
EXISTENCE OF DAFERMOS PROFILES FOR SINGULAR SHOCKS

STEPHEN SCHECTER

Abstract. For a model system of two conservation laws, we show that singular shocks
have Dafermos profiles.

1. Introduction

Keyfitz and Kranzer [10, 13] showed that the Riemann problem for the strictly hyperbolic,
genuinely nonlinear system of conservation laws

u1t + (u2
1 − u2)x = 0, (1.1)

u2t + (
1

3
u3

1 − u1)x = 0 (1.2)

does not always have a solution consisting of combinations of rarefactions and shock waves.
They could, however, always produce a unique solution to the Riemann problem for (1.1)–
(1.2) if they allowed singular shocks. Singular shocks satisfy only a modified form of the
Rankine-Hugoniot condition; thus they do not have viscous profiles. Roughly speaking, a
shock wave is a Heaviside function, whereas a singular shock is a Heaviside function plus a
δ-function concentrated at the discontinuity [11, 22].

Keyfitz and Kranzer proposed an approach to singular shocks via the Dafermos regular-
ization of (1.1)–(1.2), which is the artificial system

u1t + (u2
1 − u2)x = εtu1xx, (1.3)

u2t + (
1

3
u3

1 − u1)x = εtu2xx. (1.4)

They conjectured that the singular shocks they wanted to use could be approximated, for
small ε > 0, by self-similar solutions (uε, vε)(x

t
) of (1.3)–(1.4) that grow arbitrarily large near

the discontinuity as ε → 0. On the assumption that such Dafermos profiles exist, Keyfitz
and Kranzer constructed their asymptotic approximations to lowest order in ε.

The result of this paper is that the conjectured self-similar solutions of (1.3)–(1.4) exist.
The proof avoids the problem of matching difficult asymptotic expansions by using geometric
singular perturbation theory [6, 7]. More precisely, we use the blowing-up approach to
geometric singular perburbation problems that lack normal hyperbolicity [4, 5, 15]. The
idea of using this method to study self-similar solutions of the Dafermos regularization is
due to Szmolyan [25]; see also [19, 20, 21, 16].

A generalization of the Keyfitz-Kranzer system ( 1
3

replace by γ

3
with 0 < γ ≤ 1) is discussed

in [17]. The results of the present paper hold for this generalization. Sever [22] identifies a
class of problems for which the lowest-order asymptotic approximations to Dafermos profiles
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can be constructed. Another example of a system that admits singular shocks is treated in
[12]. We have not checked that our result holds for these problems.

In order to provide a context for the idea of Keyfitz and Kranzer, let us review some
background about systems of conservation laws.

A system of conservation laws in one space dimension is a partial differential equation of
the form

ut + f(u)x = 0, (1.5)

with t ≥ 0, x ∈ R, u(x, t) ∈ R
n, and f : R

n → R
n a smooth map. A shock wave for (1.5) is

given by

u(x, t) =

{

u− for x < st,

u+ for x > st.
(1.6)

The triple (u−, s, u+) is required to satisfy the Rankine-Hugoniot condition

f(u+)− f(u−)− s(u+ − u−) = 0. (1.7)

This condition follows from the requirement that (1.6) be a weak solution of (1.5) [23].
Too many shock waves satisfy the Rankine-Hugoniot condition; an additional criterion is

needed to select the physically realistic ones. A viscous regularization of (1.5) is a partial
differential equation of the form

ut + f(u)x = (B(u)ux)x, (1.8)

where B(u) is an n×n matrix whose eigenvalues all have positive real part. The shock wave
(1.6) satisfies the viscous profile criterion for B(u) if (1.8) has a traveling wave solution
u(x− st) that satisfies the boundary conditions

u(−∞) = u−, u(+∞) = u+. (1.9)

A traveling wave solution of (1.8) satisfying the boundary conditions (1.9) exists if and only
if the traveling wave ODE

u̇ = B(u)−1 (f(u)− f(u−)− s(u− u−)) (1.10)

has an equilibrium at u+ (it automatically has one at u−) and a connecting orbit from u−
to u+. The condition that (1.10) have an equilibrium at u+ is just the Rankine-Hugoniot
condition (1.7).

A Riemann problem for (1.5) is (1.5) together with the initial condition

u(x, 0) =

{

uL for x < 0,

uR for x > 0.
(1.11)

One seeks piecewise continuous weak solutions of Riemann problems in the scale-invariant
form u(x, t) = û(ξ), ξ = x

t
. Usually one requires that the solution consist of a finite number

of constant parts, continuously changing parts (rarefaction waves), and jump discontinuities
(shock waves). Shock waves occur when

lim
ξ→s−

û(ξ) = u− 6= u+ = lim
ξ→s+

û(ξ).

One way to decide which shock waves to allow is to have in mind a fixed regularization (1.8).
For a Riemann solution associated with the viscosity B(u), the triple (u−, s, u+) is required
to satisfy the viscous profile criterion for B(u).
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An alternative approach to Riemann problems uses the Dafermos regularization of a sys-
tem of conservation laws [2]. The Dafermos regularization of (1.5) associated with the
viscosity matrix B(u) is

ut + f(u)x = εt(B(u)ux)x. (1.12)

Like the Riemann problem, but unlike (1.8), (1.12) has many scale-invariant solutions
u(x, t) = û(ξ), ξ = x

t
. They satisfy the nonautonomous second-order ODE

(Df(u)− ξI)
du

dξ
= ε

d

dξ

(

B(u)
du

dξ

)

, (1.13)

where we have written u instead of û. Corresponding to the initial condition (1.11), we use
the boundary conditions

u(−∞) = uL, u(+∞) = uR. (1.14)

For uR close to uL, Tzavaras [24] has shown that Riemann solutions associated with B(u) ≡ I

can be approximated by solutions of the boundary-value problem (1.13)–(1.14) with B(u) ≡ I

and ε > 0 small.
A structurally stable Riemann solution is one that is stable to perturbation of uL, uR and f ,

in the sense that nearby Riemann problems have solutions with the same number of waves, of
the same types [18]. It appears to be the case that the structurally stable Riemann solutions
associated with a given B(u) have, for small ε > 0, solutions of (1.13)–(1.14) nearby. For
results in this direction, see [25, 19, 21]; for some non-structurally stable Riemann solutions,
see [16]. In these papers, a Riemann solution û(x

t
) of (1.5), (1.11) that is associated with

a given B(u) is viewed as a singular solution of (1.13)–(1.14) with ε = 0. This singular
solution includes lines of normally hyberbolic equilibria (corresponding to constant states in
the Riemann solution), curves of equilibria that are not normally hyperbolic (corresponding
to rarefactions), and orbits connecting equilibria (shock waves; the orbits correspond to the
solutions of (1.10) associated with the shock waves). The proofs that for small ε > 0 there
are nearby solutions of the boundary-value problem (1.13)–(1.14) use geometric singular
perturbation theory.

