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Abstract We here propose fluid models of a multithread/multitask system. This
can be straighforwardly extended to a network of such components. The
leading equations form a system of hyperbolic equations coupled by a
nonlocal term of current total load. PDEs are also used for the compu-
tation of the service times. A numerical stable and efficient method of
discretisation is then proposed. To illustrate the usefulness of such mod-
els, we numerically solve a problem of optimal control of quality of ser-
vice (QoS) management and demonstrate the efficiency of the method.
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Introduction

It is of interest to try to mimic principles of Fluid Mechanics to other
fields and disciplines, especially for process and flux management. About
pioneer works in this direction, let us mention Whitham’s book [8]; the
author proposes conservation laws for modeling roadway traffic flows.
Those PDEs are shown to be able to capture traffic bottlenecks with
formation of nonlinear shock waves.
The idea to find high level mean flow equations is particularly interesting
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for information system (IS) management where billions of events com-
monly travel the system, what makes discrete event simulation (DEVS)
irrelevant for large scale and heavy traffic systems. Liu et al [7], [6] did a
comparison of efficiency of network simulation between using fluid model
and packet-level models.
In Fluid Dynamics, if one looks at the mean flow at the macroscopic
level, modeling often gives conservation laws of the form

∂tU + ∇ · F(U) = 0.

If one neglects the viscous effects of the fluid, these equations are called
the Euler equations. For certain simple fluids, we know that the solutions
of these equations are (at least in a formal way) limits of solutions of
equations that describe the microscopic behaviour of the fluid (collision
between particles, mean free transport). These microscopic equations
belong to the family of particle transport equations, like Boltzmann’s
equation. Sometimes, we do not have clear connection between macro-
scopic models and microscopic ones. This is due to the fact that fluids are
too complex so that we cannot express complex mechanisms of particle
interaction into limit equations of state. In this case at the macroscopic
level, we only express conservation of certain quantities and model the
fluid finely enough to reproduce the most features of its macroscopic
behaviour.

In the Computer Simulation community, the most usual models are
based on microscopic equations that finely model event scheduling. At
this scale, simulation need stochastic models of sources (those are called
injectors) with adapted laws of probability.
When networks systems are of small size, such models give results in
reasonable computational times. But when networks become larger or
when too many events have to be scheduled, such microscopic models
become irrelevant because of the prohibitive computational times.
Moreover, for decision making purposes and especially for system per-
formance enhancement, we do not generally need so rich models. We
here adopt the fluid macroscopic approach, trying to find convenient
conservation laws for particular high-level architectures or policies.
About related works of mean flow equations applied to information sys-
tems, let us for example mention the works from Baccelli, McDonald
and Reynier [2] for modeling multiple internet TCP connections. Bas-
ing their arguments from classical stochastic models, they find some
mean flow evolution equations by passing to the fluid limit.
The original feature of the present work is to use PDE models rather
than usual ODE ones for buffer system modelling. The introduction of a



PDE fluid modeling of multithread systems and optimal control 3

space-like variable allows us to take into account the memory and delay
features using a transport process at a particular velocity of propagation
of information. We also here extend our previous works of queuing and
buffer system modeling (see De Vuyst [3], [4]) to multithread/multitask
systems, and demonstrate that this framework can be utilized for per-
formance analysis and optimisation purposes.
Our article is organized as follows. In section 1, we first explain how
to find the fluid equations of a multithread system; we comment the
domain of validity of such models; we also comment the extension to a
systems with multiple arrival sources and the extension to a network of
multithread servers. In section 2, we present our formalism to compute
mean service times; this is an essential task for performance analysis. In
section 3, we propose adapted numerical discretizations of such coupled
systems of ODE-PDE. Finally, sections 4 and 5 are numerical experi-
ments and validate the numerical method on two different problems of
optimal control of Quality of Service (QoS).

1. Continuous formulation of multithread
processing systems

1.1 Continuous modeling

Let us first define the capacity φo (index o means output) of a system
the rate of which it can deliver services sequentially. This is equivalent
to consider a mean service time D = (φo)

−1 for a given class of requests.
Suppose that the system is able to split up its capacity into small pieces
for multithread processing. Consider N levels of task completion. At
level 1/N (k = 1), the just arrived request begins to be served by the
system. At final level N/N (k = N), the request is completed and
served. More generally, suppose that, at level k/N , the number of cur-
rent requests is Mk. If the server divides its capacity homogeneously,
then the optimal instantaneous flux of requests between levels k/N and
(k + 1)/N is

φk,k+1 =
Mk

∑N
l=1 Ml

φo, (1)

so that, considering all the partial fluxes, we retrieve the whole capacity:

N−1
∑

k=1

φk,k+1 = φo.

