¢y
(or cp—1 = ¢p) is a single root, while another root lies in the interval ]cg, c3[, (or in the
interval Jc,_2, cp—1] respectively).

At last, we need to consider the case where more than one couple of numbers ¢;, ¢ 11
coincide. We claim that, in all cases, the polynomial g(A) still has n distinct roots.

10



Indeed, in the case where the two coinciding pairs ¢; = ¢; 11, ¢; = ¢;j41 are not adjacent
(i.e., j # i+2), the previous analysis applies. On the other hand, in the case where, say,
Ci—2 = ¢i—1 < ¢ = ¢i11, the analysis of the signs of ¢'(c;—1), ¢'(¢;), q(cive) and ¢(c;—3)
(see Figure 3) yields the desired results.

d@v)
A).

B).

I ! I 1
. 2
ci74/ ittt G0 Cip

Figure 3: Two coinciding pairs next to each other.

The proof of Lemma 1 is now completed.

Remark 1. If three or more of the numbers c; coincide, say ¢;—1 = ¢; = ¢;41, then ¢;
becomes a multiple zero of det(B — AI). In this case, the system of conservation laws
will still be hyperbolic, but no longer strictly hyperbolic.

Remark 2. In the case of 2 x 2 systems, the condition pyps > 0 is necessary for the
hyperbolicity of the system. However, when n > 3 the system (2.10) can be strictly
hyperbolic also at points where p; < 0 < p2 < p3. For example: let n =3, ¢ = —1 for
all i, p1 = —1, p2 = 5, p3 = 20. Then the characteristic polynomial q()\) = det B(}) is

g(\) = X* — 75X + 200.
One can easily check that
q(—10) = =50, ¢(0) =200, ¢(5)=—50, ¢(10) = 450.
Therefore, there are three distinct real eigenvalues

A €]-10,0[, X €]0,5[, As€]5,10[.

4 Review of hyperbolic systems and discontinuous O.D.E.

In this section we collect some results on hyperbolic conservation laws and discontinuous
0O.D.E’s, which will be used in the sequel. Consider the Cauchy problem for a system
of conservation laws

v+ F(v); =0, v(0,z) = v(x). (4.1)

11



In the case where the system is strictly hyperbolic, the global existence of weak solutions
with small BV initial data is well known.

Proposition 1 Assume that the flux function F : IR™ — IR™ is smooth and that, at
some point v*, the Jacobian matriz A(v*) = DF(v*) has n real distinct eigenvalues.
Then there exists § > 0 for which the following holds. If

15(-) = v*||ge < 9, Tot. Var {5} < 8, (4.2)

then the Cauchy problem (4.1) admits a unique entropy weak solution v = v(t,z) defined
for allt > 0, obtained as limit of vanishing viscosity approximations.

In the case where each characteristic field is either linearly degenerate or genuinely
nonlinear, the existence of a global weak solution was proved by Glimm [G]. The more
general case was later covered in [L], [ILF] using the Glimm scheme and in [AM] using
wave-front tracking. The convergence of vanishing viscosity approximations was recently
proved in [BB], together with the uniqueness and Lipschitz continuous dependence of
solutions on the initial data, in the L! distance. We remark that, for each time ¢, the
function v(t,-) has small total variation. Its pointwise values can be uniquely assigned
by the convention

v(t,z) = yl_igh_v(t,y) . (4.3)
For applications to game theory, we shall need some additional properties of these weak
solutions. By assumption, the matrix A(v*) has distinct eigenvalues A} < A5 < - -+ < A¥.
By continuity, there exists € > 0 such that, for all v in the e-neighborhood

O ={v; [v-v'|<e},
the characteristic speeds range inside disjoint intervals
Aj(v) € [AS, )\;'] (4.4)

Moreover, if v=,v" € QF are two states connected by a j-shock, the speed Aj(v~,v™) of
the shock remains inside the interval [A;, /\;']

Now consider an open cone of the form
I'={(t,z); t>0, a<z/t<b}. (4.5)

Following [B1] we define the directional variation of the function (¢,z) — v(t,z) along
the cone I' as

N
sup {Z lvu(ti, z;) — v(ti—1, xi_1)|} , (4.6)
i=1

where the supremum is taken over all finite sequences (tg,z¢), (t1,%1),- .., (tn,ZN) such
that
(ti —ti—1, i —xi—1) €T for every 1 =1,...,N. (4.7)

12
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b ,,,,,,,,,,,, / //,f’//(t-’xi)

Figure 4: Directional variation along the cone T'.

