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Abstract. For some classes of hyperbolic systems of conservation
laws we introduce a new definition of a δ-shock wave type solution.
This definition gives natural generalizations of the classical defini-
tion of the weak solutions. It is relevant to the notion of δ-shocks.
The weak asymptotics method developed by the authors is used to
describe the propagation of δ-shock waves.

1. Introduction

1. One of the approaches to solving the problems related to sin-
gular solutions of quasilinear equations was developed by the authors
in [3], [4]– [8] (see also [2], [25]). In these papers, the authors devel-
oped a new asymptotics method – the weak asymptotics method – for
studying the dynamics of propagation and interaction of different sin-
gularities of quasilinear differential equations and first-order hyperbolic
systems (infinitely narrow δ-solitons, shocks, δ-shocks). This method
is based on the ideas of V. P. Maslov’s approach that permits deriving
the Rankine–Hugoniot conditions directly from the differential equa-
tions considered in the weak sense [18], [21] [2] (see also [29, 2.7]).
Maslov’s algebras of singularities [19], [20] [2] are essentially used in
the weak asymptotics method .

In this paper in the framework of the weak asymptotics method for
some classes of hyperbolic systems of conservation laws we introduce
a new definition of a δ-shock wave type solution by integral identities.
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This definition gives natural generalizations of the classical definition of
the weak L∞-solutions and specifies the definition of measure-solutions
given in [1], [27], [30].

By using the weak asymptotics method we describe the propagation
of δ-shock waves to three types systems of conservation laws. Among
them are well-known system (1.7), which was studied by B. Lee Keyfitz
and H. C. Kranzer, and zero-pressure gas dynamics system (1.8).

For all these systems we construct approximating solutions in the
weak sense and prove that the weak limits of these approximating so-
lutions satisfy our definition.

Consider the system of equations

(1.1)
L1[u, v] = ut +

(
F (u, v)

)
x

= 0,

L2[u, v] = vt +
(
G(u, v)

)
x

= 0,

where F (u, v) and G(u, v) are smooth functions, u = u(x, t), v =
v(x, t) ∈ R, and x ∈ R. As is well known, such a system, even in the
case of smooth (and, moreover, in the case of discontinuous) initial data
(u0(x), v0(x)), can have a discontinuous shock wave type solution. In
this case, it is said that the vector function (u(x, t), v(x, t)) ∈ L∞

(
R×

(0,∞);R2
)

is a generalized solution of the Cauchy problem (1.1) with
the initial data (u0(x), v0(x)) if the integral identities

(1.2)

∫ ∞

0

∫ (
uϕt + F (u, v)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
vϕt + G(u, v)ϕx

)
dx dt +

∫
v0(x)ϕ(x, 0) dx = 0

hold for all compactly supported test functions ϕ(x, t) ∈ D(R×[0, ∞)),
where

∫ · dx denotes an improper integral
∫∞
−∞ · dx.

Consider the Cauchy problem for system (1.1), where functions
F (u, v), G(u, v) are linear with respect to v, with initial data

(1.3) u0(x) = u0 + u1H(−x), v0(x) = v0 + v1H(−x),

where u0, u1, v0, and v1 are constants and H(ξ) is the Heaviside func-
tion. As was shown in [1], [6]– [15], [27], [30], in order to solve this
problem for some “nonclassical cases”, it is necessary to introduce new
elementary singularities called δ-shock waves . These are generalized
solutions of hyperbolic systems of conservation laws of the form

(1.4)
u(x, t) = u0 + u1H(−x + ct),
v(x, t) = v0 + v1H(−x + ct) + e(t)δ(−x + ct),

where e(0) = 0 and δ(ξ) is the Dirac delta function.
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At present several approaches to constructing such solutions are
known. The actual difficulty in defining such solutions arises because
of the fact that (as follows from (1.1), (1.4)), to introduce a definition
of the δ-shock wave type solution, one need to define the product of the
Heaviside function and the δ-function.

To obtain a δ-shock wave type solution of the system

(1.5)
ut + (u2)x = 0,
vt + (uv)x = 0,

(here F (u, v) = u2, G(u, v) = vu), the following parabolic regulariza-
tion is used in [13]:

ut + (u2)x = εuxx, vt + (uv)x = εvxx.

In [12], to obtain a δ-shock wave type solution of the system

(1.6)
L11[u, v] = ut +

(
f(u)

)
x

= 0,
L12[u, v] = vt +

(
g(u)v

)
x

= 0,

(here F (u, v) = f(u), G(u, v) = vg(u)), this system is reduced to a sys-
tem of Hamilton–Jacobi equations, and then the Lax formula is used.
In [15] in order to construct δ-shock solutions, the problem of multi-
plication of distributions is solved by using the definition of Volpert’s
averaged superposition [28]. In [22] the nonconservative product of sin-
gular functions is defined as a generalization of Volpert’s ideas. In [14],
the Colombeau theory approach, as well as the Dafermos–DiPerna reg-
ularization were used in a specific case of the system

(1.7)
L21[u, v] = ut + (u2 − v)x = 0,
L22[u, v] = vt + (1

3
u3 − u)x = 0,

(here F (u, v) = u2−v, G(u, v) = u3−u). In [14] approximate solutions
was constructed, but the notion of a singular solution of system (1.7)
has not been defined. In [23] in the framework of the Colombeau
theory approach, for some classes of systems approximate solutions
were constructed.

In [27] for system (1.5), in [1] for the system

(1.8)
L31[u, v] = vt +

(
vu

)
x

= 0,
L32[u, v] = (vu)t +

(
vu2

)
x

= 0,

(here v ≥ 0 is the density, u is the velocity), and in [30] for the system

(1.9)
vt +

(
vf(u)

)
x

= 0,
(vu)t +

(
vuf(u)

)
x

= 0,

with the initial data (1.3), the δ-shock wave type solution is defined as
a measure-valued solution (see also [26]).
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Let BM(R) be the space of bounded Borel measures, v(x, t) ∈
C

(
[0,∞), BM(R)

)
, u(x, t) ∈ L∞

(
[0, ∞), L∞(R)

)
. A pair (u, v) is said

to be a measure-valued solution of the Cauchy problem (1.9), (1.3) if

(1.10)

∫ ∞

0

∫ (
ϕt + f(u)ϕx

)
v(dx, t) = 0,

∫ ∞

0

∫
u
(
ϕt + f(u)ϕx

)
v(dx, t) = 0,

for all ϕ(x, t) ∈ D(R× [0, ∞)).
Within the framework of this definition in [27] for system (1.5),

in [1] for system (1.8), and in [30] for system (1.9), the following for-
mulas for δ-shock waves where derived

(1.11) (u(x, t), v(x, t)) =





(
u−, v−

)
, x < φ(t),(

uδ, w(t)δ(x− φ(t))
)
, x = φ(t),(

u+, v+
)
, x > φ(t).

Here u−, u+ and uδ are the velocities before the discontinuity, after
the discontinuity, and at the point of discontinuity, respectively, and
φ(t) = σδt is the equation for the discontinuity line.