Suppose now that the number of levels of completion and the total num-
ber of current requests are large. We would like to rewrite balance equa-
tions in the fluid limit when both N and

∑

l Ml tend to infinity. We



4

introduce a “mass density” ρ(x, t) (we voluntarily use Fluid Mechanics
terminology). Variables x and t respectively denote space and time. Let
ω =]ωl, ωr[ be a small interval in ]0, 1[. The quantity

∫ ωr

ωl

ρ(x, t) dx

represents the quantity of current requests being processed between lev-
els ωl and ωr. Because the system is conservative, we can write a mass
balance between levels ωl and ωr. This can be expressed by

d

dt

∫ ωr

ωl

ρ(x, t) dx = (flux at ωl) − (flux at ωr). (2)

The continuous equivalent of (1) is clearly

ρ(x, t)
∫ 1
0 ρ(y, t) dy

φo

which defines current local flux between levels x and x + dx. Conse-
quently, equation (2) is more precisely

d

dt

∫ ωr

ωl

ρ(x, t) dx =
(ρ(ωl, t) − ρ(ωr, t)) φo

∫ 1
0 ρ(x, t) dx

. (3)

By considering any interval ω and making tend mes(ω) to zero, we find
the following Partial Differential Equation (PDE)

∂tρ + ∂x

(

ρφo
∫ 1
0 ρ(x, t) dx

)

= 0, x ∈]0, 1[, t > 0, (4)

where x is a space variable representing the level of completion of the
current requests. This equation can be read as a transport equation

∂tρ + ∂xρv(t) = 0, (5)

with time-varying velocity v(t) equal to

v(t) =
φo

∫ 1
0 ρ(x, t) dx

. (6)

It can also be read in a weak sense.
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1.2 Domain of validity and stochastic limit

Of course, this continuous model is justified if there is enough request
material to process, otherwise the current total mass of requests

m(t) =

∫ 1

0
ρ(x, t) dx

could tend to zero and thus the velocity of propagation of information
v(t) would tend to infinity, which does not agree with expected finite
propagation velocity given by φo. The domain of validity of this con-
tinuous model is precisely the domain in which stochastic effects are
not prevailing. However, it is natural to think that if the arrival rate
is noisy, stochastic effects no more negligeable when m is of the order
of 1. We would like our model be able to explore (at least coarsely)
the stochastic-deterministic transition domain because this configura-
tion occurs frequently in practice and is of large interest for capacity
planning and risk analysis. For that, we can define a velocity which is
more general than (6), depending on a continuous increasing function ϕ
such that ϕ(x) ≥ 1, ϕ(−∞) = 1, ϕ(x) ∼ x for large x:

v(t) =
φo

ϕ
(

∫ 1
0 ρ(x, t) dx

) . (7)

Thus, if we use for example the limiter function ϕ(x) = max(1, x), in
the case where m becomes lower than 1, then the velocity v is exactly
φo . In this case, if φi(t) denotes the arrival rate (index i means input),
then the departure rate becomes at equilibrium

ρ(1, t)φo = ρ(0, t − D)φo =
φi(t − D)

φo

φo = φi(t − D).

Consequently, the departure rate is limited at the correct expected value
(pure transport process).
About choices of functions ϕ, the following one-parameter family

ϕε(x) =
(x − 1) +

√

ε2 + (x − 1)2

2
, ε ∈ R

+, x > 0, (8)

for rather “small” ε provides good candidates that have the benefit to be
smooth with C∞ regularity. The parameter ε should be calibrated and
optimized from experimental real data. It is expected that we can find a
law that links ε with some invariants of the stochastic process (variance
of the Gaussian noise part of the arrival rate for example), but it is not
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at the aim of the paper and it is not discussed here. In what follows, we
consider the following equation

∂tρ + ∂x

(

ρφo

max(1,
∫ 1
0 ρ(x, t) dx)

)

= 0, x ∈]0, 1[, t > 0, (9)

as model equation.