(See Fig. 4). We now show that the weak solution v = v(¢,x) has bounded directional
variation along a suitable cone T'.

Lemma 2 Let v = v(t,xz) be an entropy weak solution of (4.1) taking values inside
the domain Q. Assume that )\;_1 <a<b< A, for some k. Then v has bounded
directional variation along the cone T in (4.5).

Proof. Fix any finite sequence of points (¢;,z;), ¢ = 0,..., N, satisfying (4.7). It is
not restrictive to assume that to = 0. Call T = ty and define y : [0,7] — IR the
polygonal line with nodes at the points (¢;, z;)(Fig. 4). Clearly y is a.e. differentiable,
with y(¢f) € ]a,b[. From the theory of conservation laws, it is well known that the
entropy weak solution v can be obtained as the limit of a sequence of front tracking
approximate solutions v,. For each v > 1, one can derive a uniform bound on the
total variation of the map t — v, (¢, y(¢)). Indeed, call V¥(t) the total strength of all
wave-fronts in v, (t,-) approaching y(t) at time ¢, i.e.,

V) = Y oal - (4.8)

a€A(y)

Here o, denotes the strength of the wave-front in v, (¢, -) located at z,. Observing that
)\;C" <y < A4, the above summation will include the following fronts:

e The fronts of a family k, < k located at a point z, > ¥,

e The fronts of a family k, > k located at a point z, < y.

We now call

Q)= Y loallos| (4.9)

a,feA
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the interaction potential of v, (t,-), i.e. the sum of products of all couples of approaching
waves in v,(t,-). Assuming that the total variation of the solution remains small, for
some constant Cj the positive functional

T(t) =VY(t) + CoQ(t)

is non-increasing in time. Moreover, at each time 7 where a wave front of strength o,

crosses y(-), we have
T(r+) = T(7—) = —|oal.
Therefore, the total strength of all wave-fronts in v, which cross the polygonal line y(-)

is bounded by
V¥(0) + CoQ(0) = O(1) - Tot.Var.{v}.

This proves that the total variation of the maps ¢ — wv,(¢,y(¢)) is uniformly bounded
for all v > 1. To get the desired estimate for the solution v, we now let v — oco. If
we have the pointwise convergence v, (t;,2;) — v(t;, z;) for every i = 0,..., N, we can
immediately conclude

N
> lo(ti, i) — v(tio1, 2i1)| < limsup|o, (ti, 2:) — v, (ti1,2i-1)| = O(1) - Tot. Var.{o}
i—1 v—00

proving our claim. However, if v is discontinuous at some point (¢;,z;), the pointwise
convergence may not hold. To achieve the result also in the general case we observe
that, for each time 7, we have the convergence v,(7,x) — v(7,x) for a.e. z € IR. Using
the right continuity of the functions v(¢;,-), we can find points z} sufficiently close to z;
such that

|’U(ti,.’E,Ii) — ’U(ti,iL‘i)‘ < l/N, (ti —ti—1, iL‘; - xé,l) el,

and such that v, (t;, z}) — v(t;, x;) for every . This yields the estimate

N N
S lvti, @) — vtz )| <Y {|oltsof) —vlti1, @i )| + |v(t, o) — v(ti 1, 24
=1 =1

+[v(ti, z51) —v(ti1,2i1)| }
N
2 +limsup Y _ |, (£, %) — vy (tio1, Tio1))]

V—00 .
=1

= 24+ 0(1) - Tot.Var.{v},

VAN

proving the lemma.
Together with I' we now consider a strictly smaller cone, say
I'={(t,z); t>0, o <z/t <V} (4.10)

with a < a’ < b < b. A standard theorem in real analysis states that a BV function of
one real variable admits left and right limits at every point. We now prove an analogous
result for functions with bounded directional variation.