In [9], the global δ-shock wave type solution was obtained for system
(1.8). By using the Colombeau theory approach, in [11], an approxi-
mating solution of the Cauchy problem is constructed for this system.

The study of systems, which admit δ-shock wave type solutions is
very important in applications, because systems of this type often arise
in modelling of physical processes in gas dynamics, magnetohydrody-
namics, filtration theory, and cosmogony. System (1.8) is called the
“zero-pressure gas dynamics system”. In multidimensional case this
system was used to describe the motion of free particles which stick
under collision and thus also is connected with the formation of large-
scale structures in the universe [31].

2. In the framework of the weak asymptotics method for some classes
of hyperbolic systems of conservation laws we present below the defi-
nition of a δ-shock wave type solution. This definition is natural gener-
alizations of the classical definition (1.2) for L∞ solutions and specifies
the measure-solutions definition (1.10) (see in [1], [27], [30] for the case
in which the support of the singular part of the measure v is a union of
pieces of smooth curves. According to our Definitions 1.2, 1.3 a general-
ized δ-shock wave type solution is a pair of distributions (u(x, t), v(x, t))
unlike the Definition (1.10), where v(dx, t) is a measure and u(x, t) is
understood as a measurable function which is defined v(dx, t) a.e..

We apply the weak asymptotics method in order to solve the Cauchy
problem for systems (1.6) (see Sec. 2), (1.7) (see Sec. 3), and (1.8) (see
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Sec. 4) with a special form of the initial data

(1.12)
u0(x) = u0

0(x) + u0
1(x)H(−x),

v0(x) = v0
0(x) + v0

1(x)H(−x) + e0δ(−x),

where u0
k(x), v0

k(x), k = 0, 1 are given smooth functions, e0 is given
constant. Here, in contrast to the well-known works about δ-shock
waves (except for [1]), the initial data can contain δ-function.

The solutions of the Cauchy problems mentioned above are given
by Theorems 2.6, 3.3, 4.3, 4.4 and Corollaries 2.7– 4.5. Thus, we
construct δ-shock wave type solutions and study dynamics of propa-
gation of δ-shocks. The fifth and sixth equations of systems in Theo-
rems 2.3, 3.1, 4.1 are the Rankine–Hugoniot conditions of delta-shocks.

Remark 1.1. For the Cauchy problem (1.8), (1.12) the fact that
the initial conditions contain e0 6= 0 implies that the system of ordinary
differential equations (two last Eq. (4.12)) that determines the trajec-
tory of a singularity and the coefficient of the δ-function is a system
of second-order equations. For the unique solvability of the Cauchy
problem posed for this system, it is necessary to specify the initial ve-
locity along the trajectory of singularity. We study this in detail at the
end of Sec. 4. Here we only note that the value of the initial velocity
is not determined by the initial data (1.12), when e0 6= 0. Hence the
Cauchy problem (1.8), (1.12) has a family solutions parameterized by
the parameter of the initial velocity .

Therefore, as it will be shown in Sec. 4), the Cauchy problem for
system (1.8) is well-posed if we use the initial data (4.1) instead of the
initial data (1.12). Here in the initial data (4.1) we introduce the initial
velocity .

The results of Theorem 4.4 and Corollary 4.5 coincide with the
analogous statement from [1], [16], [26] if we identify the velocity on
the discontinuity line x = φ(t) in formula (1.11) with the phase velocity
of nonlinear wave:

uδ(t) = φ̇(t).

If e0 = 0, and the initial data is piecewise-constants, our results
about system (1.7) coincide with the main statements of [14]. In [14]
particular case of an approximate solution (1.17), (3.2) of the Cauchy
problem (1.7), (1.12) with piecewise constant initial data was con-
structed (see Sec. 3).

In conclusion, we note that the weak asymptotic method allows one
to study the initial conditions having the form of the linear combination
of functions contained in (1.12) and hence to solve the problem of δ-
shock waves interaction [6]– [8].
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3. In what follows, we introduce definitions of a δ-shock wave type
solution for systems (1.1) and (1.8). Here we assume that the functions
F (u, v), G(u, v) are linear with respect to v.

Suppose that Γ = {γi : i ∈ I} is a connected graph in the upper
half-plane {(x, t) : x ∈ R, t ∈ [0,∞)} ∈ R2 containing smooth arcs γi,
i ∈ I, and I is a finite set. By I0 we denote a subset of I such that an arc
γk for k ∈ I0 starting from the points of the x-axis; Γ0 = {x0

k : k ∈ I0}
is the set of initial points of arcs γk, k ∈ I0.

Consider the initial data of the form (u0(x), v0(x)), where

v0(x) = V 0(x) + E0δ(Γ0),

E0δ(Γ0) =
∑

k∈I0
e0

kδ(x − x0
k), u0, V 0 ∈ L∞

(
R;R

)
, e0

k are constants,
k ∈ I0.

Definition 1.2. A pair of distributions (u(x, t), v(x, t)) and graph
Γ, where v(x, t) is represented in form of the sum

v(x, t) = V (x, t) + E(x, t)δ(Γ),

u, V ∈ L∞
(
R× (0, ∞);R

)
, E(x, t)δ(Γ) =

∑
i∈I ei(x, t)δ(γi), ei(x, t) ∈

C(Γ), i ∈ I, is called a generalized δ-shock wave type solution of sys-
tem (1.1) with the initial data (u0(x), v0(x)) if the integral identities

(1.13)

∫ ∞

0

∫ (
uϕt + F (u, V )ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
V ϕt + G(u, V )ϕx

)
dx dt

+
∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+

∫
V 0(x)ϕ(x, 0) dx +

∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

hold for all test functions ϕ(x, t) ∈ D(R× [0, ∞)), where ∂ϕ(x,t)
∂l

is the
tangential derivative on the graph Γ,

∫
γi
· dl is a line integral over the

arc γi.

For instance, the graph Γ containing only one arc {(x, t) : x = ct},
φ(0) = 0 corresponds to solution (1.4).

Now we introduce definitions of a δ-shock wave type solution for
systems (1.8). Suppose that arcs of the graph Γ = {γi : i ∈ I} have
the form γi = {(x, t) : x = φi(t)}, i ∈ I.

Definition 1.3. A pair of distributions (u(x, t), v(x, t)) and graph
Γ from Definition 1.2 is called a generalized δ-shock wave type solution
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of system (1.8) with the initial data (u0(x), v0(x); φ̇i(0), i ∈ I0) if the
integral identities

(1.14)

∫ ∞

0

∫ (
V ϕt + uV ϕx

)
dx dt

+
∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+

∫
V 0(x)ϕ(x, 0) dx +

∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

∫ ∞

0

∫ (
uV ϕt + u2V ϕx

)
dx dt

+
∑
i∈I

∫

γi

ei(x, t)φ̇i(t)
∂ϕ(x, t)

∂l
dl

+

∫
u0(x)V 0(x)ϕ(x, 0) dx +

∑

k∈I0

e0
kφ̇k(0)ϕ(x0

k, 0) = 0,

hold for all ϕ(x, t) ∈ D(R× [0, ∞)).