Let us go back to the total mass m(t) of current fluid in the system.
We are looking for a differential balance equation on this variable. By
integrating equation (5) on the interval ]0, 1[, we get the differential
equation on m

dm

dt
= φi(t) − ρ(1, t)v(t), (10)

which corresponds to a balance between incoming and outgoing fluxes.
Then, we can also formulate the equations as follows:

v(t) =
φo

max (1,m(t))
, (11)

∂tρ + ∂xρv(t) = 0, x ∈]0, 1[, t > 0, (12)

dm

dt
= φi(t) − ρ(1, t)v(t). (13)

For this initial value problem, we add some initial conditions: m(0) =

m0 ≥ 0, and ρ(x, 0) = ρ0(x) given such that
∫ 1
0 ρ0(x) dx = m0, ρ0 ∈

BV (0, 1). Because of the hyperbolic nature of the equation, we also add
upstream boundary conditions which correspond to a flux compatibility
between the arrival rate φi(t) and the flux of equation (12). This is
equivalent from defining upstream Dirichlet conditions on ρ according
to

ρ(0, t)v(t) = φi(t). (14)

1.3 Extension to a multiple source system

That formalism can be naturally extended to the multicomponent case
where several sources of information have to be treated in competition
by the same multithread server. Typical applications of interest are web
applications with concurrent services. In this case, we consider M arrival
rates Φi;k, k = 1,M . Let us also denote the total arrival rate

Φi =
M
∑

k=1

Φi,k.
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Then, by the same modeling principles, we find a system of partial dif-
ferential evolution equations for the partial densities ρk of information
number k:

∂tρk + ∂x
ρkΦo

max(1,
∑M

l=1

∫ 1
0 ρl(x, t) dx)

= 0,

The equations are coupled by the nonlocal term of total current load
m(t) now defined as

m(t) =

M
∑

l=1

∫ 1

0
ρl(x, t) dx.

The compatibility conditions of continuity of the vector flux at x = 0
give the upstream boundary conditions

Φi;k(t) =
ρk(0, t)Φo

max(1,m(t))

that can also be seen as nonhomogeneous Dirichlet conditions on each
ρk at the left boundary. The velocity of propagation is the same for
each source k, still given by expression (11). We can also reformulate
the problem as a coupled nonlinear system of ODE-PDEs, like (11)-(13):

v(t) =
φo

max (1,m(t))
, (15)

∂tρk + ∂xρkv(t) = 0, x ∈]0, 1[, t > 0, k = 1,M, (16)

dm

dt
= φi(t) −

(

M
∑

l=1

ρl(1, t)

)

v(t). (17)

1.4 Comments about the extension to a network
of multithread servers

So far, we have modeled the behaviour of only one server with its own
multithread policy. But a complete electronic process is generally made
of several interconnected servers that communicate and form a network.
Thus, we need to add some flux interfaces through all couples of nodes.
If we suppose that the network has infinite bandwidth, we only give us
flux compatibility conditions between departure and arrival rates of two
neighbouring nodes. The hyperbolic nature of the equations leads us
to impose prescribed upstream boundary conditions for a node. This
means that the arrival rate is given. On the other hand, the outflow
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(departure rate) is a consequence of the internal flow inside a node. If
a node number (1) sends information to the node (2), then we only say
that the arrival rate of (2) is the departure rate of node (1) which de-
pends on the internal state of (1).
To summarize, let say that our models attach PDEs (or systems of
PDEs) at each node of the network (behaviour model), whereas the
model of communication is expressed by some flux compatibility condi-
tions. This can of course be extended to the vector multi-source case.

2. Computation of the service times

If we want to use that model for performance assessment purposes,
we more need to know the service delays at any time. This is equivalent
to find the time passed through each particle to go from x = 0 to x = 1.
From the differential point of view (integration of characteristics), this
time depends on both Past and Future: when a request “enters” the
system, the state of the system depends on the past because of memory
effects. When this request is being processed, its effective trajectory will
depend on future arrival rates. Those last ones can for example slow
down, see block the system (case of stagnant particles). From the PDE
point of view, time memory can be changed into space memory. Let
us denote d(x, t0, x0) the travel time of a request particle at position x
with old position x0 ∈]0, 1[ at time t0. Using the particle derivative and
Lagrangian representation, we need to solve the differential problem

D

Dt
d = 1,

d(x, t0, 0) = 0.