14



Lemma 3 Let v = v(t,z) be a function with bounded directional variation along the
cone T in (4.5), and consider the smaller cone T' C T in (4.10), with a < a’ < b < b.
Then, at every point P = (t,z) there exist the directional limits

VP = lim 0(Q), V(P = lim 0(Q) (4.11)

Proof. If the first limit does not exists, we can find two sequences Q!, — P, Q! — P
with Q), — P €I, Q" — P € T for every v > 1, along which the function v converges to
distinct limits:

v(Q,) =, v(Qy) = v,
with v’ # v”. Since I" is strictly smaller than I', by induction we can select two subse-
quences

Quty: Quys--- Quty» Quys--
such that
Q) — Q) €T, Qo) — Quii+n €T

for every j. In this case

lin 2\ Q) —v(@Qiy)| = oo,

N—oo

in contrast with the assumption of bounded directional variation. This proves the exis-
tence of the first limit in (4.11). The second one is entirely similar.

Next, we recall some results on differential equations with discontinuous right hand
sides. Let f = f(t,z) be a bounded function. By a Caratheodory solution of the O.D.E.

@(t) = f(t,2(t)) (4.12)

we mean an absolutely continuous function ¢ — z(t) which satisfies the equation (4.12)
at a.e. time 7.

In the case where f is discontinuous, it is well known that the Cauchy problem may
have no Caratheodory solutions. One can then relax the concept of solution, introducing
multivalued regularizations of f. For example, consider the multifunction

F(t,o) = (@ {f(s,9); ls—t|<e, |y—a|<e} (4.13)
e>0

where €o denotes the convex closure of a set. Following [H], by a Krasouvskii solution of
(4.12) we mean an absolutely continuous function ¢ — z(¢) which satisfies the differential
inclusion

z(t) € F(t,z(t)) (4.14)
at a.e. time ¢t. Another concept of solution, proposed by Filippov, relates to the multi-
function

Fta)= () (] ©{f(s9); ls—t|<e, ly—2z|<e, (s,9) ¢ N}, (4.15)

e>0meas (N)=0
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obtained as in (4.13), neglecting the behavior of f of sets of measure zero. An absolutely
continuous function ¢ — z(t) which satisfies a.e. the differential inclusion

#(t) € F*(t,z(t)) (4.16)

is called a Filippov solution of (4.12). Notice that F* C F. Moreover, the multifunction
F*(t,z) is not affected if the function f is modified on sets of measure zero.

Under the only assumption that f is bounded, it is well known that the multifunctions
F, F* are both upper semicontinuous, with compact convex values [AC]. Hence the
Cauchy problem

&(t) = f(t,z()), z(s) =y (4.17)

admits at least one solution, according to the definitions of Filippov and of Krasovskii.
In the case where the function f has directionally bounded variation, a much stronger
result can be proved.

Lemma 4 Assume that the function f has bounded directional variation along the cone
T in (4.5). Moreover, assume that

a<ad < f(t,z)<b <b

for all t,z. Then the Cauchy problem (4.17) has a unique Caratheodory solution, de-
pending Lipschitz continuously on the initial data (s,y). Such a solution is also the
unique Krasovskii and Filippov solution of the Cauchy problem.

Proof. The existence, uniqueness and continuous dependence of the Caratheodory
solution was proved in [B1]. For directionally continuous vector fields, the equivalence
between Caratheodory, Filippov and Krasovskii solutions was shown in [B2], p.26.

We conclude this section by proving a simple result from non-smooth analysis.

Lemma 5 Consider a Lipschitz continuous function V. = V(t,z) and call (¢,9) =
(Vi, Vi) its partial derivatives, defined at a.e. point (t,z). Let T be the cone at (4.5).
Assume that, at a given point (t,T) there exists the directional limit

G 9= Jim (6(tm), (b)) (4.18)
(t—%, z—z)el

Moreover, consider a continuous function t — x(t) which is differentiable at t =t and
assume

.’E(i):.i', .T(?E)E]a,b[
Then the composite function admits the one-sided derivative

i VE+h a(t+h) - V(52
h—0+ h

=¢+v-2(f). (4.19)
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Proof. From the theory of generalized gradients [C] it follows that, for A > 0 small,

V({E+h, z(t+h)-V(i,z) € h-co{¢(t,z); t<t<t+h, (t—1t,v—z)el}
+h-co{yp(t,z); t<t<t+h, (t—t,z—z)el}-[z(t)—17].