These results suggest that in looking for solutions of the Riemann problem (1.5), (1.11)
that are associated with the viscosity B(u), one should accept any function û(ξ) that arises as
the limit as ε → 0 of solutions of the Dafermos boundary value problem (1.13)–(1.14). This
is essentially the idea of Keyfitz and Kranzer, with B(u) ≡ I, that leads to singular shocks.
The solutions of (1.13)–(1.14) that they use become unbounded as ε → 0. Nevertheless, they
converge pointwise to a Heaviside function away from its discontinuity, and in measure to a
Heaviside function plus a δ-function.

The rest of the paper is organized as follows. The geometry of the Dafermos regularization
is reviewed in Section 2. In Section 3 we specialize to the Keyfitz-Kranzer system. Blow-up
is performed in Section 4. A useful lemma on flow past a “corner equilibrium” is proved in
Section 5. Manifolds of corner equilibria arise in blown-up geometric singular perturbation
problems precisely where inner and outer solutions must be matched. When such equilibria
are normally hyperbolic, this lemma plays the same role in tracking the flow past them that
the Exchange Lemma [9, 8] plays at certain other manifolds of equilibria. Finally, the result
on existence of Dafermos profiles for singular shocks is stated precisely and proved in Section
6.
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2. Dafermos Regularization

We consider the nonautonomous second-order ODE (1.13) with B(u) ≡ I. Following [25],
we convert it into an autonomous first-order ODE by letting v = ε du

dξ
and treating ξ as a

state variable:

εu′ = v, (2.1)

εv′ = (Df(u)− ξI)v, (2.2)

ξ′ = 1. (2.3)

As an autonomous ODE, the system (2.1)–(2.3) is a singular perturbation problem written
in the slow time θ, with dξ

dθ
= 1 (i.e., ξ = θ + ξ0). Here the prime symbol denotes derivative

with respect to θ.
We let θ = ετ , and we use a dot to denote differentiation with respect to τ . System

(2.1)–(2.3) becomes

u̇ = v, (2.4)

v̇ = (Df(u)− ξI)v, (2.5)

ξ̇ = ε. (2.6)

System (2.4)–(2.6) is system (2.1)–(2.3) written in the fast time τ . The boundary conditions
(1.14) become

(u, v, ξ)(−∞) = (uL, 0,−∞), (u, v, ξ)(∞) = (uR, 0,∞). (2.7)

Setting ε = 0 in (2.4)–(2.6) yields the fast limit system

u̇ = v, (2.8)

v̇ = (Df(u)− ξI)v, (2.9)

ξ̇ = 0. (2.10)

System (2.8)–(2.10) has the (n + 1)-dimensional space of equilibria v = 0.
We now restrict to the case n = 2. For a small δ > 0, let

S0 = {(u, v, ξ) : ‖u‖ ≤ 1

δ
, v = 0 and (2.8)−−(2.10))− δ},

S1 = {(u, v, ξ) : ‖u‖ ≤ 1

δ
, v = 0 and λ1(u) + δ ≤ ξ ≤ λ2(u)− δ},

S2 = {(u, v, ξ) : ‖u‖ ≤ 1

δ
, v = 0, and λ2(u) + δ ≤ ξ}.

For the system (2.8)–(2.10), each Sk is a 3-dimensional normally hyperbolic manifold of
equilibria [6], [7]. Every point of Sk has a stable manifold of dimension k and an unstable
manifold of dimension 2− k. Thus the unstable manifold of S0 for (2.8)–(2.10), which is the
union of the unstable manifolds of the equilibria that comprise S0, is open in R

5. Similarly
the stable manifold of S2 for (2.8)–(2.10), which is the union of the stable manifolds of the
equilibria that comprise S2, is open in R

5. (S1 will not be important to us.) See Figure 2.
According to [6], for ε near 0, the system (2.4)–(2.6) has normally hyperbolic invariant

manifolds near each Sk. Since the 3-dimensional space v = 0 is invariant under (2.4)–(2.6)
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v

ξ

u ξ=λ1(u) ξ=λ2(u)

Figure 2.1. Phase space for the fast limit system (2.8)–(2.10). The 3-
dimensional space v = 0 consists of equilibria. This space is divided by the
surfaces ξ = λ1(u) and ξ = λ2(u) into sets equilibria with two positive eigen-
values, one positive and one negative eigenvalue, and two negative eigenvalues.

for every ε, the perturbed manifolds can be taken to be the Sk’s themselves. On Sk, the
system (2.4)–(2.6) reduces to

u̇ = 0, v̇ = 0, ξ̇ = ε.

For each fixed u0 in R
2, let Sk(u0) be the set of point in Sk with u = u0, a (portion of a)

line. Then for (2.4)–(2.6), each line S0(u) has a 3-dimensional unstable manifold W u
ε (S0(u)),

and each line S2(u) has a 3-dimensional stable manifold W s
ε (S0(u)). These manifolds depend

smoothly on (u, ε).
Geometrically, for a fixed ε > 0, a solution of the boundary value problem (2.4)–(2.7)

corresponds to a solution of (2.4)–(2.6) that lies in the intersection of W u
ε (S0(uL)) and

W s
ε (S2(uR)). These are 3-dimensional manifolds in a 5-dimensional space, so they are ex-

pected to intersect in isolated curves. See Figure 2.
In (2.4)–(2.6) we let w = f(u)− ξu− v, i. e., we make the invertible coordinate transfor-

mation

(u, v, ξ) → (u, w, ξ) = (u, f(u)− ξu− v, ξ). (2.11)

Also, from now on we shall treat ε as a state variable. Thus we obtain the system

u̇ = f(u)− ξu− w, (2.12)

ẇ = −εu, (2.13)

ξ̇ = ε, (2.14)

ε̇ = 0. (2.15)

In 6-dimensional uwξε-space, each subspace ε = constant is invariant. Corresponding to the
3-dimensional subspace v = 0 of uvξ-space, which is invariant under (2.4)–(2.6) for each ε,
we have the 4-dimensional invariant surface w = f(u)− ξu in uwξε-space. Corresponding to
the 3-dimensional subsets Sk of v = 0, we have 4-dimensional normally hyperbolic subsets
Tk of the surface w = f(u)− ξu. T0 and T2 (we shall not need T1) are foliated into invariant
lines

T ε
0(u) = {(u, w, ξ, ε) : u and ε fixed, ξ ≤ λ1(u)− δ, w = f(u)− ξu},

T ε
2(u) = {(u, w, ξ, ε) : u and ε fixed, λ2(u) + δ ≤ ξ, w = f(u)− ξu},
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u

v

ξ

ξ=λ1(u) ξ=λ2(u)

S 0 (u L )

S 2 (uR )

W u(S 0 (u L ))
     

ε

W s (S 2 (uR ))
     

ε

Figure 2.2. Phase space for the Dafermos system (2.4)–(2.6) with ε > 0.
The 3-dimensional space v = 0 is invariant but no longer consists of equilibria.
A solution in W u

ε (S0(uL)) ∩W s
ε (S2(uR)) is shown.

From the theory of normally hyperbolic invariant manifolds [6, 7], each line T ε
0(u) has a

3-dimensional unstable manifold W u(T ε
0(u)), and each line T ε

2(u) has a 3-dimensional stable
manifold W s(T ε

2(u)); these manifolds depend smoothly on (u, ε). In these coordinates, we
wish to find, for each small ε > 0, a solution of (2.12)–(2.15) that lies in the intersection of
W u(T ε

0(uL)) and W s(T ε
2(uR)).