But we also know that, at time t the particle velocity is given by v(t).
Then the Eulerian representation of the problem is then given by the
PDE problem:

∂td + v(t) ∂xd = 1, x ∈]0, 1[, t > 0, (18)

d(x = 0, t) = 0. (19)

Because we want to know the whole residence time of a particle into the
system, the variable of interest is in fact the service time D(t) given by

D(t) = d(1, t). (20)

Problem (18),(19) is a transport problem with constant source term. Let
us remark that, by the simple change of variable u = t − d, we can also
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formulate this last problem as an homogeneous one (free of source term):

∂tu + v(t) ∂xu = 0, x ∈]0, 1[, t > 0, (21)

u(x = 0, t) = t, (22)

D(t) = t − u(1, t). (23)

In what follows, we will name equations (21)-(23) the Service Time Equa-
tions (STE).

3. Numerical discretization of equations

We consider a uniform space discretization of the interval ]0, 1[ with
computational points xj = (j− 1

2)h, j = 1, N and space step h = 1
N

. We
also consider a time step τn at time tn and then define the next discrete
time tn+1 as tn+1 = tn + τn. Let us denote by λn = τn

h
the ratio of

discretization steps at time tn. Because of the hyperbolic nature of the
transport equations, we consider classical upwind schemes for stability
purposes. The scheme, written in its semi-implicit form, reads

ρn+1
j = ρn

j − λn
(ρn+1

j − ρn+1
j−1 )φo

max(1, h
∑N

l=1 ρn
l )

(24)

which leads to an unconditionally stable scheme. About implementation
considerations, we need to solve a two-diagonal triangular linear system
at each time step, which can be in fact written and solved explicitely so
that the numerical complexity is of the order of the one of an explicit
scheme.
In expression (24), we have discretized m(tn) by the truncated Riemann

series h
∑N

l=1 ρn
l . One could ask if this quadrature formula is not too

coarse, unadapted or irrelevant. On the contrary, this choice allows us
to enforce a consistency relation with the balance equation (10) at the
discrete level (while staying first order accurate). Indeed, because the
scheme is conservative, summing up all the indices j in (24) leads to the
following expression

N
∑

j=1

ρn+1
j =

N
∑

j=1

ρn
j − λn

(

ρn+1
N φo

max(1,mn)
− φn

i

)

or again

mn+1 = mn + τn

(

φn
i −

ρn+1
N φo

max(1,mn)

)
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which is consistent with the balance equation (10) of m.
To summarize, we implement the numerical method as follows:

vn =
φo

max(1,mn)
, (25)

ρn+1
1 = ρn

1 − λn(ρn+1
1 vn − φn

i ), (26)

ρn+1
j = ρn

j − λn(ρn+1
j − ρn+1

j−1 ) vn, j = 2, N, (27)

mn+1 = mn + τn
(

φn
i − ρn+1

N vn
)

. (28)

Let us recall that, although equations (27) are implicit, the computa-
tional cost of the scheme is of the order of an explicit one (up to scalar
divisions) because the resulting linear system is two-diagonal triangular.

Finally, the numerical discretization of the STE is straightforward. We
use the homogeneous formulation (21)-(23) and propose the full implicit
numerical scheme

dn+1
1 = tn+1, (29)

dn+1
j = dn

j − λn
(

dn+1
j − dn+1

j−1

)

vn, j = 2, N, (30)

Dn+1 = tn+1 − dn+1
N . (31)

Let us that emphasize that, even if the services times are very small with
respect to the current time step, they are however accurately computed.
That makes this numerical method very powerful for computing large
scale heavy traffic dynamical systems. In our numerical experiments,
we observe that we can use large CFL numbers up to 106 while keeping
very good estimates of the services times for smooth inflows.

4. Application: optimization of capacity sharing
between two sources

Let us consider a server with crude processing capacity denoted by
φo (which is homogeneous to a rate). Two different sources (1) and (2)
arrive at the server and are treated separately in parallel. For that, the
real server is logically splitted up into a network of two virtual servers
numbered (1) and (2) with independent parallel multithread policy.
Of course, the crude common capacity φo has also to be shared be-
tween the two virtual servers. We then introduce a time-varying function
α(t) ∈ [0, 1] and two local respective capacities α(t)φo and (1 −α(t))φo.
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The leading equations thus are

∂tρ1 + ∂xρ1v1(t) = 0, (32)

∂tρ2 + ∂xρ2v2(t) = 0, (33)

with respective transport velocity and mass

v1(t) =
α(t)φo

max (1,m1(t))
, m1(t) =

∫ 1

0
ρ1(x, t) dx, (34)

v2(t) =
(1 − α(t))φo

max (1,m2(t))
, m2(t) =

∫ 1

0
ρ2(x, t) dx. (35)