Letting h — 0+ and using (4.18) one obtains (4.19).

5 Optimal feedback strategies

The analysis in Section 3 has identified conditions which ensure that the system of con-
servation laws (2.10) is strictly hyperbolic in a neighborhood of a point p = (p1,p2, .- ., Pn)-
In this case, assuming that the terminal condition (2.11) has small total variation, one
can apply Glimm’s theorem and obtain the global existence of a weak solution. We shall
now prove that the components of this solution determine a family of feedback strate-
gies u; = U;(t,z), which provide a Nash equilibrium solution to the non-cooperative
differential game.

Theorem 1 Consider the differential game (2.1)-(2.2), where the cost functions h; are
smooth and satisfy the convezity assumption (2.3). In connection with the functions ¢;
at (2.5), let p* = (p7,...p}) be a point where the assumptions of Lemma 1 are satisfied.
Then there exists § > 0 such that the following holds. If

lgi — p|lpee <95 Tot. Var. {gi(-)} < (5.1)

then for any T > 0 the terminal value problem (2.10)-(2.11) has a weak solution p :
[0,T] x R~ IR". The (possibly discontinuous) feedback controls U} (t,z) = uj (p(t,z))
defined at (2.5) provide a Nash equilibrium solution to the differential game The trajec-
tories t — x(t) are Lipschitz continuous functions of the initial data (7,y).

Proof. The proof will be given in several steps.

Step 1. By the assumptions, the system of conservation laws

0 0

E’Ui — %Hi(vl, ceevn) =0 (5.2)

is strictly hyperbolic in a neighborhood of the point p*. Given the initial data v;(0,z) =
g:(z) with sufficiently small total variation, by Proposition 1 the Cauchy problem admits
a weak solution v = v(¢, x), defined for all £ > 0. Reversing time, we thus obtain a weak
solution p(t,z) = v(T —t, z) of the terminal value problem (2.10)-(2.11). For each time
t, the map = — p(t,z) has small total variation. Its pointwise values can be uniquely
assigned by the convention

p(t,z) = lim p(t,y). (5.3)
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Step 2. By strict hyperbolicity and continuity, there exists € > 0 such that, for all p in
the e-neighborhood

G ={p; Ip-p|<e}CR" (5.4)
the following holds. The characteristic speeds for (2.10) range inside disjoint intervals
Xi(p) € AT, AT (5.5)

Moreover, the speed & at (2.1) remains bounded away from all characteristic speeds.
Namely, there exists an index k € {1,...,n— 1} and numbers ¢ > 0 and a < b such that

M <a—e<b+e<Ay, (5.6)

and
fo -I-Zu;f(pj) Ela+e b—e€ (5.7
J

whenever p € Q7 .
Together with the cone I' at (4.5) we now define

't ={(tz); t>0, a—e< z/t <b+e},
Iy ={t=z); t>0, a+e< z/t <b—¢}.

Clearly, I C ' C I'l. By Lemma 2, each p; = p;(t,z) has bounded variation in the
direction of the cone I'. By the assumptions, the maps p; — u(p;) in (2.5) are locally
Lipschitz continuous. Hence, for i = 1,...,n, all the composed maps (¢, z) — u; (p;(t, x))
also have bounded directional variation along the cone I'. By (5.7) we can thus apply
Lemma 4, showing that the Cauchy problem for the O.D.E.

#(t) = fo+ Zu;f (pj (¢, z)) (5.8)
J

has a unique Caratheodory (equivalently: Filippov or Krasovskii) solution, depending
Lipschitz continuously on initial data (7,y) in (1.2).

Step 3. We now construct the value functions V;, corresponding to the feedback strate-
gies U7 (t,z) = uj(p;(t,z)). For j =1,...,n, define the cost functions

hi(t, ) = hj(u;(p;(t, z))) -

Given a point (7,&), let t — z(t;7,£) be the trajectory of (5.8) passing through (7,£).
For each 1 = 1,...,n we define

T
Vi) = [ hift altin, ) dt + gi(a(T5m,8)) (5.9)

By the same arguments as in [B1] one can show that the functions V; = Vj(¢,z) are
Lipschitz continuous, hence a.e. differentiable. At every point where the differential
exists, by construction one has

o, . oV
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To derive further properties of the gradient of V;, fix a time 7 and any two points &' < £".