3. Keyfitz-Kranzer system

For the system of conservation laws (1.1)–(1.2), the corresponding Dafermos system (2.4)–
(2.6) is

u̇1 = v1, (3.1)

u̇2 = v2, (3.2)

v̇1 = (2u1 − ξ)v1 − v2, (3.3)

v̇2 = (u2
1 − 1)v1 − ξv2, (3.4)

ξ̇ = ε. (3.5)
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The corresponding alternate Dafermos system (2.12)–(2.15) is

u̇1 = u2
1 − u2 − ξu1 − w1, (3.6)

u̇2 =
1

3
u3

1 − u1 − ξu2 − w2, (3.7)

ẇ1 = −εu1, (3.8)

ẇ2 = −εu2, (3.9)

ξ̇ = ε, (3.10)

ε̇ = 0. (3.11)

Motivated by [10, 13], in (3.6)–(3.11) we introduce the new variables

y1 = εu1, y2 = ε2u2. (3.12)

We multiply the resulting system by ε, i.e., we rescale time by τ = εζ, and we use a prime
to denote derivative with respect to ζ. (This differs from the use of prime in Section 2.) We
obtain

y′1 = y2
1 − y2 − εξy1 − ε2w1, (3.13)

y′2 =
1

3
y3

1 − ε2y1 − εξy2 − ε3w2, (3.14)

w′1 = −εy1, (3.15)

w′2 = −y2, (3.16)

ξ′ = ε2, (3.17)

ε′ = 0. (3.18)

Note that this change of variables collapses the 5-dimensional subspace ε = 0 of uwξε-space
to a 3-dimensional subspace E of ywξε-space,

E = {(y, w, ξ, ε) : y = 0, ε = 0}.
Each 2-dimensional set {(u, w, ξ, ε) : w = w0, ξ = ξ0, ε = 0} collapses to the point
(0, w0, ξ0, 0) of E. The advantage of this change of variables is that for small ε > 0, some
solutions that take on very large u-values take on only moderate y-values. In [10, 13] the sin-
gular shock profiles consist of two outer solutions, expressed in u, that satisfy the boundary
conditions (1.14), and an inner solution, expressed in y, that represents a large excursion in
the solution. The difficulty lies in matching them.

In this paper we shall take system (3.13)–(3.18) to be the fundamental one to analyze.

Setting ε = 0 in system (3.13)–(3.18), we obtain

y′1 = y2
1 − y2, (3.19)

y′2 =
1

3
y3

1, (3.20)

w′1 = 0, (3.21)

w′2 = −y2, (3.22)

ξ′ = 0, (3.23)

ε′ = 0. (3.24)
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This 5-dimensional system (recall ε = 0) has the 3-dimensional space of equilibria E. The
equilibria in E have all eigenvalues equal to 0.

The phase portrait of the 2-dimensional system (3.19)–(3.20) is shown in Figure 3. There
is a unique equilibrium at the origin. Through it are two invariant parabolas y2 = c±y2

1

with c± = 1
6
(3 ±

√
3). Above y2 = c+y2

1 is a one-parameter family of homoclinic orbits.
They are all tangent to y2 = c+y2

1 at both ends; each orbit is represented by a unique
solution (y1(ζ), y2(ζ)) with y1(0) = 0; y2(ζ) is integrable; and the homoclinic solutions are
parameterized by γ =

∫∞
−∞ y2(ζ) dζ, 0 < γ < ∞ [17].

y1

y2
                 

2y2=c+y1

                 
2y2=c−y1

Figure 3.1. Phase portrait of y′1 = y2
1 − y2, y′2 = 1

3
y3

1.

Proposition 3.1. Let q0 = (0, 0, w01, w02, ξ0, 0) and q1 = (0, 0, w01, w12, ξ0, 0) be two points

of E with w02 > w12. Then there is a unique solution of (3.19)–(3.24) that goes from q0 to

q1 and has y1(0) = 0.

Proof. Let (y1(ζ), y2(ζ)) be the unique solution of (3.19)–(3.20) that is homoclinic to the
origin, satisfies y1(0) = 0, and has

∫∞
−∞ y2(ζ) dζ = w02 − w12. Then the desired solution of

(3.19)–(3.24) is

(y1(ζ), y2(ζ), w01, w02 −
∫ ζ

−∞
y2(η) dη, ξ0, 0).

�

4. Blow-up

Corresponding to the lines T ε
0(u) and T ε

2 (u) in uwξε-space, we have in ywξε-space the lines

M ε
0(u) = {(y, w, ξ, ε) : y1 = εu1, y2 = ε2u2, ξ ≤ λ1(u)− δ, w = f(u)− ξu, ε fixed},

M ε
2(u) = {(y, w, ξ, ε) : y1 = εu1, y2 = ε2u2, λ2(u) + δ ≤ ξ, w = f(u)− ξu, ε fixed},

For small ε > 0, we wish to find a solution of (3.13)–(3.18) that lies in the intersection of
W u(M ε

0(uL)) and W s(M ε
2(uR)).

Notice that M 0
0 (uL) and M0

2 (uR) are lines in the 3-dimensional space E, which consists
entirely of equilibria with all eigenvalues equal to 0. A blow-up is necessary to resolve the
behavior of the system near E [15].
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We shall blow up E, which is the product of the origin in y1y2ε-space with w1w2ξ-space,
to the product of a 2-sphere with w1w2ξ-space. The 2-sphere is a blow-up of the origin in
y1y2ε-space.

The blow-up transformation is a map from S2×R+×R
3 to ywξε-space defined as follows.

Let ((ȳ1, ȳ2, ε̄), r̄, (w1, w2, ξ)) be a point of S2 × R+ × R
3; we have ȳ1

2 + ȳ2
2 + ε̄2 = 1. Then

the blow-up transformation is

y1 = r̄ȳ1, (4.1)

y2 = r̄2ȳ2, (4.2)

w1 = w1, (4.3)

w2 = w2, (4.4)

ξ = ξ, (4.5)

ε = r̄ε̄. (4.6)

Under this transformation the system (3.13)–(3.18) becomes one for which the 5-dimensional
set r̄ = 0, which is the product of S2 with w1w2ξ-space, consists entirely of equilibria. The
system we shall study is this one divided by r̄. Division by r̄ desingularizes the system on
the set r̄ = 0 but leaves it invariant.

We shall need two charts on S2 × R+ × R
3.

4.1. Chart for ε̄ > 0 . Chart 1 uses the coordinates u1 = ȳ1

ε̄
, u2 = ȳ2

ε̄2
and (w1, w2, ξ, ε) on

the set of points in S2 × R+ × R
3 with ε̄ > 0. Thus we have

y1 = εu1, (4.7)

y2 = ε2u2, (4.8)

w1 = w1, (4.9)

w2 = w2, (4.10)

ξ = ξ, (4.11)

ε = ε. (4.12)

After division by ε (equivalent to division by r̄ up to multiplication by a positive function),
the system (3.13)–(3.18) becomes the system (3.6)–(3.11). This is not surprising; compare
(4.7)–(4.8) and (3.12). Thus in our approach to singular shocks the system (3.6)–(3.10) is a
blow-up of the system (3.13)–(3.18) in one coordinate patch. Also note that division by ε is
equivalent to changing the time coordinate from ζ back to τ .