For well-posedness, we are looking for a function α belonging to the
functional space BV (0, T ) with values in [0, 1].
The corresponding respective STE and services times D1(t) and D2(t)
for each virtual server (1) and (2) are solutions of

∂td` + v`∂xd` = 1, x ∈]0, 1[, d`(0, t) = 0, D`(t) = d`(1, t) (36)

for each ` = 1, 2. Because v` depends on α, it is clear that each D`

also depends on the time function α. Below, we explicity exhibit that
dependency by using the notation D` = D`(t;α), ` = 1, 2.
We are interested in an optimal control problem set in the time window
]0, T [. We introduce two constant parameters of Quality of Service (QoS)
of the system Dmax;1 and Dmax;2. Those are bounds of service delay. We
are looking for a function α ∈ BV (0, T ; ]0, 1[) that realizes the minimum
of functional J defined by

J(α) =
1

T

∫ T

0

{

(D1(t;α) − Dmax;1)
2 + (D2(t;α) − Dmax;2)

2
}

dt (37)

Because the problem is formulated in a space of infinite dimension, we
need to approximate it for its numerical resolution. We then formulate
a finite dimensional optimization problem of unknown vector α,

α = (α1, α2, ..., αM ),

where αn, n = 1,M is an approximation of α(tM ;n) with tM ;n = (n−1)T
M

.

We introduce a time-continuous reconstruction operator J from R
M into

the space of piecewise constant functions such that, for all n,

Jα|[tM;n,tM;n+1[ = αn, n = 1,M.
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The resulting functional is then given by JM ,

JM (α) =
1

T

∫ T

0

{

(D1(t;Jα) − Dmax;1)
2 + (D2(t;Jα) − Dmax;2)

2
}

dt

(38)
and the final optimal control problem is to find the vector α that realizes

min
α = (α1 ,α2,...,αM)

JM (α).

For solving the optimization problem, we decide to use a genetic algo-
rithm (GA). We have used the GAOT Toolbox (see [1]) that can be
found on the web. About the parameters of simulation, we use α ∈ R

48

(that means that the value of α(t) is updated each thirty minutes over
24 hours) and a population of 20 genes. All the initial genes (candidates
for optimal vector α) are chosen randomly with components into [0, 1].
As experiment, we choose Φo = 120 req/sec (D = Φo

−1 = 8.3 10−3 sec),
Dmax;1 = 4 sec and Dmax;2 = 3 sec. On figure 1, we first plot the
two given profiles of arrival rates within a whole day of observation (24
hours from 0:00 a.m.). The rate of source (1) is chosen to be important
during the morning period whereas source (2) is concentrated over the
afternoon. The second plot compares the capacity of the server with
respect to the sum of the two arrival rates. What we see if that there
exists two threshold crossovers corresponding to two periods of conges-
tion within the day (from 10 a.m. to 0:30 p.m. and from 5:30 p.m. to
7 p.m.). Finally, the third plot is the numerical optimal profiles of α
obtained by the optimisation process. About only 60 iterations of GA
are necessary to reach a vector very close to the global minimum so that
the computational time stays reasonable. The fourth and fifth plots of
figure 1 represent the profiles of service time for respective sources (1)
and (2). In that configuration, we note that the constraints of qual-
ity of service are respected even if the system is congested two times
within the day. Of course, a more congested configuration would violate
the desired QoS, but anyway the optimal process would find a “best
effort” solution. It is interesting to note that our model can capture
the uncongested flow as well as the congested one with no difficulty of
transition. In particular, this simulation handles services times of order
D = 8.3 10−3 sec up to congested response times of order 4 sec, what
makes a ratio of about 500 between the two extreme bounds. Notice
finally that the present problem can have several minima, and different
initialization parameter can lead to different numerical minima. But it
is observed that all the mimima stay close together, and, more precisely
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are close to the following time function in closed form:

αc(t) =
Φ1(t)

Φ1(t) + Φ2(t)

which corresponds to the fraction of source (1) that enters the system.
Consequently, this function, which is not far from the optimal solution,
should be used for the real-time control as the control policy for that
particular system.
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Figure 1. Optimization of capacity sharing between two sources. The sum of arrival
rates compared to departure rate (capacity) shows the two regions of bottleneck.
Optimized service times for sources (1) and (2) and corresponding α profile within a
complete day are shown.