According to Remark 1.1, in Definition 1.3 we use the initial data
(u0(x), v0(x); φ̇i(0), i ∈ I0) instead of the initial data (u0(x), v0(x)),

where φ̇i(0) is the initial velocity , i ∈ I0. Thus, in addition to an initial

data (1.12) we add the initial velocity φ̇(0) to the initial data for system
(1.8) (see (4.1)).

Next, we introduce a notion of a weak asymptotic solution, which
is one of the most important in the weak asymptotics method .

We shall write f(x, t, ε) = OD′(εα), if f(x, t, ε) ∈ D′(R) is a distri-
bution such that for any test function ψ(x) ∈ D(Rx) we have

〈f(x, t, ε), ψ(x)〉 = O(εα),

where O(εα) denotes a function continuous in t that admits the usual
estimate |O(εα)| ≤ constεα uniform in t.

Definition 1.4. A pair of functions (u(x, t, ε), v(x, t, ε)) smooth as
ε > 0 and graph Γ is called a weak asymptotic solution of the Cauchy
problem for system (1.1) if the relations

(1.15)

L1[u(x, t, ε), v(x, t, ε)] = OD′(ε),
L2[u(x, t, ε), v(x, t, ε)] = OD′(ε),

u(x, 0, ε) = u0(x) + OD′(ε),
v(x, 0, ε) = v0(x) + OD′(ε).

hold.



8 V. G. DANILOV AND V. M. SHELKOVICH

Within the framework of the weak asymptotics method , we find the
generalized solution (u(x, t), v(x, t)) of the Cauchy problem as the limit

(1.16)
u(x, t) = limε→+0 u(x, t, ε),
v(x, t) = limε→+0 v(x, t, ε),

of the weak asymptotic solution (u(x, t, ε), v(x, t, ε)) of this problem,
where limits are understood in the weak sense (in the sense of the
space of distributions D′).

Multiplying relations (1.15) by a test function ϕ(x, t), integrating
by parts and then passing to the limit as ε → +0, we obtain that
the limits (1.16) of weak asymptotic solutions satisfy (1.13). Hence,
the system of integral identities (1.13) generalizes the usual integral
identities (1.2) to the case of δ-shock wave type solutions.

In the framework of the weak asymptotics method by (2.7), (3.11),
(3.12), (4.10), (4.11) we define the superposition of the Heaviside func-
tion and the delta function. In the background of these formulas there
is the construction of asymptotic subalgebras of distributions, but in
the description of our technique we omit the algebraic aspects which
are given in detail in [2],[3], [25].

4. In the framework of our approach, in order to solve the Cauchy
problems (1.6), (1.12), or (1.7), (1.12), or (1.8), (1.12), we will seek a
weak asymptotic solution in the form of the smooth ansatz

(1.17)

u(x, t, ε) = u0(x, t) + u1(x, t)Hu(−x + φ(t), ε)
+Ru(x, t, ε),

v(x, t, ε) = v0(x, t) + v1(x, t)Hv

(− x + φ(t), ε
)

+e(t)δv

(− x + φ(t), ε
)

+ Rv(x, t, ε),

where uk(x, t), vk(x, t), k = 0, 1, e(t), φ(t), Ru(x, t, ε), Rv(x, t, ε) are
the desired functions. Here δv(x, ε) = ε−1ωδ

(
x/ε

)
is a regularization of

the δ-function,

Hj(x, ε
)

= ω0j

(x

ε

)
=

∫ x/ε

−∞
ωj(η) dη, j = u, v,

are regularizations of the Heaviside function H(x). The mollifiers
ωu(η), ωv(η), ωδ(η) have the following properties: (a) ω(η) ∈ C∞(R),
(b) ω(η) has a compact support or decreases sufficiently rapidly as
|η| → ∞, (c)

∫
ω(η) dη = 1, (d) ω(η) ≥ 0, (e) ω(−η) = ω(η).

The corrections Rj(x, t, ε) are functions such that

(1.18) Rj(x, t, ε) = oD′(1),
∂Rj(x, t, ε)

∂t
= oD′(1), ε → +0,

j = u, v.
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Since the generalized solution of the Cauchy problem is defined as
a weak limit (1.16), taking into account (1.18) we can see that the cor-
rections Ru(x, t, ε), Rv(x, t, ε) make no contribution to the generalized
solution. Otherwise, setting Ru(x, t, ε) = Rv(x, t, ε) = 0, i.e. without
introducing these terms, we cannot solve the Cauchy problem with an
arbitrary initial data (see Remarks 2.5, 3.5 below).

5. Let λ1(u, v), λ2(u, v) be the eigenvalues of the characteristic ma-
trix of system (1.1). We assume that the “overcompression” conditions
are satisfied, which serve as the stability conditions for the δ-shock
waves:

(1.19)
λ1(u+) ≤ φ̇(t) ≤ λ1(u−),

λ2(u+) ≤ φ̇(t) ≤ λ2(u−),

where φ̇(t) is the speed of propagation of δ-shock waves, and u− and u+

are the respective left- and right-hand values of u on the discontinuity
curve.

2. Propagation of δ-shocks of system (1.6)

1. Let us consider the propagation of a single δ-shock wave of
system (1.6), i.e. consider the Cauchy problem (1.6), (1.12), where
u0

1(0) > 0.
The eigenvalues of the characteristic matrix of system (1.6) are

λ1(u) = f ′(u), λ2(u) = g(u). We shall assume that the following
conditions are satisfied (see [6]– [10], [15])

(2.1) f ′′(u) > 0, g′(u) > 0, f ′(u) ≤ g(u).

We choose corrections in the form

(2.2)
Ru(x, t, ε) = 0,

Rv(x, t, ε) = R(t)1
ε
Ω′′

(
−x+φ(t)

ε

)
,

where R(t) is a continuous function, ε−3Ω′′(x/ε
)

is a regularization
of the distribution δ′′(x), Ω(η) has the properties (a)–(c) (see Sec. 1).
Since for any test function ψ(x) ∈ D(Rx) we have

∫
1

ε
Ω′′

(x

ε

)
ψ(x) dx = ε2ψ′′(0)

∫
Ω(ξ) dξ + O(ε3),

∫
∂

∂x

(
1

ε
Ω′′

(x

ε

))
ψ(x) dx = −ε2ψ′′′(0)

∫
Ω(ξ) dξ + O(ε3),

relations (1.18) hold.
In order to construct a weak asymptotic solution of the Cauchy

problem (1.6), (1.12) we will use lemmas on asymptotic expansions.
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Lemma 2.1. ( [5, Corollary 1.1.]) Let f(u) be a smooth function,
let u0(x, t), u1(x, t) be bounded functions. If u(x, t, ε) is defined by
(1.17), (2.2) then

f
(
u(x, t, ε)

)
= f(u0) +

[
f(u)

]
H(−x + φ(t)) + OD′(ε), ε → +0,

where
[
f(u(x, t))

]
= f(u0(x, t) + u1(x, t)) − f(u0(x, t)) is a jump in

function f(u(x, t)) across the discontinuity curve x = φ(t).