4.2. Chart for ȳ2 > 0 . Chart 2 uses the coordinates a = ȳ1√
ȳ2

, r = r̄
√

ȳ2, b = ε̄√
ȳ2

and

(w1, w2, ξ) on the set of points in S2 × R+ × R
3 with ȳ2 > 0). Thus we have

y1 = ra, (4.13)

y2 = r2, (4.14)

w1 = w1, (4.15)

w2 = w2, (4.16)

ξ = ξ, (4.17)

ε = rb. (4.18)
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It is the use of this chart that enables the geometric matching of the two parts of the solution
(u and y, or outer and inner). It is the key advantage of the blowing-up approach to singular
shocks.

We divide by r (equivalent to division by r̄ up to multiplication by a positive function),
and, by a small abuse of notation, as in chart 1 we use τ to denote the rescaled time variable
and a dot to represent derivative with respect to τ . The system (3.13)–(3.18) becomes

ȧ = a2 − 1− 1

6
a4 +

1

2
b
(

−ξa− 2bw1 + ba2 + b2aw2

)

, (4.19)

ṙ =
1

6
r
(

a3 − 3bξ − 3b2a− 3b3w2

)

, (4.20)

ẇ1 = −rab, (4.21)

ẇ2 = −r, (4.22)

ξ̇ = rb2, (4.23)

ḃ = −1

6
b
(

a3 − 3bξ − 3b2a− 3b3w2

)

. (4.24)

If we set b = 0 in (4.19), we find that ȧ = 0 at the four points

a1 = −
√

3 +
√

3 < a2 = −
√

3−
√

3 < a3 =

√

3−
√

3 < a4 =

√

3 +
√

3.

For j = 1, . . . , 4, let
Pj = {(a, r, w, ξ, b) : a = aj, r = 0, b = 0}.

Each Pj is a 3-dimensional manifold of equilibria of (4.19)–(4.24). These are “corner equilib-
ria”: They lie in the intersection of the invariant sets r = 0, corresponding to S2×{0}×R

3,
and b = 0, corresponding to the “plane” ε̄ = 0 in S2 × R+ × R

3. See Figure 4.2.

r

a

b

a1 a2 a4a3

Figure 4.1. Phase portrait of (4.19)–(4.24), with w1, w2 and ξ coordinates

suppressed. For r = 0 and fixed (w1, w2, ξ) we have ṙ = ẇ1 = ẇ2 = ξ̇ = 0;
the phase portrait in this 2-dimensional space is as shown. For b = 0 we have
ḃ = ẇ1 = ξ̇ = 0 but ẇ2 6= 0 for r 6= 0. Thus along the solutions shown in the
space b = 0 with r > 0, w2 decreases.

At the equilibrium (a, 0, w1, w2, ξ, 0), there is an eigenvalue 0, with the 3-dimensional

eigenspace ȧ = ṙ = ḃ = 0; an eigenvalue 2
3
a(3 − a2) with eigenvector (1, 0, 0, 0, 0, 0); an

eigenvalue 1
6
a3 with eigenvector (0, 1

6
a3, 0,−1, 0, 0); and an eigenvalue − 1

6
a3 with eigenvector

( 2ξ

4−a2 , 0, 0, 0, 0, 1). Thus the manifolds Pj are normally hyperbolic.
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The manifolds P3 and P2 will be most important to us.
Each point (a3, 0, w01, w02, ξ0, 0) of P3 has:

• A 1-dimensional stable manifold tangent to ( 2ξ

4−a2

3

, 0, 0, 0, 0, 1). This curve is con-

tained in the 2-dimensional invariant plane {(a, r, w1, w2, ξ, b) : r = 0, w1 = w01, w2 =
w02, ξ = ξ0}. The union of these curves is W s(P3), a 4-dimensional manifold con-
tained in the 5-dimensional plane r = 0.

• A 2-dimensional unstable manifold tangent to the plane spanned by (1, 0, 0, 0, 0, 0)
and (0, 1

6
a3

3, 0,−1, 0, 0). This surface is contained in the 3-dimensional invariant plane
{(a, r, w1, w2, ξ, b) : w1 = w01, ξ = ξ0, b = 0}. The union of these surfaces is W u(P3),
which is the 5-dimensional space b = 0.

Each point (a2, 0, w01, w02, ξ0, 0) of P2 has:

• A 1-dimensional unstable manifold tangent to ( 2ξ

4−a2

2

, 0, 0, 0, 0, 1). This curve is con-

tained in the 2-dimensional invariant plane {(a, r, w1, w2, ξ, b) : r = 0, w1 = w01, w2 =
w02, ξ = ξ0}. The union of these curves is W u(P2), a 4-dimensional manifold con-
tained in the 5-dimensional plane r = 0.

• A 2-dimensional stable manifold tangent to the plane spanned by (1, 0, 0, 0, 0, 0) and
(0, 1

6
a3

2, 0,−1, 0, 0). This surface is contained in the 3-dimensional invariant plane
{(a, r, w1, w2, ξ, b) : w1 = w01, ξ = ξ0, b = 0}. The union of these surfaces is W 2(P2),
which is the 5-dimensional space b = 0.

5. Corner Lemma

In blown-up geometric singular perturbation problems, at manifolds of normally hyperbolic
corner equilibria such as the Pj of the previous section, the following problem arises: Given a
normally hyperbolic manifold P of equilibria and a manifold N that is transverse to W s(P ),
track the flow of N past P . At corner equilibria the differential equation cannot be regarded
as a parameterized family, so the Exchange Lemma [9, 8] is not relevant. The following lemma
plays the role of the Exchange Lemma for such points. Like the Exchange Lemma, it is a
consequence of a result of Deng [3] about solutions of Silnikov problems near nonhyperbolic
points.

(The Exchange Lemma was originally proved using differential forms [9]. The fact that it
is a consequence of Deng’s result is observed in [14], p. 58. The paper [1] proves a result
similar to Deng’s and then gives the argument by which it implies the Exchange Lemma.)

The notation of this section is independent of that of the remainder of the paper.
Consider a differential equation ẇ = f(w) on a neighborhood of 0 in R

p that is Cr+4 ,
r ≥ 1, and:

(1) The origin is an equilibrium.
(2) There are integers k ≥ 0, ` ≥ 0, m ≥ 1, and n ≥ 1 such that Df(0) has k + `

eigenvalues equal to 0, m eigenvalues with negative real part, and n eigenvalues with
positive real part, with k + ` + m + n = p.

(3) A codimension one subspace S of R
p is invariant.

(4) The restriction of Df(0) to S has k + ` eigenvalues equal to 0, m eigenvalues with
negative real part, and n− 1 eigenvalues with positive real part.