5. Application: two-source problem with
guaranteed quality of service for the first
source

Let us now consider a case with two sources φi,1 and φi,2 such that
φi,1 << φo (source 1 is minority), but possibly (φi,1+φi,2) can be greater
than φo (case of congested system). The first source 1 is expected to
be processed with a prescribed guaranteed quality of service (QoS) ex-
pressed in terms of service time bounded by a constant Dmax;1. As in
the previous problem, the crude capacity of the real system is splitted
up into two virtual multitask systems of respective capacity α(t)Φo and
(1 − α(t))Φo. The first source partially feeds the first virtual system
whereas the second one feeds both virtual systems with respective fluxes
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β(t)φi,2(t) and (1 − β(t))φi,2(t) (see figure 2).
The question is to both optimally feed the first virtual server with the
second source and distribute the total capacity Φo while lowering as
best as possible the service time of the second server. The optimization
problem is subject to the QoS constraint on the first source

D1(t) ≤ Dmax;1 ∀t ∈]0, T [.

We decide to introduce the following functional

(1-b(t))F2

b(t)f2

(1-a(t)) Fo

a(t) Fo

Fo
F11

2

1: QoS : delay<4s

(1-b(t))F2

b(t)f2

(1-a(t)) Fo

a(t) Fo

Fo
F11

2

1: QoS : delay<4s

Figure 2. Description of the architecture of the second problem

Jσ(α, β) = σ max
t∈[0,T ]

(D1(t;α, β) − Dmax;1)+ +
1

T

∫ T

0
(D2(t;α, β))2 dt,

(39)
where σ is a (large) weight coefficient that controls the force of the first
term of the functional with respect to the second one. We have some-
what relaxed the constraint of quality of service by considering a large
penalty term into the functional (39). The second term is aimed at low-
ering at best the service time of server number 2 for the optimal solution.
A large value of σ gives priority on the first term of the functional and
thus allows us to almost verify the guaranteed QoS. Remark that we
here mix L∞(0, T ) and L2(0, T ) norms. The resulting functional Jσ has
low regularity because of the presence of the L∞-norm. That prevents
us from using pure gradient methods and rather invites us to use genetic
algorithms (GA) for the numerical optimization process. About imple-
mentation, we still use the GAOT toolbox [1]. About the parameters of
simulation, we now use α, β ∈ R

24, that means that the values of α(t) and
β(t) are updated each hour. We use again 20 genes, Φo = 120 req/sec,
Dmax;1 = 4 sec. The results are given on figure 3. The given profiles of
sources (1) and (2) now generate a congestion between 3:00 p.m. and
5:00 p.m (first and second plots). The third and fourth plots show the
optimal profiles of piecewise constant time functions α and β. The fifth
and sixth plots present the resulting optimal profiles of service time for
the servers (1) and (2). What we see is that the constraint of guaran-
teed QoS is met (even if the limit bound at 4 seconds is attained in the
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congested region). On the other hand, during the bottleneck, the service
time of server (2) increases up to 550 seconds (about 9 minutes).
Although conditions of this test case apparently seem not to be too stiff,
human tentatives of reasonable choice of profiles of functions α and β
often lead to mean services times of the order of 10000 seconds with a
complete violation of the guaranteed QoS ! That justifies the need of
control automatons for such kinds of systems.
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Figure 3. Optimisation of routing and capacity sharing for two sources and two
virtual servers with a prescribed guaranteed QoS for the first source.

6. Concluding remarks and perspectives

We have proposed a PDE-ODE fluid model of multithread systems.
The coupled system of transport equations is original in its form by the
presence of a nonlocal term that expresses the congestion rate of the
system. We have also proposed a new formalism for service time as-
sessment which is also based on transport equations. That formalism
notably improves a previous technique exposed in [5] that was based on
level set methods for particle tracking. The equations exposed here allow
for a better understanding of the behaviour of multithread systems like
certain web servers or phone telecommunication value chains. Although
those models have been initially contructed under the assumptions of
heavy traffic and congestion regime, we have numerically demonstrated
that they are also able to handle uncongested-congested regime transi-
tion and compute accurately mean service times at least in the congested
case. Consequently, those are adapted for performance analysis because
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criteria of performance essentially depend on large response time due
to congestion. As example and experiments, we have proposed two test
cases of optimal control of quality of service and proved the utility of
such models. About future works, we plan to refine the models where
stochastic effects can no more be neglected. It would be also interesting
to couple event-level and fluid level models with rigorous transition mod-
eling and analysis. Finally, a promising work is to use such models for
real system identification with low number of degrees of freedom. Par-
allely, we think that this kind of PDEs could be used in the context of
time-dependent artificial neural networks for modelling memory-based
systems.
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