Lemma 2.2. Let g(u) be a smooth function, let uk(x, t), vk(x, t),
k = 0, 1, e(t) be bounded functions. If u(x, t, ε), v(x, t, ε) are defined
by (1.17), (2.2) then

g
(
u(x, t, ε)

)(
v(x, t, ε)

)
= g(u0)v0 +

[
g(u)v

]
H(−x + φ(t))

+
{

e(t)a(t) + R(t)c(t)
}

δ(−x + φ(t)) + OD′(ε), ε → +0,

where
[
h(u(x, t), v(x, t))

]
= h(u0(x, t) + u1(x, t), v0(x, t) + v1(x, t)) −

h(u0(x, t), v0(x, t)) is a jump in function h(u(x, t), v(x, t)) across the
discontinuity curve x = φ(t),

(2.3)
a(t) =

∫
g
(
u0(φ(t), t) + u1(φ(t), t)ω0u(η)

)
ωδ(η) dη,

c(t) =
∫

g
(
u0(φ(t), t) + u1(φ(t), t)ω0u(η)

)
Ω′′(η) dη.

Proof. Using Lemma 2.1, it is easy to obtain the weak asymptotics

g
(
u(x, t, ε)

)(
v0(x, t) + v1(x, t)Hv(−x + φ(t), ε)

)

= g(u0)v0 +
[
g(u)v

]
H(−x + φ(t)) + OD′(ε), ε → +0.

Next, after the change of variables x = −εη, we have

J(ε) =
〈
g
(
u(x, t, ε)

)(
e(t)δv(−x + φ(t), ε)

+R(t)
1

ε
Ω′′

(−x + φ(t)

ε

))
, ψ(x)

〉

= ψ(φ(t))
(
e(t)a(t) + R(t)c(t)

)
+ O(ε), ε → +0,

for all ψ(x) ∈ D(R). ¤

Theorem 2.3. Let u0
1(0) > 0 and conditions (2.1) are satisfied.

Then there exists T > 0 such that, for t ∈ [0, T ), the Cauchy problem
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(1.6), (1.12), has a weak asymptotic solution (1.17), (2.2) if and only
if

(2.4)

L11[u0] = 0, x > φ(t),
L11[u0 + u1] = 0, x < φ(t),

L12[u0, v0] = 0, x > φ(t),
L12[u0 + u1, v0 + v1] = 0, x < φ(t),

φ̇(t) = [f(u)]
[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[vg(u)]− [v] [f(u)]

[u]

)∣∣∣
x=φ(t)

,

R(t) = e(t)
c(t)

(
[f(u)]

[u]

∣∣∣
x=φ(t)

− a(t)

)
,

where ˙= d
dt

, a(t), c(t) are defined by (2.3). The initial data for system
(2.4) are defined from (1.12), and

φ(0) = 0,

R(0) = e0

c(0)

(
[f(u0)]

[u0]

∣∣∣
x=0

− a(0)

)
.

Proof. Substitute into system (1.6) smooth ansatzs (1.17) and
asymptotics f(u(x, t, ε)), g(u(x, t, ε))v(x, t, ε) which are given by Lem-
mas 2.1, 2.2, we obtain up to OD′(ε) the following relations

L11[u(x, t, ε)] = L11[u0]

+
{∂u1

∂t
+

∂

∂x

(
f(u0 + u1)− f(u0)

)}
H(−x + φ(t))

(2.5) +
{

u1φ̇(t)−
(
f(u0 + u1)− f(u0)

)}
δ(−x + φ(t)) + OD′(ε),

L12[u(x, t, ε), v(x, t, ε)] = L12[u0, v0]

+
{∂v1

∂t
+

∂

∂x

((
v0 + v1

)
g(u0 + u1)− v0g(u0)

)}
H(−x + φ(t))

+
{

v1φ̇(t) + ė(t)−
((

v0 + v1

)
g(u0 + u1)− v0g(u0)

)}
δ(−x + φ(t))

(2.6) +
{

e(t)φ̇(t)− e(t)a(t)− c(t)R(t)
}

δ′(−x + φ(t)) + OD′(ε),

where a(t), c(t) 6= 0 are defined by (2.3). Here we take into account
the estimates (1.18).

Setting of the right-hand side of (2.5), (2.6) equal to zero, we obtain
the necessary and sufficient conditions for the relations

L11[u(x, t, ε)] = OD′(ε), L12[u(x, t, ε), v(x, t, ε)] = OD′(ε),

i.e. system (2.4).
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Now we consider the Cauchy problem L11[u] = ut +
(
f(u)

)
x

= 0,

u(x, 0) = u0(x). Since f(u) is convex and u0
1(0) > 0, according to the

results [17, Ch.4.2.], we extend u0
+(x) = u0

0(x) (u0
−(x) = u0

0(x)+u0
1(x))

to x ≤ 0 (x ≥ 0) in a bounded C1 fashion and continue to denote the
extended functions by u0

±(x). By u±(x, t) we denote the C1 solutions
of the problems

L11[u] = ut +
(
f(u)

)
x

= 0, u±(x, 0) = u0
±(x)

which exist for small enough time interval [0, T1] and are determined
by integration along characteristics. The functions u±(x, t) determine
a two-sheeted covering of the plane (x, t). Next, we define the function
x = φ(t) as a solution of the problem

φ̇(t) =
f
(
u+(x, t)

)− f
(
u−(x, t)

)

u+(x, t)− u−(x, t)

∣∣∣
x=φ(t)

, φ(0) = 0.

It is clear that there exists unique function φ(t) for sufficiently short
times [0, T2]. To this end, for T = min(T1, T2) we define the shock
solution by

u(x, t) =

{
u+(x, t), x > φ(t),
u−(x, t), x < φ(t).

Thus the first, second and fifth equations of system (2.4) define a unique
solution of the Cauchy problem L11[u] = ut +

(
f(u)

)
x

= 0, u(x, 0) =

u0(x) for t ∈ [0, T ).
Solving this problem, we obtain u(x, t), φ(t). Then substituting

these functions into (2.4), we obtain V (x, t) = v0(x, t)+v1(x, t)H(−x+
φ(t)), e(t), and v(x, t) = V (x, t) + e(t)δ(−x + φ(t)).

It is clear that functions ω0u(ξ), Ω′′(ξ) can be chosen such that∫
ωu(η)Ω′(η) dη > 0. Taking into account that g′(u) > 0, u0

1(x) > 0
and integrating by parts, we have

c(t) = −
∫

g′
(
u0 + u1ω0u(η)

)
u1

∣∣∣
x=φ(t)

ωu(η)Ω′(η) dη 6= 0.

So for any functions u0(x, t), u1(x, t), e(t), φ(t), t ∈ [0, T ), there exists
the function R(t), which is defined by the last relation of (2.4). ¤

Remark 2.4. Using the last relation (2.4) can one obtain from
Lemma 2.2 the following relation:

v(x, t, ε)g
(
u(x, t, ε)

)
= v0g(u0) +

[
vg(u)

]
H(−x + φ(t))

(2.7) +e(t)
[f(u)]

[u]

∣∣∣
x=φ(t)

δ(−x + φ(t)) + OD′(ε), ε → +0,
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Remark 2.5. Without introducing correction (2.2), i.e. setting
R(t) = 0, we derive from (2.4) the relation[

f(u(x, t))
]

[
u(x, t)

]
∣∣∣
x=φ(t)

(2.8) =

∫
g
(
u0(φ(t), t) + u1(φ(t), t)ω0u(η)

)
ωδ(η) dη,

which shows that we cannot solve the Cauchy problem with an arbi-
trary jump.