(5) The origin is part of a k + `-dimensional manifold of equilibria P .

P is a normally hyperbolic manifold of equilibria. Each point of P has a stable manifold
of dimension m and an unstable manifold of dimension n. The union of the stable manifolds
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of points of P is W s(P ), which has dimension k + `+m; the union of the unstable manifolds
of points of P is W u(P ), which has dimension k + ` + n. P and W s(P ) are necessarily
contained in S.

Assumption (3) is probably not necessary. However, it holds in the applications we have
in mind (in chart 2 of Section 4, S is the set r = 0), and it simplifies the proof.

Let N be a Cr+4 manifold of dimension k + n that is transverse to W s(P ) at a point p in
W s(0)\{0} and such that TpN ∩TpW

s(0) = {0}. Then the intersection of N and W s(P ) is a
manifold of dimension k that projects, along the fibration of W s(P ) by the stable manifolds
of points, to a k-dimensional submanifold Q of P . Let yn be a coordinate on R

p that vanishes
on S, and, for δ > 0, let Nδ = N ∩ {yn = δ}, a manifold of dimension k + n − 1. Let q be
a point in W u(Q) with yn(q) > 0. Notice that W u(Q) has dimension k + n. Under the flow
of ẇ = f(w), Nδ becomes a manifold Ñδ of dimension k + n that passes near q Let U be a
small neighborhood of q.

Theorem 5.1 (Corner Lemma). As δ → 0, Ñδ ∩ U → W u(Q) ∩ U in the Cr topology.

To prove the Corner Lemma, we define coordinates (u, v, x, y) on a neighborhood of 0 in
R

p with u ∈ R
k, v ∈ R

`, x ∈ R
m, y ∈ R

n. The coordinate yn has already been chosen, and
(u, v, x, y1, . . . , yn−1) are Fenichel coordinates on S. More precisely, and ignoring the fact
that we are working locally near the origin, Q is u-space; P is uv-space; W s(P ) is uvx-space;
W u(P ) is uvy-space. Moreover, W s(u0, v0, 0, 0) = {(u, v, x, y) : u = u0, v = v0, y = 0}, and
W u(u0, v0, 0, 0) = {(u, v, x, y) : u = u0, v = v0, x = 0}. See Figure 5. Therefore

u̇i = x>Aiy, i = 1, . . . , k, (5.1)

v̇i = x>Biy, i = 1, . . . , `, (5.2)

ẋ = Cx, (5.3)

ẏ = Dy, (5.4)

where Ai and Bi are m × n matrices, C is m × m and D is n × n. The entries of these
matrices are functions of (u, v, x, y). The eigenvalues of C have negative real part, and those
of D have positive real part. The coordinate change can be chosen to be C r+2 [3], so the
system (5.1)–(5.4) is Cr+2, and the manifold N is now Cr+2.

Denote the entries of D by di,j. Since the space yn = 0 is invariant, we may assume
that dn,1 = . . . = dn,n−1 = 0, so that ẏn = dn,nyn and dn,n is a function of (u, v, x, y) with
dn,n > 0. After division by dn,n we may assume that dn,n = 1. Since dn,n is Cr+1, the system
(5.1)–(5.4) is now Cr+1, but N is still Cr+2.

Let τ > 0. The solution of (5.1)–(5.4) on the interval 0 ≤ t ≤ τ with boundary conditions

u(τ) = u1,

v(0) = v0,

x(0) = x0,

y(τ) = y1

is (u, v, x, y)(t, τ, u1, v0, x0, y1), 0 ≤ t ≤ τ . From [3], (u, v, x, y) is a Cr function of (t, τ, u1, v0, x0, y1);
moreover, there exist ρ > 0, λ < 0 < µ and K > 0 such that for max(|u1|, |v0|, |x0|, |y1|) ≤ ρ
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yn

x

v

N

p

0

N δ

q

Figure 5.1. Phase portrait of (5.1)–(5.4) with k = 0 and ` = m = n = 1.
Thus Q = {0}, N is 1-dimensional and Nδ is a point. In this simple situation,
the Corner Lemma just says that the solution through this point passes near
q and is Cr-close to the 1-dimensional unstable manifold of the origin near q.

and for any multi-index i with |i| ≤ r,

‖Dix‖ ≤ Keλt, (5.5)

‖Diy‖ ≤ Keµ(t−τ), (5.6)

‖Di(u− u1)‖ ≤ Keλt+µ(t−τ), (5.7)

‖Di(v − v0)‖ ≤ Keλt+µ(t−τ). (5.8)

Here Di represents repeated differentiation |i| times with respect to any sequence of the
variables (t, τ, u1, v0, x0, y1).

In the remainder of the proof we shall assume for simplicity that m = 1. Then N meets
W s(0) at p = (u, v, x, y) = (0, 0, x0, 0) with x0 a nonzero real number. We may assume
that 0 < |x0| ≤ ρ, and we fix x0 for the remainder of the proof. We may assume that N

is the set {(u, v, x, y) : x = x0 and v = h(u, y)} with h a Cr+2 function and h(u, 0) = 0.
Therefore there is an ` × n matrix H, whose entries are Cr+1 functions of (u, y), such that
h(u, y) = H(u, y)y.

(If m > 1, the function h must also give m− 1 components of x as functions of (u, y).)
Let

A = {(u1, v1, x1, y1) : |u1| ≤ ρ

2
, max(|v1|, |x1|, |y1|) ≤ ρ, and

ρ

2
≤ y1

n ≤ ρ},

B = {(u1, y1) : |u1| ≤ ρ

2
, |y1| ≤ ρ, and

ρ

2
≤ y1

n ≤ ρ},

Cu1 = {(u0, v0) : max(|u0 − u1|, |v0|) ≤ ρ

2
},

We may assume that q ∈ A and U ⊂ A.
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Given (u1, y1) ∈ B and a small δ > 0, let τ = ln y1
n

δ
and define F(u1,y1,δ) : Cu1 → R

k+` by

F(u1,y1,δ)(u
0, v0) = (u(0, τ, u1, v0, x0, y1), h(u0, y(0, τ, u1, v0, x0, y1))).

Lemma 5.2. For δ > 0 sufficiently small independent of (u1, y1) ∈ B, F(u1,y1,δ) is a contrac-

tion of Cu1 . Moreover, there is a constant M independent of (u1, y1) ∈ B such that for all

(u0, v0) ∈ Cu1 , ‖DF(u1,y1,δ)(u
0, v0)‖ ≤ M

(

ρ

2δ

)−µ
.

Proof. In this proof only, to simplify the notation, let F = F(u1,y1,δ) with (u1, y1, δ) fixed,
(u1, y1) ∈ B. By (5.7),

|F1(u
0, v0)− u1| ≤ Ke−µτ ≤ K

(

y1
n

δ

)−µ

≤ K
( ρ

2δ

)−µ

. (5.9)

Also, by (5.6), |y(0, τ, u1, v0, x0, y1)| ≤ Ke−µτ ≤ K
(

ρ

2δ

)−µ
. For δ sufficiently small, this is

less than ρ.
Let L = max(‖h‖, ‖Dh‖, ‖H‖, ‖DH‖) on {(u, y) : max(|u|, |y|) ≤ ρ}. Then, using h = Hy,

we see that

|F2(u
0, v0)| ≤ LKe−µτ ≤ LK

( ρ

2δ

)−µ

. (5.10)

It follows from (5.9)–(5.10) that for δ sufficiently small independent of (u1, y1) ∈ B, F maps
Cu1 into itself.