We claim that e
Vilr€") = Vi(r,€) = [ pilr.o) do. (511)

fl

Indeed, let z'(-) and z”(-) be the two trajectories of (5.8) which start from the initial
points z'(7) = ¢’ and 2" (1) = &" respectively. Consider the region A C IR? defined as

A={(t,z); T<t<T, 2'(t) <z <2"(t)}.

Applying the divergence theorem to the vector field v = (p;, H;) on the domain A and
using the conservation equation (2.10), we obtain

.’,C”(T) é-ll T y , y
Loy #iT0d = [T piraydet [ {ed 42 0)] - pi-d') di

B /TT{[pi " (e ()]~ pi i) dt

Observing that p;(T, z) = g; z(z) = Vi 4(T, ), we conclude

s () ~ () = [

é‘l

T
pilroo)do+ [ [bi(ta'(0) - b 20" ()] dt
The two above equalities yield (5.11). Since &', &" are arbitrary, this in turn implies
Vig =pi (5.12)

at a.e. point (¢,z). Together with (5.10), this yields

Vit = —pi- (fo + Z@(w)) — hi . (5.13)
J
Therefore, the value functions (Vi,...,V,,) satisfy a.e. the system of Hamilton-Jacobi
equations
Vit + Vi (fo+zu ) hi(ui (Vig)) = 0. (5.14)

We recall that uj = uj(p;) are the optimal control values defined at (2.5).

Step 4. We now conclude the proof, showing that the feedback strategies U;(t,x) =
uj(pj(t,z)) represent a Nash equilibrium solution. Fix an index i € {1,...,n} and
consider the optimal control problem for the i-th player:

mln{/ hi(z(t)) dt + ¢:(T, x(T))} , (5.15)
i(t) = fo+ > _Us(t,z) + 2(t) (1) =y. (5.16)
J#t
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We claim that the minimum cost is precisely V;(7,y). Consider any absolutely continuous
trajectory z : [1,T] — IR with z(7) = y. It suffices to show that, for a.e. t € [1,T],

Vit (1) > ~ha(a (1), (517)

where the control function z(-) implemented by the i-th player is
2(t) = &(t) — fo— D Uj(t,2).
J#
Indeed, if (5.17) holds then

=S s ) i+ (1) = Vi),

[ mtetai+ giramy 2 [ {4

T

as claimed.

We now give a proof of (5.17), assuming that the total variation of the functions g;(-)
is sufficiently small. In connection with the vector p* = (p},...,p}) considered in (5.1),
define the constant controls

o = ))
Moreover, recalling (5.13), set

=—p; - (fo-l-zw)— i(w

Choose €1 > 0 small enough so that, if [u; — w}| < e; for all j, then

a:—fo+2u] [a+e€ b—¢. (5.18)

Observe that our definitions imply
g +pj - (fo +Zw}) +min {p; w + hi(w)} = 0.
J#i
By the strict convexity of the cost function h; at (2.5), there exists §' > 0 such that
4 +pi (fo +Zw;) +pfw+ hi(w) > ¢
J#i
whenever |w — w]| > €1. By continuity, there exists e2 > 0 such that, if
|Qj_Q;|S527 |pj—p;|§62 j=L1...,n, (519)

lw—wi| > e, luj — ;|§€2 J#1, (5.20)
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then

g+ pi (fO‘l‘Zuj) +piw + hi(w) > 0. (5.21)
J#i

Choosing § > 0 in (5.1) sufficiently small, we can assume that the partial derivatives

pj = Vju, g5 = Vj satisfy a.e. all the bounds in (5.19). Moreover, for j # 4, the

functions u; = u}(p;) satisfy the bounds in (5.20). Observe that a.e. time # € [0, 7] is

in the Lebesgue set of all three measurable functions

d d
—x(t —Vi(t, z(t)) .

2o, 4v,t, 2(t)
(see [Fo], p.92). Choose any such Lebesgue point ¢ and call z = z(¢). To prove (5.17)
we consider two alternatives.