2. Using a weak asymptotic solution constructed by Theorem 2.3
we obtain a generalized solution of the Cauchy problem (1.6), (1.12) as
a weak limit (1.16).

Theorem 2.6. Let u0
1(0) > 0 and conditions (2.1) are satisfied.

Then, for t ∈ [0, T ), where T > 0 is given by Theorem 2.3, the Cauchy
problem (1.6), (1.12), (2.1), has a unique generalized solution

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

satisfies the integral identities cf. (1.13):

(2.9)

∫ T

0

∫ (
uϕt + f(u)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ T

0

∫ (
ϕt + g(u)ϕx

)
V dx dt +

∫
V 0(x)ϕ(x, 0) dx

+

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl + e0ϕ(0, 0) = 0,

where Γ = {(x, t) : x = φ(t), t ∈ [0, T )}, and
∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∫ T

0

e(t)
(
ϕt(φ(t), t) + φ̇(t)ϕx(φ(t), t)

)
dt,

V (x, t) = v0 + v1H(−x + φ(t)) and functions uk(x, t), vk(x, t), φ(t),
e(t) are defined by Theorem 2.3.

Proof. By Theorem 2.3 we have the following estimates:

L11[u(x, t, ε)] = OD′(ε), L12[u(x, t, ε), v(x, t, ε)] = OD′(ε).

Let us apply the left-hand and right-hand sides of these relations to an
arbitrary test function ϕ(x, t) ∈ D(R × [0, T )). Then integrating by
parts, we obtain

∫ T

0

∫ (
u(x, t, ε)ϕt(x, t) + f(u(x, t, ε)ϕx(x, t)

)
dxdt
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+

∫
u(x, 0, ε)ϕ(x, 0) dx = O(ε),

∫ T

0

∫ (
ϕt(x, t) + g(u(x, t, ε))ϕx(x, t)

)
v(x, t, ε) dxdt

+

∫
v(x, 0, ε)ϕ(x, 0) dx = O(ε), ε → +0.

Passing to the limit as ε → +0 and taking into account Lem-
mas 2.1, 2.2, (2.7), and the fact that

lim
ε→+0

∫ T

0

∫
e(t)δv

(− x + φ(t), ε
)
ϕ(x, t) dxdt

(2.10) =

∫ T

0

e(t)ϕ(φ(t), t) dt,

(2.11) lim
ε→+0

∫
e(0)δv

(− x, ε
)
ϕ(x, 0) dx = e(0)ϕ(0, 0),

we obtain the integral identities (2.9).
In view of the above remark in Theorem 2.6, the Cauchy problem

has a unique generalized solution. ¤

Here the right-hand sides of the sixth equation of system (2.4)

ė(t) =
(
[vg(u)]− [v]

[f(u)]

[u]

)∣∣∣
x=φ(t)

is the so-called Rankine–Hugoniot deficit.
If initial data (1.12) are piecewise-constants, i.e u0

0 = u0, u0
1 = u1 >

0, v0
0 = v0, v0

1 = v1, then we have from Theorem 2.6.

Corollary 2.7. For t ∈ [0, ∞), the Cauchy problem (1.6), (1.12),
(2.1), with piecewise-constants initial data has a unique generalized so-
lution

u(x, t) = u0 + u1H(−x + φ(t)),
v(x, t) = v0 + v1H(−x + φ(t)) + e(t)δ(−x + φ(t)),

where

φ(t) = [f(u)]
[u]

t,

e(t) = e0 +
(
[g(u)v]− [f(u)]

[u]
[v]

)
t.
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3. Propagation of δ-shocks of system (1.7)

1. Let us consider the Cauchy problem (1.7), (1.12). The “over-
compression” condition is

(3.1) λ1(u+) ≤ λ2(u+) ≤ φ̇(t) ≤ λ1(u−) ≤ λ2(u−),

where λ1(u) = u− 1, λ2(u) = u + 1 are the eigenvalues of the charac-
teristic matrix of system (1.7).

We choose corrections R(x, t, ε) in the form

(3.2)
Ru(x, t, ε) = P (t) 1√

ε
ΩP

(
−x+φ(t)

ε

)
,

Rv(x, t, ε) = 0,

where P (t) is a smooth function, 1
ε
Ω2

P

(
x/ε

)
is a regularization of the

delta function. Moreover, we assume that

(3.3)

∫
Ω2

P (η) dη 6= 0,

∫
Ω3

P (η) dη = 0.

For example, we can choose ΩP (−η) = −ΩP (η). It is clear that rela-
tions (1.18) hold.

Theorem 3.1. Let

(3.4) u0
0(0) + 1 ≤ [(u0)2]− [v0]

[u0]

∣∣∣∣
x=0

≤ u0
0(0) + u0

1(0)− 1,

then there exists T > 0 such that, for t ∈ [0, T ), the Cauchy problem
(1.7), (1.12), has a weak asymptotic solution (1.17), (3.2), (3.3) if and
only if

(3.5)

L21[u0, v0] = 0, x > φ(t),
L21[u0 + u1, v0 + v1] = 0, x < φ(t),

L22[u0, v0] = 0, x > φ(t),
L22[u0 + u1, v0 + v1] = 0, x < φ(t),

φ̇(t) = [u2]−[v]
[u]

∣∣∣
x=φ(t)

,

ė(t) =
(

[u3]
3
− [u]− [v] [u

2]−[v]
[u]

)∣∣∣
x=φ(t)

,

P (t) =
√

e(t)
a

,
u0 + u1 − v1

u1

u1

∣∣∣
x=φ(t)

= b
a
,

where

(3.6) a =

∫
Ω2

P (η) dη > 0, b =

∫
ω0u(η)Ω2

P (η) dη.
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The initial data for system (3.5) are defined from (1.12), and

φ(0) = 0,

P (0) =
√

e0

a
.