To estimate ‖DF(u1,y1,δ)(u
0, v0)‖, we consider the partial derivatives of F . We have ∂F1

∂u0 = 0,
and, using (5.7),

‖∂F1

∂u0
(u0, v0)‖ = ‖ ∂u

∂u0
(0, τ, u1, v0, x0, y1)‖ ≤ Ke−µτ ≤ K

( ρ

2δ

)−µ

.

Also,

∂F2

∂u0
(u0, v0) =

∂h

∂u
(u0, y(0, τ, u1, v0, x0, y1)) =

∂(Hy)

∂u
(u0, y(0, τ, u1, v0, x0, y1))

=
∂H

∂u
(u0, y(0, τ, u1, v0, x0, y1))y(0, τ, u1, v0, x0, y1),

so by (5.6), ‖∂F2

∂u0 (u0, v0)‖ ≤ LKe−µτ ≤ LK
(

ρ

2δ

)−µ
. Finally,

∂F2

∂v0
(u0, v0) =

∂h

∂y
(u0, y(0, τ, u1, v0, x0, y1))

∂y

∂v0
(0, τ, u1, v0, x0, y1),

so by (5.6), ‖∂F2

∂u0 (u0, v0)‖ ≤ LKe−µτ ≤ LK
(

ρ

2δ

)−µ
. From these estimates, the estimate on

‖DF(u1,y1,δ)(u
0, v0)‖ follows, and hence the fact that F(u1,y1,δ) is a contraction of Cu1 for δ > 0

sufficiently small independent of (u1, y1). �

Lemma 5.3. The fixed point (u0, v0) of F(u1,y1,δ) satisfies the following estimates: There is

a constant M such that |u0 − u1|, |v0|, ‖∂u0

∂u1 − I‖, ‖∂u0

∂y1 ‖, ‖ ∂v0

∂u1 ‖, and ‖∂v0

∂y1 ‖ are bounded by

M
(

ρ

2δ

)−µ
independent of (u1, y1) ∈ B.

Proof. The estimates on |u0−u1| and |v0| follow from setting (u0, v0) equal to the fixed point
in (5.9) and (5.10).

To estimate the derivatives, let z = (u0, v0), ρ = (u1, y1), and let

Fδ(z, ρ) = Fδ(u
0, v0, u1, y1) = F(u1,y1,δ)(u

0, v0).
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The fixed point z(ρ) of Fδ(z, ρ) satisfies z(ρ) = Fδ(z(ρ), ρ), so

dz

dρ
=

(

I − ∂Fδ

∂z
(z(ρ), ρ)

)−1
∂Fδ

∂ρ
(z(ρ), ρ). (5.11)

By Lemma 5.2, ‖∂Fδ

∂z
(z(ρ), ρ)‖ ≤ M

(

ρ

2δ

)−µ
, so

(

I − ∂Fδ

∂z
(z(ρ), ρ)

)−1
= I + P with ‖P‖ ≤

M
(

ρ

2δ

)−µ
for a possibly larger M . Therefore we can rewrite (5.11) as

(

∂u0

∂u1

∂u0

∂y1

∂v0

∂u1

∂v0

∂y1

)

= (I + P )

(

∂F1

∂u1

∂F1

∂y1

∂F2

∂u1

∂F2

∂y1

)

.

Calculating as in the proof of Lemma 5.2, we find

‖∂F1

∂u1
− I‖ ≤ Ke−µτ ≤ K

( ρ

2δ

)−µ

,

‖∂F1

∂y1
‖ ≤ Ke−µτ ≤ K

( ρ

2δ

)−µ

,

‖∂F2

∂u1
‖ ≤ MKe−µτ ≤ MK

( ρ

2δ

)−µ

,

‖∂F2

∂y1
‖ ≤ MKe−µτ ≤ MK

( ρ

2δ

)−µ

.

The estimates on the derivatives follow easily, again for a possibly larger M . �

As in Lemma 5.3, let the fixed point be of F(u1,y1,δ) be (u0, v0), and let y0 = y(0, τ, u1, v0, x0, y1).
Then v0 = h(u0, y0), so (u0, v0, x0, y0) ∈ N .

Define gδ : B → R
`+1 by

gδ(u1, y1) = (v, x)(τ, τ, u1, v0, x0, y1) = (v1, x1).

Then (u1, v1, x1, y1) ∈ A. Moreover, if we denote the time τ map of ẇ = f(w) by φτ , then

(u1, v1, x1, y1) = φτ (u
0, v0, x0, y0). Since ẏn = yn, we have y1

n = eτy0
n = y1

n

δ
y0

n, so y0
n = δ.

Therefore (u0, v0, x0, y0) ∈ Nδ and (u1, v1, x1, y1) ∈ Ñδ. Therefore Ñδ ∩ U is part of the
graph of gδ. To complete the proof of the Corner Lemma, we need only show that as δ → 0,
gδ → 0 in the Cr-topology.

We consider only gδ
1. By (5.8) and Lemma 5.3,

|gδ
1(u

1, y1)| = |v(τ, τ, u1, v0, x0, y1)| ≤ |v0|+ Keλτ ≤ M
( ρ

2δ

)−µ

+ K
( ρ

2δ

)λ

.

Therefore gδ approaches 0 uniformly in (u1, v1) as δ → 0.
Also, by (5.7) and Lemma 5.3,

‖∂gδ
1

∂u1
(u1, y1)‖ = ‖ ∂v

∂u1
(τ, τ, u1, v0, x0, y1) +

∂v

∂v0
(τ, τ, u1, v0, x0, y1)

∂v0

∂u1
(u1, y1)‖

≤ Keλτ + KeλτM
( ρ

2δ

)−µ

≤ K
( ρ

2δ

)λ

+ KM
( ρ

2δ

)λ−µ

.

Similar estimates hold for
∂gδ

1

∂y1 , except that additional terms occur in the partial derivative

with respect to y1
n because of the dependence of τ on y1

n. Indeed, in calculating
∂gδ

1

∂y1
n

, we must
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include the terms

∂v

∂t
(τ, τ, u1, v0, x0, y1)

∂τ

∂y1
n

(u1, y1) +
∂v

∂τ
(τ, τ, u1, v0, x0, y1)

∂τ

∂y1
n

(u1, y1).

The size of each of these terms is bounded by Keλτ 1
y1

n

≤ K
(

ρ

2δ

)λ
(

2
ρ

)

.

Similar estimates hold through order r. This completes the proof of the Corner Lemma.

6. Proof of main result

We return to using the notation of Sections 1–4.