Z(t) 7

Case 1: |2(t) — w}| < €.
In this case (5.18) holds. Define the “one-sided” partial derivatives of V; at (¢, Z)

(¢, i) =, lim = (Vig(t, 2), Vig(t 7)) - (5.22)
(t—%t, z—2z)eTl

Notice that these directional limits exist, because of (5.12)-(5.13) and the directional
continuity of all functions p;. Since (5.14) holds almost everywhere, we have

bi + P (f0+zu§(1/_)j)) + min {iw + hi(w)} = 0. (5.23)
J#i
By the assumptions, the function ¢ — V;(t,z(t)) is differentiable at ¢ = ¢. Its derivative

can be computed by taking the one-sided limit in (4.19). Using Lemma 5 together with
(5.23) we obtain

SV = it dis)
t=t
= —hi (2(t) + {9 2(t) + hi(2(1)) } — min {9 w + hi(w)}
> —hi(2(t)) .

Hence (5.17) holds.

Case 2: |z(f) — w]| > e1. In this case, by a non-smooth version of the chain rule [C],
there exist numbers

i €co{Viy(t,z); te[0,T], z€ R},
Py €co{Vig(t,z); te€0,T], z€ R},
such that, at t = ¢,

GHta®)| = pi+ i@, (5:24)
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The previous assumptions now imply

i — q;| < €2, i —pi| < e2.
Hence, by (5.21),
d
EVi(t’x(t))‘t - bi + i (fo + Zu;(pj)) + i 2(t) > —hi (2(2)) , (5.25)
= J#

showing that (5.17) holds also in this case. This completes the proof of Theorem 1. We
remark that, if the other players adopt the feedback strategies u; = U (¢, ), the choice
u; = U} (t, ) is the unique optimal strategy for the i-th player.

6 Concluding Remarks

In this final section we point out some possible extensions of our previous results. Con-
sider a differential game with the more general form

&= fo+ Y filt) (6.1)
i=1
and cost functionals .
T = / i (i(t)) dt + g;(2(T)) . (6.2)

Assume that each f; is a homeomorphism from a (possibly unbounded) open interval
Jai, b;[ into IR, with a smooth inverse f;* : IR ~ ]a;,b;[. Then the reparametrization
of the control functions u; = f;(@;) puts the system (6.1)-(6.2) in the standard form
(2.1)-(2.2), with h;(w) = hi(f; ' (w)). Of course, the key assumption (2.3) must now be
carefully checked.

If the functions f; in (6.1) and the running costs h; in (6.2) also depend on z, then the
corresponding system of conservation laws (1.9) will also depend on the space variable
z. Assuming that the system is strictly hyperbolic, one can then use the results in [DH],
and obtain the local existence of weak solutions, on a time interval [0, 7] suitably small.
A similar analysis as in the previous sections would now provide the existence of a Nash
equilibrium solution in feedback form, but only locally in time.

Another possible extension of our results is to the case where the data g.(-) have large
total variation. Using the local existence theorem of Schochet [Sc], one can still construct
a weak solution to the system of conservation laws (2.10), at least on a short time
interval [0,T]. For large BV solutions, however, checking that the feedbacks U} (t,z) =
u*(pi(t,z)) at (2.5) yield a Nash equilibrium solution to the differential game will require
a more accurate analysis. Furthermore, it is not clear whether, for large BV initial data,
the solution to the system of conservation laws (5.2) can blow up in finite time. For
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general hyperbolic systems this can indeed happen [J]. The particular form of the flux
functions H;, however, may prevent such blow up. To understand the matter, a more
detailed analysis is again required.

The basic assumption in Theorem 1 was the hyperbolicity of the Hamiltonian system, in
a neighborhood of the reference point p*. When this condition is violated, searching for a
Nash equilibrium in feedback form leads to an elliptic Cauchy problem. It is well known
that this is ill posed [Lx]. Indeed, by elementary Fourier analysis one checks that even
the constant solutions are linearly unstable. It thus appears that, in the elliptic regime,
the model provided by non-cooperative games must be revised. A concept of “partially
cooperative” solution should be considered, in order to recover the well posedness of the
problem. This will be the content of a forthcoming paper [BS].
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