Proof. Let H(x, ε) = ω0

(
x/ε

)
be a regularization of the Heaviside

function, and let δk(x, ε) = ε−1ωk

(
x/ε

)
, k = 1, 2 be regularizations of

the delta function. Using Lemmas 2.1, 2.2, we obtain the following
relations

(3.7)

(
H(x, ε)

)r
= H(x) + OD′(ε),

δ1(x, ε)
(
ω2

(x

ε

))r

= Arδ(x) + OD′(ε),

δ1(x, ε)
(
H(x, ε)

)r

= Brδ(x) + OD′(ε), ε → +0,

where Ar =
∫

ω1(η)ωr
2(η) dη, Br =

∫
ωr

0(η)ω(η) dη, r = 1, 2, . . . .
Using (3.7), (3.3), one can calculate

(3.8)

(
u(x, t, ε)

)2
= u2

0 +
(
(u0 + u1)

2 − u2
0

)
H(−x + φ(t))

+aP 2(t)δ(−x + φ(t)) + oD′(1),(
u(x, t, ε)

)3
= u3

0 +
(
(u0 + u1)

3 − u3
0

)
H(−x + φ(t))

+
(
(3au0 + 3bu1)P

2(t)
)
δ(−x + φ(t))

+oD′(1), ε → +0,

where a, b are defined by (3.6).
Substituting (1.17), (3.2), (3.8) into the left-hand side of system

(1.7), we obtain, up to oD′(1),

L21[u(x, t, ε), v(x, t, ε)] = L21[u0, v0]

+
{∂u1

∂t
+

∂

∂x

[
u2 − v

]}
H(−x + φ(t))

+
{

u1φ̇(t)− [
u2 − v

]}
δ(−x + φ(t))

(3.9) +
{

e(t)− aP 2(t)
}

δ′(−x + φ(t)) + oD′(1),

L22[u(x, t, ε), v(x, t, ε)] = L22[u0, v0]

+
{∂v1

∂t
+

∂

∂x

[u3

3
− u

]}
H(−x + φ(t))

+
{

v1φ̇(t) + ė(t)−
[u3

3
− u

]}
δ(−x + φ(t))

(3.10) +
{

e(t)φ̇(t)− (
au0 + bu1

)
P 2(t)

}
δ′(−x + φ(t)) + oD′(1).
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Setting the left-hand side of (3.9), (3.10) equal to zero, we obtain
systems (3.5).

According to the above arguments (see the proof of Theorem 2.3)
and in view of the overcompression condition (3.1), (3.4), the first five
equations of system (3.5) define a unique solution of the Cauchy prob-
lem

L21[u, V ] = 0,
L22[u, V ] = 0,

with initial data u(x, 0) = u0(x), V (x, 0) = v0
0(x) + v0

1(x)H(−x), (3.4)
for small enough time interval [0, T ]. Solving this problem, we obtain
u(x, t), V (x, t), φ(t) (see also [24, Ch.I,§8.]). Then substituting these
functions into (3.5), we obtain e(t), P (t), v(x, t) = V (x, t)+e(t)δ(−x+
φ(t)). ¤

Remark 3.2. Using (1.6), (3.5), (3.8), we obtain the following re-
lations:

(3.11)
(
u(x, t, ε)

)2−v(x, t, ε) = u2
0−v0+

[
u2−v

]
H(−x+φ(t))+oD′(1),

1

3

(
u(x, t, ε)

)3 − u(x, t, ε) =
1

3
u3

0 − u0 +
[1

3
u3 − u

]
H(−x + φ(t))

(3.12) +e(t)

[
u2

]

[u]
δ(−x + φ(t)) + oD′(1), ε → +0.

2. Using a weak asymptotic solution and (3.11), (3.12), just as
above in Subsec. 2.2., we can prove the following theorem.

Theorem 3.3. There exists T > 0 such that the Cauchy problem
(1.7), (1.12), (3.4) for t ∈ [0, T ) has a unique generalized solution

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

satisfies the integral identities (1.13):
∫ T

0

∫ (
uϕt +

(
u2 − V

)
ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ T

0

∫ (
V ϕt +

(1

3
u3 − u

)
ϕx

)
dx dt +

∫
V 0(x)ϕ(x, 0) dx

+

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl + e0ϕ(0, 0) = 0,

where Γ = {(x, t) : x = φ(t), t ∈ [0, T )},
∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∫ T

0

e(t)
(
ϕt(φ(t), t) + φ̇(t)ϕx(φ(t), t)

)
dt,
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V (x, t) = v0(x, t) + v1(x, t)H(−x + φ(t))

and functions uk(x, t), vk(x, t), φ(t), e(t) are defined by Theorem 3.1.

The right-hand sides of the sixth equation of system (3.5)

ė(t) =

(
[u3]

3
− [u]− [v]

[u2]− [v]

[u]

)∣∣∣∣
x=φ(t)

is the so-called Rankine–Hugoniot deficit.

Remark 3.4. We can solve the Cauchy for initial data determined
by the fourth relation (3.5):

u0 + u1 − v1

u1

u1

∣∣∣
x=φ(t)

=
b

a
,

where a =
∫

Ω2
P (η) dη, b =

∫
ω0u(η)Ω2

P (η) dη. This relation can be
rewritten as

(3.13)
u0 − v1

u1

u1

=
φ̇(t)− u−

u1

=
b− a

a
,

where u− = u0 + u1. In [14] the parameter a =
∫

Ω2
P (η) dη was set to

be 1. Hence
b− a

a
=

∫ (
ω0u(η)− 1

)
Ω2

P (η) dη < 1.

Here relation (3.13) coincides with the second relation [14, Proposi-
tion 2] and the last inequality coincides with the statement of [14,
Lemma 1]. However in this case relation (3.13) still leaves one degree
of freedom, to connect u− = u0 + u1 and u+ = u0 (see [14, Proposi-
tion 2]).

Remark 3.5. Without introducing correction (3.2), i.e. setting
P (t) = 0, according to (3.5), we can solve the Cauchy problem only if
the following relation holds:

(3.14)
( [u3]

3
− [u]− [v]

[u2]− [v]

[u]

)∣∣∣∣
x=φ(t)

= 0.

Corollary 3.6. The Cauchy problem (1.7), (1.12), (3.4), where
initial data is piecewise-constants, for t ∈ [0, ∞) has a unique gener-
alized solution

u(x, t) = u0 + u1H(−x + φ(t)),
v(x, t) = v0 + v1H(−x + φ(t)) + e(t)δ(−x + φ(t)),

where
φ(t) = [u2]−[v]

[u]
t,

e(t) = e0 +
(

[u3]
3
− [u]− [v] [u

2]−[v]
[u]

)
t.
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If e0 = 0, and the initial data is piecewise-constants, according to
the seventh equation (3.5) the Rankine–Hugoniot deficit is positive:

ė(t) =
[u3]

3
− [u]− [v]

[u2]− [v]

[u]
> 0

as in [14].

4. Propagation of δ-shocks of zero-pressure gas dynamics
system

1. According to Remark 1.1, we consider the Cauchy problem (1.8)
which initial data of the form

(4.1)

u0(x) = u0
0(x) + u0

1(x)H(−x),
v0(x) = v0

0(x) + v0
1(x)H(−x) + e0δ(−x).

φ̇(t)
∣∣∣
t=0

= φ1,

where u0
k(x), v0

k(x), k = 0, 1 are given smooth functions, e0, φ1 are
given constant, and u0

1(0) > 0.
System (1.8) has a double eigenvalue λ1(u) = λ2(u) = u. In this

case the entropy condition is

(4.2) u+ ≤ φ̇(t) ≤ u−.

We choose corrections in the form

(4.3)
Ru(x, t, ε) = Q(t)Ω′

(
−x+φ(t)

ε

)
,

Rv(x, t, ε) = R(t)1
ε
Ω̃′′

(
−x+φ(t)

ε

)
,

where Q(t), R(t) are continuous functions, ε−1Ω
(
x/ε

)
and ε−1Ω̃

(
x/ε

)

are a regularization of the delta function, Ω(η) and Ω̃(η) have the prop-
erties (a)–(c) (see Sec. 1). Thus, relations (1.18) hold.