Theorem 6.1. In the Keyfitz-Kranzer system of conservation laws (1.1)–(1.2), let uL and

uR be points of R
2 with uL1 6= uR1. Let

ξ0 =
f1(uL)− f1(uR)

uL1 − uR1
, γ0 = f2(uL)− f2(uR)− ξ0(uL2 − uR2). (6.1)

Assume:

(1) ξ0 < λi(uL) for i = 1, 2.
(2) λi(uR) < ξ0 for i = 1, 2.
(3) γ0 > 0.

Then there is a singular shock with Dafermos profile from uL to uR. In other words, for

small ε > 0 there is a solution of the boundary value problem (2.4)–(2.7), and, as ε → 0, the

solution becomes unbounded in u.

To prove the theorem, we shall work with the system (3.13)–(3.18) in ywξε-space. As
explained at the start of Section 4, we seek solutions in the intersection of W u(M ε

0(uL)) and
W s(M ε

2(uR)), ε > 0. In fact, we shall work in the blowup of ywξε-space that was defined in
Section 4.

We shall first describe the subset of S2×R+×R
3 near which the solutions we seek are to

lie. The description uses the two charts of Section 4.
In chart 1, the lines M ε

0(uL) of Section 4 correspond to lines T ε
0(uL) described in Section

2. We have

W u(T 0
0 (uL)) = {(u, w, ξ, ε) : u ∈ Uξ, ξ < λ1(uL), w = f(uL)− ξuL, ε = 0},

where Uξ is an open subset of u-space that depends on ξ (and uL). Therefore W u(T 0
0 (uL))

is 3-dimensional.
In chart 2, the lines M ε

0(uL) correspond to lines

N ε
0(uL) = {(a, r, w, ξ, b) : a =

uL1√
uL2

, r = ε
√

uL2, w = f(uL)− ξuL, ξ < λ1(uL), b =
1√
uL2

}.

We have

W u(N0
0 (uL)) = {(a, r, w, ξ, b) : (a, b) ∈ Vξ, r = 0, w = f(uL)− ξuL, ξ < λ1(uL)},

where Vξ is an open subset of ab-space that depends on ξ (and uL). Therefore W u(N0
0 (uL))

is 3-dimensional.
In chart 2, let

C3 = {(a, r, w, ξ, b) : a = a3, r = 0, w = f(uL)− ξuL, ξ < λ1(uL), b = 0},
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a line of equilibria in the 3-dimensional space of equilibria P3. W s(C3) is a 2-dimensional
surface in the 5-dimensional space r = 0, the union of the stable manifolds of the points of
C3.

We claim that the intersection of W u(N0
0 (uL)) and W s(P3) is an open subset Q3 of W s(C3),

namely the points of W s(C3) with b > 0. To see this, let q̄ = (a3, 0, w̄, ξ̄, 0) be a point
of C3, so ξ̄ < λ1(uL) and w̄ = f(uL) − ξ̄uL. In chart 2, the stable manifold of q̄ is a
solution of (4.19)–(4.24) of the form (a(τ), 0, w̄, ξ̄0, b(τ)) in the 2-dimensional invariant plane
{(a, r, w, ξ, b) : r = 0, w = w̄, ξ = ξ̄}, a copy of ab-space. In chart 1, this solution corresponds
to a solution (u(τ), w̄, ξ̄0, 0) of (3.6)–(3.11) in the 2-dimensional invariant plane {(u, w, ξ, ε) :
w = w̄, ξ = ξ̄, ε = 0}, a copy of u-space. In [17], Section 3.3, it is shown that in backward
time this solution approaches the equilibrium uL, which is a repeller because ξ̄ < λ1(uL).
Therefore, in chart 1 it is contained in W u(T 0

0 (uL)); in chart 2 it is contained in W u(N0
0 (uL)).

Similarly, in chart 1, the lines M ε
2(uR) of Section 4 correspond to lines T ε

2(uR) of Section
2. We have

W s(T 0
2 (uR)) = {(u, w, ξ, ε) : u ∈ Uξ, λ2(uR) < ξ, w = f(uR)− ξuR, ε = 0},

where Uξ is an open subset of u-space that depends on ξ (and uR). Therefore W s(T 0
2 (uR))

is 3-dimensional.
In chart 2, the lines M ε

2(uR) correspond to lines

N ε
2(uR) = {(a, r, w, ξ, b) : a =

uR1√
uR2

, r = ε
√

uR2, w = f(uR)− ξuR, λ2(uR) < ξ, b =
1√
uR2

}.

We have

W s(N0
2 (uR)) = {(a, r, w, ξ, b) : (a, b) ∈ Vξ, r = 0, w = f(uR)− ξuR, λ2(uR) < ξ},

where Vξ is an open subset of ab-space that depends on ξ (and uR). Therefore W s(N0
2 (uR))

is 3-dimensional.
In chart 2, let

C2 = {(a, r, w, ξ, b) : a = a2, r = 0, w = f(uR)− ξuR, λ2(uR) < ξ, b = 0},
a curve of equilibria in the 3-dimensional space of equilibria P2. W u(C2) is 2-dimensional,
the union of the stable manifolds of its points. The intersection of W u(P2) and W s(N0

2 (uR)
is an open subset Q2 of W u(C2), namely the points of W u(C2) with b > 0.

Let
wL = f(uL)− ξ0uL, wR = f(uR)− ξ0uR.

From (6.1), wR1 = wL1 and wR2 = wL2 − γ0. Also, let

qL = (a3, 0, wL1, wL2, ξ0, 0) ∈ C3, qR = (a2, 0, wR1, wR2, ξ0, 0) ∈ C2.

Let y(ζ) be the solution of (3.19)–(3.20) with y(−∞) = y(∞) = 0 and
∫∞
−∞ y2(η) dη = γ0.

Then the system (3.19)–(3.24) has the solution

(y1(ζ), y2(ζ), wL1, wL2 −
∫ ζ

−∞
y2(η) dη, ξ0, 0), (6.2)

which goes from (0, 0, wL1, wL2, ξ0, 0) to (0, 0, wR1, wR2, ξ0, 0).
In chart 2, (6.2) corresponds to a solution

q(τ) = (a(τ), r(τ), wL1, wL2 −
∫ τ

−∞
r(σ) dσ, ξ0, 0). (6.3)
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As τ → ±∞, r(τ) → 0. Also, recall that as ζ → ±∞,

y2(ζ)

y1(ζ)2
→ c+.

Therefore

lim
τ→−∞

a(τ) = lim
ζ→−∞

y1(ζ)
√

y2(ζ)
=

1
√

c+
= a3, lim

τ→∞
a(τ) = lim

ζ→∞

y1(ζ)
√

y2(ζ)
= − 1

√
c+

= a2.

Hence q(τ) approaches qL as τ → −∞ and qR as τ → ∞. We may assume that r(τ) is an
even function and a(τ) is odd.

In S2 ×R+ ×R
3, we search for solutions near the union of the following three curves: (1)

the branch of the stable manifold of qL in b > 0, (2) the solution (6.3) from qL to qR, (3) the
branch of the unstable manifold of qR in b > 0. As we have seen, curve (1) is in W u(N0

0 (uL)),
and curve (2) is in W s(N0

2 (uR))
The solutions we seek are to lie in the intersection of W u(N ε

0(uL)) and W s(N ε
2(uR)) for ε >

0. They correspond to solutions of (3.13)–(3.18) that lie in the intersection of W u(M ε
0(uL))

and W s(M ε
2(uR)).