Moreover, we assume that Ω(η), Ω̃(η) are functions such that

(4.4)

b1 =

∫
ωδ(η)Ω′(η) dη 6= 0,

∫
ω0u(η)Ω̃′′(η) dη = 0,

c2 =

∫
ω2

0u(η)Ω̃′′(η) dη 6= 0,
∫

ω0u(η)Ω′(η)Ω̃′′(η) dη = 0,
∫

Ω′(η)Ω̃′′(η) dη = 0.
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It is clear that for any mollifiers ωδ(η), ω0u(η) there are mollifiers

Ω(η), Ω̃(η) such that system (4.4) is solvable. For example, we can

choose an even mollifier Ω̃(η) and a mollifier Ω(η) such that the second

and third relations (4.4) hold. Moreover, we assume that Ω(η), Ω̃(η)

such that supp
(
Ω′) ∩ supp

(
Ω̃′′) = ∅. Hence the fifth and fourth rela-

tions (4.4) hold. In addition, we assume that Ω(η) such that Ω′(η) is
“closed” to an odd function. Then the first relation (4.4) holds.

Theorem 4.1. There exists T > 0 such that the Cauchy problem
(1.8), (4.1) for t ∈ [0, T ) has a weak asymptotic solution (1.17), (4.3)
if and only if
(4.5)

L31[u0, v0] = 0, x > φ(t),
L31[u0 + u1, v0 + v1] = 0, x < φ(t),

L32[u0, v0] = 0, x > φ(t),
L32[u0 + u1, v0 + v1] = 0, x < φ(t),

ė(t) =
(
[uv]− [v]φ̇(t)

)∣∣∣
x=φ(t)

,

d
(
e(t)φ̇(t)

)

dt
=

(
[u2v]− [uv]φ̇(t)

)∣∣∣
x=φ(t)

,

Q(t) = φ̇(t)−u0−a1u1

b1

∣∣∣
x=φ(t)

,

R(t) = e(t)

u2
1c2

{(
φ̇(t)

)2 −
(
u2

0 + 2u0u1a1 + u2
1a2

+Q2(t)b2 + 2Q(t)
(
u0b1 + u1c1

))}∣∣∣∣
x=φ(t)

.

where the initial data for system (4.5) are defined from (4.1), and
φ(0) = 0,

Q(0) =
φ̇(0)−u0

0−a1u0
1

b1

∣∣∣
x=0

,

R(0) = e0

(u0
1(0))2c2

{(
φ̇(0)

)2 −
(
(u0

0)
2 + 2u0

0u
0
1a1 + (u0

1)
2a2

+Q2(0)b2 + 2Q(0)
(
u0

0b1 + u0
1c1

))}∣∣∣∣
x=0

.

Here

ak =
∫ (

ω0u(η)
)k

ωδ(η) dη, k = 1, 2,

b2 =
∫ (

Ω′(η)
)2

ωδ(η) dη,
c1 =

∫
ω0u(η)Ω′(η)ωδ(η) dη,

c2 =
∫

ω2
0u(η)Ω̃′′(η) dη.
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Proof. Just as above, using Lemmas 2.1, 2.2, and taking into

account the relations
∫

ω0u(η)Ω′(η)Ω̃′′(η) dη = 0,
∫

ω0u(η)Ω̃′′(η) dη = 0,∫
Ω′(η)Ω̃′′(η) dη = 0, one can calculate

u(x, t, ε)v(x, t, ε) = u0v0 +
[
uv

]
H(−x + φ(t))

+e(t)
(
u0 + u1

∫
ω0u(η)ωδ(η) dη

(4.6) +Q(t)

∫
ωδ(η)Ω′(η) dη

)
δ(−x + φ(t)) + OD′(ε),

u2(x, t, ε)v(x, t, ε) = u2
0v0 +

[
u2v

]
H(−x + φ(t))

+

{
e(t)

(
u2

0 + 2u0u1

∫
ω0u(η)ωδ(η) dη + u2

1

∫
ω2

0u(η)ωδ(η) dη

+Q2(t)

∫
(Ω′)2(η)ωδ(η) dη + 2Q(t)

(
u0

∫
Ω′(η)ωδ(η) dη

+u1

∫
ω0u(η)Ω′(η)ωδ(η) dη

))

(4.7) +R(t)u2
1

∫
ω2

0u(η)Ω̃′′(η) dη

}
δ(−x + φ(t)) + OD′(ε).

Substitute into the first equation of system (1.8) smooth ansatzs
(1.17), asymptotics (4.6), (4.7), and setting of the left-hand side equal
to zero, we obtain the necessary and sufficient conditions for the equal-
ity L31[u(x, t, ε)] = OD′(ε):

(4.8)

L31[u0, v0] = 0, x > φ(t),
L31[u0 + u1, v0 + v1] = 0, x < φ(t),

ė(t) =
(
[uv]− [v]φ̇(t)

)∣∣∣
x=φ(t)

,

φ̇(t) =
(
u0 + u1a1 + Q(t)b1

)∣∣∣
x=φ(t)

.

Substitute into the second equation of system (1.8) smooth ansatzs
(1.17), asymptotics (4.6), (4.7), and taking into account the third rela-
tion of system (4.8), we obtain the necessary and sufficient conditions
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for the equality L32[u(x, t, ε)] = OD′(ε):

(4.9)

L32[u0, v0] = 0, x > φ(t),
L32[u0 + u1, v0 + v1] = 0, x < φ(t),

d
(
e(t)φ̇(t)

)

dt
=

(
[u2v]− [uv]φ̇(t)

)∣∣∣
x=φ(t)

,

e(t)
(
φ̇(t)

)2
=

{
e(t)

(
u2

0 + 2u0u1a1 + u2
1a2

+Q2(t)b2 + 2Q(t)
(
u0b1 + u1c1

))

+R(t)u2
1c2

}∣∣∣
x=φ(t)

.

From (4.8), (4.9) we have system (4.5). ¤
Remark 4.2. Using the two last equations of system (4.5), from

(4.6), (4.7) we have the following relations:

u(x, t, ε)v(x, t, ε) = u0(x, t)v0(x, t) +
[
u(x, t)v(x, t)

]
H(−x + φ(t))

(4.10) +e(t)φ̇(t)δ(−x + φ(t)) + OD′(ε),

u2(x, t, ε)v(x, t, ε) = u2
0(x, t)v0(x, t) +

[
u2(x, t)v(x, t)

]
H(−x + φ(t))

(4.11) +e(t)
(
φ̇(t)

)2
δ(−x + φ(t)) + OD′(ε), ε → +0.

2. We obtain a generalized solution of the Cauchy problem as a
weak limit of a weak asymptotic solution constructed in Theorem 4.1.