Let N0(uL) be the union of the N ε
0(uL) with 0 ≤ ε ≤ ε0, a 2-dimensional set. Its unsta-

ble manifold W u(N0(uL)) is the union of the W u(N ε
0(uL)) and is 4-dimensional. We have

W u(N0(uL)) ∩W s(P3) = Q3.
Similarly let N2(uR) be the union of the N ε

2(uR) with 0 ≤ ε ≤ ε0, a 2-dimensional set. Its
stable manifold W s(N2(uR)) is the union of the W s(N ε

2(uR)) and is 4-dimensional. We have
W s(N0(uR)) ∩W u(P2) = Q2.

Proposition 6.2. W u(N0(uL)) is transverse to W s(P3) along Q3. Similarly, W s(N2(uR))
is transverse to W u(P2) along Q2.

Proof. We prove only the first statement. At a point of Q3, the tangent space to W u(N0(uL))
is spanned by (1, 0, 0, 0, 0, 0), (0, 0,−uL1,−uL2, 1, 0), (0, 0, 0, 0, 0, 1) (all tangent vectors to
W u(N0

0 (uL))), and a vector with nonzero r-component. Among the tangent vectors to
W s(P3) at that point are (∗, 0, 1, 0, 0, ∗) and (∗, 0, 0, 1, 0, ∗), where the values of the starred
entries are unimportant. These six vectors are linearly independent. �

Proposition 6.3. Within the 5-dimensional space b = 0, W u(C3) and W s(C2) meet transver-

sally along q(τ).

Proof. We work in the space b = 0, with coordinates (a, r, w1, w2, ξ). The differential equation
is therefore (4.19)–(4.23) with b = 0. Let g(a) = a2 − 1− 1

6
a4. The linearization along q(τ)

is

d

dt













ā

r̄

w̄1

w̄2

ξ̄













=













g′(a(τ)) 0 0 0 0
1
2
a(τ)2r(τ) 1

6
a(τ)3 0 0 0

0 0 0 0 0
0 −1 0 0 0
0 0 0 0 0

























ā

r̄

w̄1

w̄2

ξ̄













. (6.4)
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The adjoint equation is therefore

d

dt













ã

r̃

w̃1

w̃2

ξ̃













=













−g′(a(τ)) −1
2
a(τ)2r(τ) 0 0 0

0 −1
6
a(τ)3 0 1 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

























ã

r̃

w̃1

w̃2

ξ̃













. (6.5)

TqL
W u(C3) is spanned by the vectors (1, 0, 0, 0, 0), (0, 1

6
a3

3, 0,−1, 0) and (0, 0,−uL1,−uL2, 1).
Since Tq(τ)W

u(C3) approaches TqL
W u(C3) as τ → −∞, the orthogonal complement of

Tq(τ)W
u(C3) approaches the space spanned by q1 = (0, 0, 1, 0, uL1) and q2 = (0, 1, 0, 1

6
a3

3,
1
6
a3

3uL2)
as τ → −∞. As τ → −∞, the unique solution of (6.5) that approaches q1 is the constant
solution q1; and the unique solution of (6.5) that approaches q2 is

(ã(τ), r̃(τ), 0,
1

6
a3

3,
1

6
a3

3uL2)

where

r̃(τ) = 1−
∫ τ

−∞
e−

∫

τ

σ

1

6
a(ρ)3 dρ 1

6
(a(σ)3 − a3

3) dσ,

ã(τ) = −
∫ τ

−∞
e−

∫

τ

σ
g′(a(ρ)) dρ 1

2
r(σ)a(σ)2r̃(σ) dσ.

Therefore these two solutions of (6.5) span the orthogonal complement of Tq(τ)W
u(C3).

Similarly, TqR
W s(C2) is spanned by the vectors (1, 0, 0, 0, 0), (0, 1

6
a3

2, 0,−1, 0) and (0, 0,−uR1,−uR2, 1).
Thus its orthogonal complement is spanned by q3 = (0, 0, 1, 0, uR1) and q4 = (0, 1, 0, 1

6
a3

2,
1
6
a3

2uR2).
As τ →∞, the unique solution of (6.5) that approaches q3 is the constant solution q3. The
unique solution of (6.5) that approaches q4 as τ →∞ is

(â(τ), r̂(τ), 0,
1

6
a3

2,
1

6
a3

2uR2)

where

r̂(τ) = 1 +

∫ ∞

τ

e−
∫

τ

σ

1

6
a(ρ)3 dρ 1

6
(a(σ)3 − a3

2) dσ,

â(τ) =

∫ ∞

τ

e−
∫

τ

σ
g′(a(ρ)) dρ 1

2
r(σ)a(σ)2r̄(σ) dσ.

Therefore these two solutions of (6.5) span the orthogonal complement of Tq(τ)W
s(C2).

We wish to check that Tq(0)W
u(C3) and Tq(0)W

s(C2) are transverse. It suffices to check that
the four vectors (0, 0, 1, 0, uL1), (ã(0), r̃(0), 0, 1

6
a3

3,
1
6
a3

3uL2), (0, 0, 1, 0, uR1) and (â(0), r̂(0), 0, 1
6
a3

2,
1
6
a3

2uR2)
that span their orthogonal complements are linearly independent. Using the last four com-
ponents of these vectors and the fact that a2 = −a3, we have

det









0 1 0 uL1

r̃(0) 0 1
6
a3

3
1
6
a3

3uL2

0 1 0 uR1

r̂(0) 0 1
6
a3

2
1
6
a3

2uR2









= −1

6
(r̃(0) + r̂(0))a3

3(uR1 − uL1).

Since a(τ) is an odd function and a2 = −a3, we see that

r̃(0) + r̂(0) = 2−
∫ 0

−∞
e−

∫

0

σ

1

6
a(ρ)3 dρ 1

6
(a(σ)3− a3

3) dσ +

∫ ∞

0

e−
∫

0

σ

1

6
a(ρ)3 dρ 1

6
(a(σ)3− a3

2) dσ = 2.
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Also, uR1 − uL1 6= 0 by assumption. Therefore the determinant is nonzero. �

Proof of Theorem 6.1: Let ε > 0 be small and choose T >> 0. In chart 2, by Proposition
6.2 and the Corner Lemma, W u(N ε

0(uL)) passes qL and arrives near q(−T ) C1 close to
W u(C3). (In using the Corner Lemma, take the origin at qL, take N to be a codimension
one slice of W u(N0(uL)) transverse to the vector field, take yn to be r, and take Q to be
C3.) Similarly, W s(N ε

0(uR)) passes qR (in backward time) and arrives near q(T ) C1 close to
W s(C2). Both W u(N ε

0(uL)) and W s(N ε
0(uR)) lie in the 5-dimensional space rb = ε. With the

aid of Proposition 6.3 we see that W u(N ε
0(uL)) and W s(N ε

0(uR)) meet transversally within
that space. The result follows.
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