Theorem 4.3. There exists T > 0 such that the Cauchy problem
(1.8), (4.1) for t ∈ [0, T ) has a unique generalized solution

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

satisfies the integral identities (1.14), where

V (x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)),

and functions uk(x, t), vk(x, t), φ(t), e(t) are defined by the system

(4.12)

L31[u0, v0] = 0, x > φ(t),
L31[u0 + u1, v0 + v1] = 0, x < φ(t),

L32[u0, v0] = 0, x > φ(t),
L32[u0 + u1, v0 + v1] = 0, x < φ(t),

ė(t) =
(
[uv]− [v]φ̇(t)

)∣∣∣
x=φ(t)

,

d
(
e(t)φ̇(t)

)

dt
=

(
[u2v]− [uv]φ̇(t)

)∣∣∣
x=φ(t)

,
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where initial data are defined from (4.1).

Proof. According to Theorem 4.1 we have the following relations
L31[u(x, t, ε), v(x, t, ε)] = OD′(ε), L32[u(x, t, ε), v(x, t, ε)] = OD′(ε).

The proof of the first integral identity (1.14) is based on (4.10) and
the same calculations as those carried out above in Subsec. 2.2., and
we omit them here.

Let us apply the left-hand and right-hand sides of the relation
L32[u(x, t, ε), v(x, t, ε)] = OD′(ε) to an arbitrary test function ϕ(x, t) ∈
D(R× [0, T )). Then integrating by parts, we obtain

∫ T

0

∫ (
u(x, t, ε)v(x, t, ε)ϕt(x, t) + u2(x, t, ε)v(x, t, ε)ϕx(x, t)

)
dxdt

+

∫
u(x, 0, ε)v(x, 0, ε)ϕ(x, 0) dx = O(ε).

Passing to the limit as ε → +0 and taking into account (4.10),
(4.11), and (2.10), (2.11), we obtain integral identities (2.9):

∫ T

0

∫ (
uV ϕt + u2V ϕx

)
dx dt +

∫
u0(x)V 0(x)ϕ(x, 0) dx

+

∫ T

0

e(t)φ̇(t)
(
ϕt(φ(t), t) + φ̇(t)ϕx(φ(t), t)

)
dt + e0φ̇(0)ϕ(0, 0) = 0.

Here Γ = {(x, t) : x = φ(t), t ∈ [0, T )}, and
∫

Γ

eφ̇(t)
∂ϕ

∂l
dl =

∫ T

0

e(t)φ̇(t)
(
ϕt(φ(t), t) + φ̇(t)ϕx(φ(t), t)

)
dt.

¤
If initial data (4.1) are piecewise-constants, i.e u0

0 = u0, u0
1 = u1 > 0,

v0
0 = v0, v0

1 = v1, then we have the following statement from Theo-
rem 4.3.

Theorem 4.4. The Cauchy problem (1.8) with piecewise-constants
initial data (4.1) for t ∈ [0, ∞) has a unique generalized solution

u(x, t) = u0 + u1H(−x + φ(t)),
v(x, t) = v0 + v1H(−x + φ(t)) + e(t)δ(−x + φ(t)),

where
(i) if [v] 6= 0, then

e(t) =
√

(e0)2 + 2e0ė(0)t +
(
[uv]2 − [v][u2v]

)
t2,

φ(t) =
e0+[uv]t−

√
(e0)2+2e0ė(0)t+

(
[uv]2−[v][u2v]

)
t2

[v]
,
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and ė(0) = [uv]− [v]φ̇(0),
(ii) if [v] = 0, then

e(t) = e0 + [u]v0t,

φ(t) = e0φ̇(0)+tv0[u2]/2
e0+tv0[u]

t.

Proof. In this case from Theorem 4.3 we have

(4.13)
ė(t) = [uv]− [v]φ̇(t),

d
(
e(t)φ̇(t)

)

dt
= [u2v]− [uv]φ̇(t).

Let [v] 6= 0. Substituting φ̇(t) from the first equation into the
second one, we obtain

eë(t) +
(
ė(t)

)2
= [uv]2 − [v][u2v].

Integrating the last expression, we obtain

e(t)ė(t) =
1

2

d
(
e2(t)

)

dt
= A1 + At,

where

A = [uv]2 − [v][u2v]

=
(
u−v− − u+v+

)2 − (v− − v+)
(
u2
−v− − u2

+v+

)

= v−v+

(
u− − u+

)2 ≥ 0,

u+ = u0, u− = u0 +u1, v+ = v0, v− = v0 + v1, A1 is a constant. Thus,
we have

(4.14) e(t) =
√

A0 + 2A1t + At2, A0 = (e0)2.

Hence

(4.15) ė(t) =
A1 + At√

(e0)2 + 2A1t + At2
, A1 = e0ė(0),

and

(4.16)
φ̇(t) = [uv]−ė(t)

[v]
,

φ(t) =
e0+[uv]t−

√
(e0)2+2e0ė(0)t+At2

[v]
.

If [v] = 0 then v− = v+ = v0. In this case e(t) = e0 + [u]v0t.
Substituting the last relation into the second equation of system (4.13),
we have

e(t)φ̈(t) + 2[u]v0φ̇(t) = [u2]v0.
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Integrating this differential equation, after elementary calculations, we
obtain

φ̇(t) =
[u2]

2[u]
+

(
φ̇(0)− [u2]

2[u]

) (e0)2

(e0 + tv0[u])2
.

Hence, φ(t) = e0φ̇(0)+tv0[u2]/2
e0+tv0[u]

t.

Now we prove that constructed solution is entropy solution. Con-
sider the case [v] 6= 0. In view of the fact that A1 + At = 0 for

t = −A1

A
= e0ė(0)

v−v+[u]2
< 0, the function (e0)2 + 2e0ė(0)t + At2 > 0 is

defined for all t ≥ 0. From (4.15), (4.16) we obtain

φ̈(t) = (e0)2 (ė(0))2 − v−v+[u]2

[v]
(
(e0)2 + 2e0ė(0)t + v−v+[u]2t2

)3/2
.

Thus, φ̇(t) and ė(t) are monotonous functions for all t ≥ 0.
Consequently, taking into account that

ė(t) → √
A = [u]

√
v−v+,

φ̇(t) → u−
√

v−+u+
√

v+√
v−+

√
v+

, t →∞,

and relations

u+ ≤ φ̇(0) ≤ u−,

u+ ≤ u−
√

v−+u+
√

v+√
v−+

√
v+

≤ u−,

one can easily see that entropy condition (4.2) holds.
The case [v] = 0 can be comsidered in the same way.
The proof of the theorem is complete. ¤

Corollary 4.5. Let φ̇(0) =
u−
√

v−+u+
√

v+√
v−+

√
v+

(i.e. ė(0) =
√

v−v+[u]).

The the Cauchy problem (1.8) with piecewise-constants initial data (4.1)
for t ∈ [0, ∞) has a unique generalized solution

u(x, t) = u0 + u1H(−x + φ(t)),
v(x, t) = v0 + v1H(−x + φ(t)) + e(t)δ(−x + φ(t)),

where
φ(t) =

u−
√

v−+u+
√

v+√
v−+

√
v+

t,

e(t) = e0 +
√

v−v+

(
u− − u+

)
t,

where u+ = u0, u− = u0 + u1, v+ = v0, v− = v0 + v1.

According to the results of Theorem 4.4 and Corollary 4.5, if ė(0) =√
v−v+[u], the trajectory of singularity has the same form as for e(0) =

0.
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